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Abstract

The high background tumor mutation burden in cutaneous melanoma limits the ability to identify 

significantly mutated genes (SMGs) that drive this cancer. To address this, we performed a 

mutation significance study of over 1,000 melanoma exomes, combined with a multi-omic 

analysis of 470 cases from The Cancer Genome Atlas. We discovered several SMGs with 

co-occurring loss-of-heterozygosity and loss-of-function mutations, including PBRM1, PLXNC1 
and PRKAR1A, which encodes a protein kinase A holoenzyme subunit. Deconvolution of bulk 

tumor transcriptomes into cancer, immune and stromal components revealed a melanoma-intrinsic 

oxidative phosphorylation signature associated with protein kinase A pathway alterations. We 

also identified SMGs on the X-chromosome, including the RNA helicase DDX3X, whose loss-of-

function mutations were exclusively observed in males. Finally, we found that tumor mutation 
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burden and immune infiltration contain complementary information on survival of patients with 

melanoma. In summary, our multi-omic analysis provides insights into melanoma etiology and 

supports contribution of specific mutations to the sex bias observed in this cancer.

INTRODUCTION

Cutaneous melanoma is the most aggressive form of skin cancer. Most frequently it develops 

on non-acral, sun-exposed skin, linked with DNA damage from ultraviolet radiation (UVR). 

It can also arise on acral skin, such as the soles of the feet, palms of the hands, and 

fingernail matrix, where UVR is thought to play a lesser role.1 Melanomas originating 

from sun-exposed skin display one of the highest tumor mutation burden (TMB) among 

all malignancies.2–4 The majority of these mutations are UVR-induced C>T transitions 

occurring at dipyrimidines.5

An important yet poorly understood aspect of melanoma is that males have higher incidence 

and worse prognosis at all clinical stages.6,7 The mechanisms that mediate these differences 

remain unclear. Recently, differential expression of a gonosomal gene, PPP2R3B, between 

sexes in melanoma was proposed to explain some of these differences.8 However, the 

cumulative effect of X-inactivation-escaping genes on melanoma biology remains largely 

unknown.

Despite methodological advances in the identification of significantly mutated genes 

(SMGs)2,9–12, it remains difficult to determine which genes are under positive selection 

in melanoma. For instance, recent studies have reported a context-specific mutational 

signature characterized by extremely high mutation rates in ETS transcription factor 

binding sites.13–16 This phenomenon occurs at cytosines flanked by a specific sequence 

([C]TTCCG)13, where transcription factor binding causes conformational changes 

increasing DNA vulnerability to UVR-induced damage14 and reducing repair efficiency.15,16 

Classical trinucleotide mutation models do not account for this context-specific 

signature12,13, which can lead to spurious evidence of positive selection. Additionally, the 

large proportion of passenger mutations greatly reduces the statistical power to detect genes 

under positive selection.2 Previous estimates suggest ~1,000 melanoma exomes are needed 

to achieve the same sensitivity provided by 200 breast cancer cases.17 The largest integrative 

analysis of cutaneous melanoma from The Cancer Genome Atlas (TCGA) included 331 

cases, identifying 13 SMGs4, and a more recent analysis of 437 cases identified 17 SMGs.12 

Thus, a comprehensive catalogue of oncogenes and tumor suppressors is still lacking for 

cutaneous melanoma.

Here, we performed a mutation analysis of cutaneous melanoma, combining whole exome 

somatic variants for 1,014 melanomas from five studies2,4,18–20, with integration of 

the complete melanoma TCGA cohort of 470 cases with copy number, transcriptomic, 

methylation and clinical data. We controlled for background mutational processes by 

analyzing samples with different mutational signatures separately and limited the risk 

of false positives by accounting for ETS-binding sites and other confounding factors. 

For several identified SMGs, we observed independent evidence of positive selection, 

such as co-occurring mutations and loss-of-heterozygosity (LOH). The power gained by 
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analyzing over 1,000 melanoma exomes, along with our integrative analysis, facilitated the 

identification of previously unrecognized SMGs in cutaneous melanoma, uncovered the 

importance of a male-specific tumor suppressor, DDX3X, and provided insights into the 

relationship of UVR, TMB, and immune infiltration with patient survival.

RESULTS

Summary of samples

We collected and uniformly annotated whole exome somatic variant calls for 1,014 

melanomas (623 males, 390 females, and one unannotated) from four whole exome 

sequencing studies2,4,19,20 and one whole genome sequencing study18 (Supplementary 

Tables 1 and 2). The combined cohort comprised 219 primary, 663 metastatic, and 132 

unannotated samples. The majority (n = 772) originated on non-acral skin, and the rest were 

from acral (n = 51), mucosal (n = 14), or of unknown, uncertain, or unavailable origin 

(n = 177). We referred to a published curated annotation to define non-acral cutaneous 

melanomas in TCGA.21 Cases from the Hayward et al. study (n = 183) and the majority 

from TCGA (n = 470) were systemic and radiation treatment naïve prior to tumor sample 

procurement (Supplementary Table 2). The other cohorts were not restricted to treatment 

naïve samples2,19,20. Only the TCGA cohort had matching gene expression, methylation and 

copy number data (Supplementary Table 3).

Identification of significantly mutated genes

We identified SMGs using OncodriveFML11 (OFML), an algorithm that detects positive 

selection by comparing the average impact score of the mutations in a gene with its expected 

distribution under the hypothesis of neutral evolution. While OFML uses a permutation 

approach that controls for variations of the mutation rate across the genome, it relies on a 

global estimate of the tri-nucleotide background mutation rates. Consequently, we stratified 

our cohort according to the dominant tri-nucleotide mutational signature in each sample 

using non-negative matrix factorization (NMF). The optimal NMF decomposition consisted 

of three mutational signatures (Extended Data Fig. 1a–d), which we compared to a set of 

65 pan-cancer signatures from the COSMIC database (Extended Data Fig. 1f, g).22 Our first 

signature matched UVR-associated mutational signatures (SBS7a and 7b) that dominated 

the majority of non-acral cutaneous melanomas (Extended Data Fig. 1e). Our second 

signature was a mixture of an aging-associated signature (SBS1) and another signature of 

unknown etiology (SBS39), most prevalent in acral and mucosal melanomas (Extended Data 

Fig. 1d, e, g). Our third signature corresponded to an alkylating agent-associated mutational 

signature (SBS11) dominant in 13 samples, likely due to prior treatment with an alkylating 

agent (Extended Data Fig. 1d). We performed separate mutation significance analyses on 

UVR-high (>50% UVR-mutations, n = 824) and UVR-low samples (≤50% UVR-mutations, 

n = 177), excluding samples with a dominant alkylating signature (n = 13).

OFML employs the CADD score23, which combines multiple annotations (e.g. conservation 

measures such as phyloP24 and protein-level scores such as SIFT25) into a single metric 

to reflect the relative functional impact of any single nucleotide change. It does not 

explicitly distinguish between gain-of-function (GoF) and loss-of-function (LoF) mutations. 
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To improve our ability to detect tumor suppressor genes (TSGs), we used an additional score 

that considers high confidence LoF mutations (frameshifts, loss of translation start sites, 

premature stop codons, and splice site mutations).2

We identified 38 SMGs (false discovery rate (FDR) < 1%) in our combined OFML 

analyses (Supplementary Table 4 and Extended Data Fig. 2a–d). These included established 

melanoma oncogenes and tumor suppressors in pathways related to RTK-RAS-MAPK 

kinase signaling (BRAF, NRAS, NF1, KIT, MAP2K1, RAC1), apoptosis and cell cycle 

(TP53, CDKN2A, RB1, CDK4), PI 3-kinase signaling (PTEN), immune evasion (B2M), 

epigenetic regulation (ARID2), and mRNA splicing (SF3B1) (Fig. 1a, b, Extended Data 

Fig. 2e). Comparing mutational frequencies across acral, mucosal, and UVR-high and -low 

non-acral cutaneous melanomas, we observed that KIT and SF3B1 were found significantly 

mutated only in the UVR-low analysis (Extended Data Fig. 2d) and had higher mutation 

frequency in mucosal melanomas (~21% [3 of 14] for SF3B1 and ~14% [2 of 14] for 

KIT), as reported previously (Extended Data Fig. 2f).18 Although KIT mutations were more 

frequent in acral (~8% [4 of 51]) compared to non-acral cutaneous melanomas (~4% [29 

of 772])26,27, the UVR-low subset of non-acral cutaneous melanomas had a KIT mutation 

frequency comparable to acral melanomas (~10% [8 of 82]; Extended Data Fig. 2g).26

Filtering potential false positives

While OFML and similar well-established algorithms2,9–11 have demonstrated their 

proficiency in the identification of cancer driver genes, their mutational models remain a 

simplification of a more complex and heterogeneous process. For instance, several ETS 

binding sites exhibit high neutral mutation rates in melanoma (Extended Data Fig. 3a). This 

can lead to recurrent mutations that do not confer a selective advantage,13–16 but still deviate 

from background mutational models. While these mutations are usually located near the 

transcription start sites of actively transcribed genes, they can overlap with the coding region 

of low or non-expressed isoforms and be mis-annotated as non-synonymous variants. We 

believe this to be the case for STK19, SLC27A5, and SUCO among our SMGs (Extended 

Data Fig. 3b, c). We also observed nine SMGs (PDE7B, KCNQ, RNF217, SLC27A5, 

IVL, DACH1, RUNX1T1, HS3ST4, and DSPP) that had extremely low mRNA abundance 

and/or high neutral mutation rates (Extended Data Fig. 3d,e), two well-known discriminative 

features of false positives.10 We omitted these genes from downstream analyses.

Significantly Mutated Genes

Our SMG analysis highlighted evidence of positive selection for the recently reported 

candidate oncogene CNOT9/RQCD128 (mRNA helicase), the candidate tumor suppressor 

SETD219 (histone lysine methyltransferase), and members of the SWI/SNF (BAF) complex 

family, ARID1A and BRD7.2,12,19 Here, we report significant enrichment of LoF mutations 

in an additional member of the SWI/SNF complexes, PBRM1, in ~4% of melanoma 

cases. Altogether, SWI/SNF complex subunits highlighted by our study (ARID2, ARID1A, 

ARID1B, PBRM1, and BRD7) exhibited LoF mutations in >12% of melanoma samples 

(Extended data Fig. 4c). We also observed LoF mutations in a transmembrane receptor 

for semaphorins, PLXNC1, in ~5% of cases. Finally, the cAMP-protein kinase A (PKA) 

signaling pathway is known to play an important role in melanoma; however, driver 
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somatic mutations affecting this pathway have remained elusive.29 We observed a significant 

enrichment of LoF mutations in PRKAR1A, a regulatory subunit of the cAMP-dependent 

PKA holoenzyme, which were found in ~2% of samples. PRKAR1A loss is known 

to activate PKA signalling and is observed in an autosomal dominant syndrome called 

Carney Complex, which is associated with the development of multiple neural-crest-derived 

tumors.30 Over 50% of mutations in most SMGs were likely acquired due to UVR 

mutagenesis (Fig. 1c). Our significance analysis omitted several established melanoma-

associated genes, possibly due to their low mutation frequency or the limitations of OFML, 

and a saturation analysis suggests that additional low frequency driver genes would be 

uncovered in larger cohorts (Fig. 1d). These genes included APC, CTNNB1, EZH2, IDH1, 

KRAS, HRAS and PPP6C (Fig. 1a, b). We considered these genes false negatives and 

included them in downstream analyses.

To identify trending genes that did not meet our 1% FDR significance cut-off, we performed 

gene set enrichment analysis (GSEA) on 75 genes with an OFML FDR <10%. We found 

an expected enrichment of MAPK pathway genes (Extended data Fig. 4a), including 

two recently reported RASopathy genes with tumor suppressor functions, SPRED1 and 

RASA2.19,31 We identified one member of the mixed-lineage leukemia (MLL) complex 

family, KMT2B, as significantly mutated, and an enrichment for other members, KMT2A, 

MEN1, and KANSL1 in our mutation analysis (Extended data Fig. 4b). These MLL 

complex genes collectively exhibited LoF mutations in ~7% of samples (Extended data 

Fig. 4c).

Finally, three SMGs identified at <1% FDR were located on the X chromosome: DDX3X 
(a DEAD-box RNA helicase), CCNQ/FAM58A (the activating cyclin for CDK10), and 

ZFX (a C2H2 zinc finger transcription factor).3,4,12 Despite sex being one of the strongest 

independent prognostic factors in melanoma,6,7 sex differences in driver mutations have not 

yet been reported in melanoma.

DDX3X is a sex-specific tumor suppressor in cutaneous melanoma

Some tumor suppressors escape X chromosome inactivation (XCI), which has been 

proposed to explain the protective effect of the X chromosome against cancer.32 We 

compared TMB between sexes and observed lower values for autosomes in females relative 

to males (Fig. 2a).33 We observed no significant difference for the X chromosome, likely 

explained by the accumulation of mutations on the additional copy in females (Fig. 2a). We 

compared the mutation frequency of the SMGs identified in our analysis and observed that 

autosomal SMGs were mutated more frequently in males than females, but these differences 

were not statistically significant when controlling for the difference in TMB between sexes 

(Fig. 2b and Supplementary Table 5). The three X-linked SMGs, DDX3X, CCNQ and ZFX 
were also more frequently mutated in males (Fig. 2b). This was unexpected given the similar 

TMB observed between sexes for the X chromosome. DDX3X showed the only significant 

imbalance in our analyzed cohort (FDR < 1%; two-tailed Fisher’s exact test), with its LoF 

mutations (n = 19) found exclusively in males (Fig. 2c). This result remained significant 

when controlling for age, study, and TMB using a logistic regression approach (Extended 

Data Fig. 5a).
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LoF mutations in DDX3X were associated with a decrease in its mRNA expression 

(Fig. 2d). A comparison of mutated allele frequencies with tumor sample purity 

derived computationally by ABSOLUTE suggests that most DDX3X LoF mutations are 

homozygous clonal (Fig. 2e), indicating they likely occurred prior to clonal expansion. Our 

NMF mutation signature analysis revealed ~75% of DDX3X mutations are attributable to 

UVR (Fig. 1c).

We examined all X-linked genes for differential expression between sexes and identified 

45 genes significantly upregulated in females (Fig. 2f), which suggests they escape XCI. 

DDX3X expression was ~1.3-fold higher in melanomas from females (FDR < 1%). We 

observed biallelic expression of a common single nucleotide polymorphism (rs5963957) 

located in DDX3X (Fig. 2g). Furthermore, upregulated X-linked genes, and specifically 

DDX3X, had lower levels of promoter methylation (Fig. 2h). These results indicate that 

females are protected against complete loss of DDX3X in the event of a single mutation, 

as opposed to males, which could explain some of the observed sex bias in melanoma 

incidence and outcomes.

To gain insight into the biological consequences of DDX3X mutations in melanoma, 

we compared mRNA expression profiles of wild-type samples to those harboring LoF 

and missense DDX3X mutations in TCGA. We controlled for potential confounding 

factors, such as tumor purity, and confined our analysis to male samples. We identified 

57 upregulated and 10 downregulated genes (FDR < 20%) (Fig. 3a), including DVL1, 

which exhibited 50% upregulation in mutant samples. DVL1 is a regulator of the WNT/β-

catenin signaling axis, one of the best-characterized DDX3X-regulated pathways.34 Given 

the high genetic heterogeneity in these tumors, we sought additional evidence supporting 

these mutant DDX3X associated changes. We analysed public RNA-Seq data of DDX3X 

knockdown in three cell lines (K562, HepG2, and the melanoma cell line, HT144).35,36 We 

observed substantial concordance between expression differences in these lines and tumors 

(Extended Data Fig. 5b, c).

Considering DDX3X is a DEAD-box protein family member that has ATP-dependent 

RNA helicase activity37, we used enhanced crosslinking and immunoprecipitation (eCLIP) 

data from ENCODE project to examine whether DDX3X binding sites are enriched in 

differentially expressed genes.35,38 Given the strong positional enrichment of DDX3X peaks 

in 5’UTRs (Fig. 3b), we defined a set of DDX3X target genes, whose 5’UTRs overlap 

DDX3X binding sites. We compared these to a set of control genes, whose 5’UTRs overlap 

at least one binding site from a compendium of RNA binding proteins (RBPs), to account 

for potential biases associated with eCLIP experiments. In both cell lines and tumors, we 

observed enrichment of DDX3X targets in genes upregulated due to DDX3X knockdown or 

mutation compared to the control gene set (Fig. 3c, Extended Data Fig. 5d).

To identify pathways impacted by DDX3X mutations, we performed GSEA on DDX3X-

associated gene expression differences in melanomas from TCGA. We identified 100 

gene sets exhibiting differential regulation (FDR < 1%). Overall, 34 were concordantly 

differentially regulated in the HT144 melanoma line (p < 0.05) (Fig. 3d). Upregulated gene 

sets were related to metastatic processes, as well as RAS, PI3K, β-catenin and neuronal 
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signaling pathways. Downregulated gene sets were involved in cell cycle processes and 

RNA metabolism. Altogether, this analysis suggests that DDX3X loss is associated with 

de-differentiation, invasiveness and reduced proliferation, consistent with a recent functional 

study.36

The DNA copy number landscape of cutaneous melanoma

The landmark melanoma TCGA study analyzed copy number data from 331 melanomas.4 

To gain insight into additional genetic driver events targeted by copy number alterations, we 

obtained estimates of tumor purity, ploidy, and genome-wide copy number for the TCGA 

cohort using ABSOLUTE39 (Fig. 4). We confirmed that our copy number calls are positively 

correlated with mRNA expression of driver genes (Fig. 4b). Overall, the most frequent 

chromosome arm alterations included gain of 6p (40%), 7q (40%), 1q (35%), 7p (35%), 

and 8q (32%); and loss of 9p (63%), 10q (50%), 6q (45%), 10p (40%), 9q (38%), and 11q 

(32%) (Fig. 4c). None of the examined autosomal arms were completely lost (Fig. 4 e, f). 

Recurrent focal homozygous loss was observed for a few genes, including CDKN2A (25%), 

PTEN (5%), LINC00290 (3%), and SPRED1 (1%) (Fig. 4d). Most LOH events in samples 

that have undergone genome duplication were copy-neutral (i.e. at loci with a copy number 

of 2) (Fig. 4 e, f), supporting the notion they occur prior to genome duplication.39

We compared the copy-number profiles of UVR-high and UVR-low non-acral cutaneous 

melanomas. We observed chromosome arms 4p, 5p, 8q, 11q, and 22q were more frequently 

amplified in UVR-low cases (Fig. 4g), while chromosome arm 9q was more frequently 

deleted in UVR-high cases. Finally, a region of 15q overlapping SPRED1 and B2M was 

preferentially deleted in UVR-low melanomas.

We observed statistically significant co-occurrence between segmental LOH and LoF 

mutations in several tumor suppressors including B2M, MEN1, CDKN2A, PTEN, TP53, 

APC, NF1, and RB1 (Fig. 5a, Supplementary Table 6). In addition, BRD7 (OR = 10.40, 

P = 2.57×10−3), PLXNC1 (OR = 7.36, P = 8.01×10−3), and PBRM1 (OR = 6.07, P = 

1.89×10−2) also exhibited association between LOH and LoF mutations. All PRKAR1A 
LoF mutations were concurrent with LOH (P = 2.75×10−04). Similarly, we observed 

significant co-occurrence between DNA copy gain and recurrent amino acid substitutions 

in three activators of the MAPK signalling pathway: KIT, BRAF, and NRAS (Fig. 5b, 

Supplementary Table 6). Overall, the frequency of local copy loss of SMGs was positively 

correlated with their enrichment of LoF mutations (Fig. 5c, d). Finally, we used GISTIC40 

to identify significantly recurrent copy number alterations (q-value < 0.01) (Supplementary 

Tables 7, 8). Three SMGs (CDK4, KIT, and BRAF), in addition to EZH2, overlapped 

significantly amplified regions, and four SMGs (BRD7, B2M, CDKN2A, and PTEN), in 

addition to SPRED1 and KMT2A, overlapped significantly deleted regions (Fig. 4e).

Deconvolution of melanoma intrinsic and extrinsic expression profiles

To gain insight into the relationship between the mutational landscape and transcriptome, 

we screened for associations between driver gene alterations and cancer-cell intrinsic 

mRNA signatures. Previous studies used unsupervised clustering of mRNA profiles to 

group melanomas based on their dominant gene expression signatures.4,41 Four major 
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signatures have been found in cutaneous melanoma: immune, keratin, MITF-Low, and 

MITF-high. Because some of these signatures can originate from stromal and immune 

cells, tumor purity can greatly impact transcriptomic grouping. Our analysis of tumor purity 

across TCGA samples revealed melanoma tumors vary widely in their stromal cell content 

(interquartile range of 15%−49%; Fig. 6a). Strong negative correlations were observed 

between tumor purity and expression for a large number of genes (Fig. 6b), implying a 

significant proportion of variance in expression reflects stromal cell content variations rather 

than differences in cancer cell gene expression.

To untangle cancer-cell-intrinsic and -extrinsic mRNA signatures, we applied NMF to 

gene expression data from 468 TCGA samples. In contrast to partitional clustering, NMF 

considers samples as a mix of k unknown signatures and proceeds to deconvolve each 

sample into its constitutive parts.42 An advantage of NMF is that it can be used to assign 

signature weights to samples when signatures are not discrete. This is highly relevant for 

immune related signatures, as the degree of infiltration is a continuous predictor of patient 

outcome (Extended Data Fig. 6a). The most stable NMF solution involved five signatures 

(Extended Data Fig. 6b–d), which we characterized using GSEA and the xCell tool.43–45

One signature showed a strong negative correlation with purity (Fig. 6c), consistent with 

a normal-cell origin. It was associated with an array of immune cell types (Fig. 6e) and 

predictive of patient survival (Fig. 6f).4,41 All samples exhibited some level of expression 

of this immune signature (Fig. 6d, Extended Data Fig. 6e). The second signature was 

characterized by high keratin expression and correlated with skin cells, such as keratinocytes 

and sebocytes (Fig. 6e, Extended Data Fig. 6f, g). This keratin signature was present almost 

exclusively in primary samples (Extended Data Fig. 6h) and likely explained by the presence 

of normal skin cells in those samples.

In contrast, the other three expression signatures had a positive correlation with tumor 

purity (Fig. 6c) and showed a pattern of mutual exclusivity (Fig. 6d, Extended Data 

Fig. 6e), suggesting they constitute well-defined cancer-cell intrinsic subgroups. This is 

further supported by the presence of highly concordant subgroups when performing classical 

clustering on purity-adjusted expression data (Extended Data Fig. 6i, j).

The first subgroup (n = 76) corresponded to the well-known melanoma mRNA subgroup 

characterized by low levels of the lineage-specific transcription factor, MITF (MITF-low) 

(Extended Data Fig. 7a–c).41 The second subgroup (n = 72) exhibited higher expression of 

genes that regulate oxidative phosphorylation (OxPhos) (Extended Data Fig. 7d, e), had the 

lowest expression of hypoxia-related genes, including HIF1A and VEGFA (Extended Data 

Fig. 7b, c), as well as the highest level of pigmentation (Fig. 6g). The third subgroup 

constituted the majority (n = 291) of melanoma samples (Common), characterized by 

higher expression of MITF, interferon signalling genes, and genes co-expressed with 

the SWI/SNF chromatin-remodelling subunit, SMARCA2 (Extended Data Fig. 7a, d, e). 

Whereas tumors within the OxPhos mRNA subgroup exhibited gene expression patterns 

resembling differentiated melanocytes, the Common and MITF-low signatures resembled 

other lineages of the neural crest origin as determined using xCell (Fig. 6e).41
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We examined the relationship between our mRNA signatures and other genomic features, 

including TMB and UVR signature (expressed as the proportion of UVR-associated 

mutations) in non-acral cutaneous samples from TCGA. We observed no significant 

association between TMB or UVR and our intrinsic mRNA subgroups (Extended Data Fig. 

7f, g). However, we observed a modest but robust correlation of our immune signature with 

TMB and the UVR signature (Extended Data Fig. 7h). We found 4 SMGs differentially 

mutated across our mRNA subgroups (FDR < 20%) (Figure 7a, Supplementary Table 9). 

CDKN2A and TP53 were preferentially mutated and had lower expression in MITF-Low 

and Common samples (Figure 7a, b), whereas PRKAR1A was preferentially mutated and 

had lower expression in the OxPhos samples. Finally, CTNNB1 and KIT had relatively more 

mutations and higher expression in OxPhos samples.

Correlates of immune infiltration and survival

We next asked whether mutations in individual SMGs were associated with our 

immune signature. Because infiltrated tumors have lower proportions of tumor originating 

sequencing reads, we controlled for purity and sequencing coverage using a partial 

correlation model. Only mutations in one SMG, PRKAR1A, showed a negative correlation 

with the immune signature following multiple hypothesis correction (FDR < 5%; 

Supplementary Table 10).

Previous studies observed that high TMB is associated with improved response to immune 

checkpoint inhibitors (ICIs)20,46 and longer survival in the cutaneous melanoma TCGA 

cohort.47 High TMB is thought to increase the likelihood that a tumor will express non-self 

antigens recognized by the immune system. More recently, UVR-induced DNA damage 

has been linked to improved survival21 and reported as a potential determinant in response 

to ICI.48,49 Here, we investigated the relationship of TMB, the UVR signature, and other 

clinical variables with melanoma post-accession survival (i.e. survival relative to time of 

tumor sample procurement) in patients with non-acral cutaneous melanoma in TCGA4. We 

first tested an initial set of clinical, pathological, and molecular features using univariate 

Cox proportional-hazards models and a p-value threshold of 0.05. Statistically significant 

predictors consisted of the immune signature, TMB, UVR signature, age, and tumor tissue 

site (Extended Data Fig. 8a). We then considered multivariable Cox proportional-hazards 

models for all possible subsets of predictors and compared the effect of TMB and UVR-

signature inclusion on their quality, using the Akaike Information Criterion (AIC). The 

best models included the immune signature, tumor tissue site, age at sample procurement, 

and either UVR-signature or TMB (Extended Data Fig. 8b). We observed that the immune 

signature, UVR-signature and TMB were also amongst the best predictors of overall survival 

(i.e. survival relative to time of initial diagnosis) (Extended data Fig. 9). These results 

indicate wthat UVR-signature and TMB provide prognostic information complementary to 

immune infiltration (Fig. 8a, b). Including both UVR and TMB simultaneously did not 

significantly improve AIC or concordance index (Extended Data Fig. 8c, d), which is not 

surprising due to their substantial correlation (Spearman rho of 0.73) (Fig. 8d). Notably, 

when restricting our analysis solely to UVR-high samples, TMB, but not the proportion of 

UVR mutations, provided a significant improvement to the model (Fig. 8c, Extended Data 
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Fig. 8e, f). This suggests that TMB provides information on melanoma patient survival not 

included in the UVR signature.

We next explored if tumor neoantigen load is more informative than TMB regarding patient 

survival. The recent TCGA Pan-Cancer Atlas neoantigen study limited their analysis to 

primary tumors of ~100 melanomas.50 We implemented a pipeline to predict neo-peptide 

binding to MHC class I for the complete TCGA cohort (n = 457) (Fig. 8e). To maximize 

the sensitivity of our analysis, we considered different levels of stringency by grouping 

antigenic mutations into four tiers, based on the predicted binding affinities of the mutated 

and wild-type peptides. As expected, we observed extremely high correlation (Pearson > 

0.99) between TMB and neoantigen load (Fig. 8f)48. Substituting TMB by neoantigen load 

did not improve our survival models (Extended Data Fig. 10).

We next sought for evidence of negative selection acting upon the accumulation of antigenic 

mutations by comparing the number of predicted HLA-mutation pairs to the distribution 

obtained with 1,000 random permutations of the HLA alleles across patients. We did not 

observe significant depletion for any tier. These results are consistent with a prior analysis 

that did not detect evidence of negative selection in 99 melanoma samples, and with a 

recent study that estimated ~99% of missense mutations are tolerated and escape negative 

selection.12

Despite the absence of a strong immunoediting signal in the melanoma TCGA cohort, 

studies have shown that specific neoantigens can be exploited therapeutically.51 We looked 

for recurrent antigenic peptides and their associated mutations in our extended cohort. In 

addition to known recurrent neoantigens in BRAF and H/K/NRAS, we highlight here less 

appreciated recurrent neoantigens predicted for RAC1 and CDKN2A (Fig. 8g). Whether 

these neoantigens are therapeutically relevant for the development of personalized tumor 

vaccines requires further investigation.

DISCUSSION

Male specific DDX3X loss-of-function mutations

Women have lower melanoma incidence and better prognosis than men. Epidemiological 

studies estimate on average, for a 20-year old individual, the risk of any mole transforming 

into a melanoma by the age of 80 is 3 times higher in males than females.52 This has 

been attributed to behavioral factors; however, sex has been shown to be an independent 

prognostic factor in cutaneous melanoma and evidence clearly points to either tumor-

intrinsic or host-related biological sex differences.6,7 Here, we provided evidence that 

DDX3X escapes XCI and is preferentially mutated in male melanoma patients, potentially 

explaining some of the sex differences observed in this malignancy. We also performed an 

integrative analysis of multiple datasets that support dysregulation of RAS, PI3K, β-catenin 

pathways upon DDX3X loss.

Our findings raise many questions. First, it is unclear what role DDX3Y, the Y-linked 

paralog of DDX3X, plays in melanoma. We observed that males carrying DDX3X mutations 

had concurrent mRNA expression of DDX3Y and did not observe significant co-occurrence 
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between DDX3X and DDX3Y mutations (Extended Data Fig. 5e, f). Although these 

paralogs share 92% amino acid identity, genetic studies have shown that DDX3Y does not 

compensate for loss of DDX3X.53 Specifically, germline mutations in DDX3X have been 

associated to intellectual disability (ID), and pedigree analysis of ID-affected families have 

reported cases of DDX3X mutations causing ID in males, but not in carrier females within 

the same family.53 This is consistent with reports indicating that although DDX3Y mRNA 

is found in many human tissues, DDX3Y protein is observed only in spermatocytes.54 

Conversely, a CRISPR-Cas9 screening study observed that DDX3Y was essential in a 

DDX3X mutant cancer cell line of male origin55. Future studies characterizing DDX3X 

and DDX3Y expression and function in melanoma are required. Furthermore, trends are 

emerging in meta-analyses of sex differences in overall survival rates in ICI trials.56 

Whether DDX3X plays a role in modulating response to ICI requires further examination.

The cAMP-PKA signaling pathway

Recently, LoF mutations in PRKAR1A were reported in 2 of 27 whole-exome sequencing 

cases of spitzoid melanoma; however, none were reported in conventional non-acral 

cutaneous melanoma.57 Spitzoid melanoma is an uncommon melanocytic neoplasm 

composed of large atypical epithelioid or spindled cells, more frequently presented in 

childhood or adolescence as an unpigmented nodule.1 Here, we identified PRKAR1A as 

a SMG in ~2% of cases. To determine whether these mutations were solely in spitzoid 

melanomas, two dermatopathologists examined the digitized tumor slides, pathology reports 

and clinical data for 4 primary and 3 metastatic cases harbouring a PRKAR1A LoF mutation 

in the TCGA dataset. Both dermatopathologists indicated none of these melanomas either 

displayed spitzoid morphology nor had clinical features associated with spitzoid melanoma. 

These results indicate that PRKAR1A loss is an infrequent but significant genetic event in 

conventional non-acral cutaneous melanoma.

PRKAR1A encodes for the regulatory type IA subunit for the cAMP-dependent PKA 

holoenzyme.29 The holoenzyme exists as an inactive tetramer, which consists of two pairs 

of regulatory and catalytic subunits (Fig. 7c). Loss of PRKAR1A function is known to 

activate PKA signalling, and germline LoF variants in PRKAR1A have been linked to 

the Carney Complex syndrome.30 By performing cross-platform integrative analysis, we 

observed that PRKAR1A LoF mutations are enriched in melanomas belonging to the 

OxPhos mRNA subgroup, which exhibits high expression of the PRKACA catalytic subunit 

(Fig. 7b). A similar OxPhos expression signature has been linked to BRAF inhibitor 

resistance.58 A genome-wide open-reading-frame screen identified PRKACA as the highest 

scoring serine/threonine kinase to promote BRAF inhibitor resistance.59 When examining 

published sequencing studies of BRAF inhibitor pre- and post-resistance melanoma samples, 

PRKAR1A mutations were found in 2 of 45 (4.4%) post-treatment resistant cases.60 

Whether PRKAR1A loss is associated with BRAF inhibitor resistance requires further 

investigation.

UVR and TMB in melanoma patient survival

Studies have linked high TMB with improved ICI response and survival in patients 

with melanoma20,46. However, two recent reports have suggested that these results are 
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confounded by different melanoma subtypes (acral, mucosal and uveal), which generally 

have lower ICI responses, but also lack a UVR mutation signature and have lower TMB.48,49 

Here, we examined the relationship of UVR, TMB, the immune signature and other clinical 

variables with patient survival in non-acral cutaneous melanomas from TCGA that were 

predominantly procured prior to the widespread implementation of ICI therapies in the 

clinic. We observed TMB provides complementary information to immune infiltration on 

patient survival, even when restricting our analysis to non-acral cutaneous melanomas with a 

high UVR signature, although this effect was weaker in the latter case. These results support 

the notion that TMB is not simply distinguishing melanoma subtypes (non-acral versus 

acral, mucosal, and uveal), but is having an impact on patient survival. It will be interesting 

to see if the association between TMB and ICI response in melanoma re-emerges when 

analyzing larger cohorts of patients with a more comprehensive characterization of immune 

infiltration.

METHODS

Variant processing

Aggregated somatic mutation files from 470 TCGA-SKCM samples were downloaded from 

the GDC61 portal. To mitigate sequencing errors and alignment artefacts, we only considered 

TCGA variants that were reported by at least three callers in at least one sample. Variants 

from the 183 MELA-AU whole genomes18 were downloaded from the ICGC data portal62. 

Variants from the Hodis2, Krauthammer19 and VanAllen20 cohorts were retrieved from 

the associated publications. Variants from hg19-based datasets were mapped to the hg38 

reference using the rtracklayer R package. We discarded any variants with ambiguous 

coordinates (non-bijective mapping between hg19 and hg38) or discordant reference allele. 

The hg19-based coordinates of TCGA variants were similarly determined. Adjacent SNVs 

within each sample were identified using the GenomicRanges R package63 and merged 

back into MNVs. The combined set of variants from all five studies was re-annotated with 

snpEFF v.4.3s (2017–10-25)64 using Ensembl GRCh38.86 gene models and dbSNP build 

150. Common germline variants were excluded from downstream analysis.

Mutational signatures analysis

Mutational signatures were identified using non-negative matrix factorization (NMF) from 

the NNLM R package (version 0.4.2), considering a trinucleotide context model without 

strand specificity (96 mutation types). Thus, the mutation counts for the 1,014 melanoma 

samples were arranged in a 96-by-1014 matrix V, and NMF was applied to obtain a 

decomposition V ≃ W H, where W is a 96-by-k matrix containing k mutational signatures, 

and H is a k-by-1014 matrix representing the signatures’ absolute contribution to each 

sample. NMF was run with the Kullback-Leibler divergence loss function and a maximum 

of 50,000 iterations. The optimal decomposition rank k (i.e. number of mutation signatures) 

was determined using three repetitions of five-fold cross-validation. For each fold, one-

fifth of the input matrix V was randomly masked, and the mean squared error (MSE) 

between the predicted and original values of the masked entries was computed. The rank 

with the smallest mean MSE was selected. The final NMF decomposition is provided in 

Supplementary Tables 12 and 13 for matrices W and H, respectively.
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To estimate the proportion of mutations attributed to a mutational signature k in each 

sample, we first multiplied the signature’s corresponding column in W by its row in H to 

produce a matrix, W*,kHk,*, that contains estimated sample-wise tri-nucleotide mutation 

counts for the signature. We then divided the column sums of W*,kHk,* by the column sums 

of WH. A similar procedure was used to estimate gene-wise signature contributions.

Significantly mutated genes

We used OncodriveFML 2.0.311 to identify genes under positive selection. Analyses were 

done separately for the UVR-high (n = 824) and UVR-low (n = 177) samples, defined as 

having ≤50% or >50% of their mutations originating from the UV-signature. Samples with 

>50% of their mutations originating from the alkylating signature (n = 13) were omitted 

from these analyses.

We ran OncodriveFML twice for each UVR group, using default CADD scores23 and 

custom LoF scores devised for the identification of tumor suppressor genes. LoF scores were 

obtained by generating all possible single nucleotide variants across the coding genome, 

followed by snpEff annotation (v.4.3s, Ensembl GRCh37.75 gene models). Variants with 

a loss-of-function consequence on any protein coding transcripts were given a score of 

1 and all other variants were given a score of 0. These consequences were considered 

loss-of-functions: stop_gained, start_lost, splice_acceptor and splice_donor. Since frameshift 

variants are treated independently by OncodriveFML, they were not explicitly included in 

the LoF scores.

For each OncodriveFML run, genes with less than 10 mutations were discarded and p-values 

were adjusted for multiple hypothesis testing using the Benjamini-Hochberg procedure 

to control the false discovery rate (FDR). Genes that passed an FDR cut-off of <1% 

were labelled “significantly mutated”. Results of all OncodriveFML runs are provided in 

Supplementary Table 4.

To compute an LoF enrichment score (Fig. 5d), we estimated the expected (neutral) 

proportions of LoF and synonymous variants in each gene, according to a penta-nucleotide 

context12, and use the following formula:

LoFenricℎmentscore =
observedLoF*expectedsyn
observedsyn*expectedLoF

The following variants were considered as LoF: stop_gained, start_lost, splice_acceptor and 

splice_donor. To prevent extreme values for genes with few mutations, we added three 

pseudo-counts to both the numerator and denominator of the plotted estimates.

Saturation analysis

To measure the influence of sample size on the number of identified SMGs, we ran 

OncodriveFML ten times using n = (100, 150, …, 800) tumors randomly chosen from 

the high-UV datasets. The number of genes that passed an FDR cut-off of <1% in each run 

was then plotted against the number of considered samples.
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Identification of potential false positives

We considered three criteria to identify potential false positive SMGs: (1) high proportions 

of mutations in ETS transcription factor binding sites (>10% of all mutations in gene), (2) 

high neutral mutation rate (>3 × 10−05 mutations per nucleotide per sample), (3) lack of or 

low gene expression in melanoma cell lines (90th percentile of RPKM < 1).

ENCODE’s clustered ChIP-seq data for 161 transcription factors65 was downloaded from 

the UCSC Genome Browser66. We selected peaks with an ENCODE’s normalized score 

≥500 from the following ETS factors: ETS1, GABPA, ELF1, ELK1 and ELK4. Overlapping 

variants were identified using the GenomicRanges package.

To estimate neutral mutation rates, we used the mutation data from the 183 melanoma 

whole genomes (MELA-AU). For each gene, we considered a centered window of at least 

100kb spanning its complete set of transcripts. We then excluded any coding, evolutionary 

conserved or low mappability regions (Supplementary Table 19; neutral mutation rate 

estimation). The gene-level mutation rate was computed as the number of variants falling 

within the non-excluded regions, divided by their total size. This method was implemented 

in R with the rtracklayer and GenomicRanges packages.

Mutated genes pathway enrichment analysis

We tested if genes with an OFML FDR < 10% were enriched for biological pathways 

or complexes from the Reactome67 “ENSEMBL to pathways” databaseand EpiFactors 

database68. The enrichment of each pathway or complex was tested using a one-tailed 

Fisher’s exact test. For each test, the “gene universe” was defined as the set of genes tested 

for mutational significance in any of the four OFML runs (CADD-UVR-high, CADD-UVR-

low, LoF-UVR-high and LoF-UVR-low). P-values were adjusted for multiple testing using 

the Benjamini-Hochberg procedure independently for Reactome and EpiFactors.

Copy number and purity analysis

ABSOLUTE—Haplotype phasing and copy-ratio segmentation was done with HAPSEG 

(version 1.1.1) 69 using Affymetrix SNP6 microarray data from 463 TCGA tumor-normal 

pairs acquired from the legacy GDC archive. Somatic tumor variants and HAPSEG 

segmentations were processed with ABSOLUTE39 (version 1.0.6) to obtain purity, ploidy 

and genome-wide allelic copy numbers (solution obtained for 449 samples). ABSOLUTE 

segmentation was intersected with gene coordinates (Ensembl GRCh37.75) to obtain gene 

level LOH and total copy numbers in each tumor sample. Genes overlapped by multiple 

segments were assigned the lowest total copy number and were considered to exhibit LOH 

if at least one segment supported it. The local gain or loss of a gene was determined 

using the ratio of its absolute copy number relative to the median copy number of the 

chromosome arm where it resides. When this ratio was greater than or equal to three, a gene 

was considered amplified.

Co-occurrence between mutations and copy gain or LOH—Co-occurrence 

enrichment between mutations and segmental LOH or copy gain in candidate driver genes 

was tested using a one-tailed Fisher’s exact test. For LOH, we considered LoF mutations 
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only. For copy gain, we considered missense mutations at recurrently mutated amino acids 

(N > 1) only. To ensure sufficient power, only genes having mutations and segmental events 

in at least three samples were tested. For any given gene locus, samples with homozygous 

deletion (0 copy) were excluded from the tests.

Significantly amplified or deleted regions—We used GISTIC to identify significantly 

amplified or deleted regions. Segmented copy ratios (germline CNV masked) for 470 

TCGA tumor samples were acquired from the GDC data portal. Segments that exceeded the 

telomeric- or centromeric-most array probes were truncated to be within covered genomic 

regions. To improve sensitivity, we applied in silico admixture removal70 to samples for 

which ABSOLUTE ploidy and purity estimates were available, using the following formula:

adjustedcopyratio =

copyratio + 2* 1 − purity * copyratio − 1 / purity*ploidy

Non-positive copy ratios were capped to 1e-3. Adjusted ratios were log2 transformed, 

centered on their mode and passed to GISTIC. In Fig. 4e, GISTIC wide peak boundary 

coordinates were converted from hg38 to hg19 using liftOver to be visualized with 

ABSOLUTE copy number profiles.

Transcriptome analysis

RNA-seq processing—Raw RNA-Seq read counts were download from the GDC portal 

for the TCGA-SKCM cohort, and from the CCLE data portal for the melanoma cell lines. 

Counts of protein coding genes were converted to CPM after TMM normalization using the 

edgeR package. RPKM/FPKM values were calculated using the rpkm function.

Deconvolution of transcriptomic profiles by NMF—We used NMF (as implemented 

in the NMF71 R package) to deconvolve cancer and stromal transcriptomic profiles in 

the TCGA-SKCM cohort. The output of NMF consists of 2 matrices, W and H, whose 

product is the approximated matrix of observed CPM values. In this context, W is a gene-

by-signature matrix containing the weights of each gene’s contribution to a signature and 

H is a signature-by-sample matrix containing the weight of each signature’s contribution 

to a sample. Here, signatures can be seen as cell-type specific gene expression modules. 

NMF was applied to a matrix of CPM values for 5000 genes and 470 samples, with the 

Brunet optimization algorithm. The genes were selected to have the largest mean absolute 

deviation (calculated using log-transformed CPM values) amongst autosomal protein coding 

genes with a mean RPKM > 1. The optimal number of signatures (i.e. decomposition rank) 

was determined using the proportion of ambiguous clustering (PAC).72 The final NMF 

decomposition is provided in Supplementary Tables 14 (matrix W) and 15 (matrix H).

Confirmation of intrinsic profiles using PCA and clustering—We recovered the 

three intrinsic NMF signatures using a classical clustering approach on purity adjusted gene 

expression. To mitigate the effect of stromal cell contamination, we restricted our analysis 
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to genes with at least one read in all samples and whose expression (log-transformed 

CPM) positively correlated with tumor purity (Pearson correlation > 0.1) and not strongly 

positively correlated with NMF’s keratin signature (Pearson correlation < 0.2). The log-

transformed CPM values of 5166 retained genes were regressed (linearly) on tumor purity. 

Genes were ranked by decreasing variance of the residuals, and the top 1500 were used for 

clustering of the tumor samples using the ConsensusClusterPlus73 R package, with 1000 

resampling iterations of kmeans clustering with k = 3. The transcriptomic subgroup of each 

sample was assigned based on their membership to one of the 3 clusters.

Transcriptomic signatures and xCell analysis—A gene by sample matrix of mRNA 

RPKM expression values for 468 TCGA samples was passed to xCell to obtain cell-type 

enrichment scores for each sample. Spearman’s correlation between cell-type’s scores and 

NMF component weights was computed and plotted in Figure 6e.

Transcriptomic subgroup gene set enrichment analysis—Differential gene 

expression analysis was performed using DESeq274, comparing samples in each 

transcriptomic subgroup to all other samples. For each comparison, log2 fold-differences 

were supplied to the GSEA tool,44,45 using default parameters with the Hallmarks and 

Curated (C2) gene sets.

Differential gene alteration analysis across transcriptomic subgroups—
Differential alteration frequencies (coding mutations, homozygous deletions, and local 

amplifications) of candidate driver genes across transcriptional subgroups was assessed 

using a two-tailed Fisher’s exact test. For each gene, the test was performed on a two-by-

three contingency table of alteration counts (gain and loss) and mRNA subgroups. P-values 

were adjusted for multiple testing using the Benjamini-Hochberg procedure.

X-linked analysis

Sex-biased mutation frequency—A two-tailed Fisher’s exact test was used to 

determine if a given SMG is differentially mutated (missense, inframe-indel or LoF) 

between males and females. To control for the different neutral mutation burden observed 

in males and females (see Figure 2A), separate null hypotheses [i.e. expected odds ratio 

(ORs)] were considered for autosomal and X-linked genes. Specifically, we set the expected 

OR of the Fisher’s test (i.e. “or” parameter in R’s fisher.test() function) to the median OR 

observed across all non-SMGs (mutated in at least 10 samples to ensure reliable estimates), 

considering autosomal and X-linked genes separately. P-values were adjusted for multiple 

testing using the Benjamini-Hochberg procedure.

We complemented the Fisher’s test using a logistic regression approach, whereby the 

mutation probability of each gene is modeled as a function of sex and additional covariates 

specified in Extended Data Fig. 5a. We used the number of SNVs (log-transformed) on the 

autosomes (or X chromosome for X-linked genes) to account for differences in mutation 

burden across samples. We note that this approach cannot be used when the outcome 

variable completely separates one or more of the predictor variables, as is the case for 

DDX3X LoF mutations that were found exclusively in males.
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Differential gene expression between sexes—Differential gene expression analysis 

of X-linked genes between males (n = 174) and females (n = 273) was performed using 

DESeq274. Specifically, gene expression was modeled as a function of gender, tumor purity, 

and tumor tissue site (i.e. primary, regional cutaneous or sub-cutaneous, regional lymph 

node, and distant metastasis). DESeq2 was initially run on all protein-encoding genes to 

ensure precise estimates of dispersion. Expression fold-differences between genders and 

their respective P-values for X-linked genes were subset and adjusted for multiple testing 

using the Benjamini-Hochberg procedure independently of other genes.

Promoter methylation—Promoter methylation was calculated by taking the mean Beta 

value of all methylation probes 2kb upstream of a gene’s most 5’ transcription start site, in 

each of 180 female samples.

Bi-allelic expression of DDX3X—RNA-seq BAM slices of the DDX3X locus were 

downloaded from GDC for all TCGA-SKCM samples, and nucleotide counts were 

determined at each genomic position using the Rsamtools package.75 We then looked for 

common SNPs (average heterozygosity >= 20%, dbSNP150) located within any DDX3X 

exon and covered by at least 10 reads in >50% of the samples. Only one SNP fulfilled these 

criteria, rs5963957 (A/C, hg38:chrX:41349057; avHet = 0.43), with a median coverage of 

274 reads across samples. The distribution of nucleotide counts at this position confirmed 

bi-allelic expression in most female samples.

DDX3X functional analysis

Differential gene expression (DGE) analysis of mutant and WT DDX3X tumors
—We applied a linear model framework for transformed RNA-seq read counts, implemented 

in the limma R package76, to RNA-seq data from the TCGA. Starting with a gene-by-sample 

matrix of read counts, we retained protein coding genes that in at least 50 samples had a 

counts-per-million (CPM) value ≥ a CPM corresponding to 10 reads in the sample with the 

smallest library (number of genes = 14,011). Then, sample-wise normalization factors were 

calculated using the TMM method implemented in edgeR77 and were subsequently provided 

along with the read counts to limma’s voom function to estimate observation weights. 

Linear models were fitted to the voom-weighted observations using limma’s lmFit function 

and differential expression estimates were moderated using limma’s eBayes function. P-

values corresponding to the log2 fold-changes were adjusted for multiple testing using the 

Benjamini-Hochberg procedure.

We restricted our analysis to male samples, which harbored the vast majority of DDX3X 

mutations. We modeled gene expression as a function of (1) the mutation status of DDX3X 

(LoF, missense, or wildtype), (2) the intrinsic gene expression signatures from NMF, (3) the 

immune signature, (4) top three principal components corresponding to the gene expression 

(log2CPM + a prior count of 5) of “Keratinization” and “Formation of the cornified 

envelope” related genes listed in the Reactome database (downloaded October 6, 2019), 

as these captured more of the variance in Keratinocyte gene expression than NMF’s Keratin 

signature, and (5) the expression level of DDX3Y (high or low, based on a [log2CPM + a 

prior count of 5] > 5 cut-off determined based on the relation of DDX3Y expression and 

Alkallas et al. Page 17

Nat Cancer. Author manuscript; available in PMC 2022 February 11.

H
ealth R

esearch A
lliance A

uthor M
anuscript

H
ealth R

esearch A
lliance A

uthor M
anuscript



tumor purity). We computed the fold-change in gene expression between DDX3X mutant 

and wildtype samples that had high DDX3Y expression (22 and 167 samples respectively), 

as the majority of DDX3X mutations occurred in DDX3Y expressing tumors.

Differential gene expression analysis of DDX3X KD and control cell lines—For 

each cell line (melanoma HT144 cells36, hepatocellular carcinoma HepG2 cells, and chronic 

myelogenous leukemia K562 cells35), we quantified mRNA expression using Kallisto 

(default parameters and GENCODE v22 gene annotations). We used DESeq274 with 

default parameters to estimate differences in gene expression between DDX3X knockdown 

and control conditions. P-values were adjusted for multiple testing using the Benjamini-

Hochberg procedure. SRA accessions for RNA-seq data are in Supplementary Tables 16 and 

17.

Positional enrichment of DDX3X eCLIP peaks—Enhance crosslinking 

immunoprecipitation (eCLIP) peaks that passed an irreproducible discovery rate (IDR) 

cut-off <0.01 were acquired from ENCODE for 150 RNA binding proteins (RBPs) (103 for 

HepG2 and 120 for K562) including DDX3X. To determine the positional enrichment of 

these peaks in gene bodies, we first binned the genomic coordinates of each gene into 1000 

tiles, with the first tile starting at the 5’end of the gene. Then, for each tile [1–1000], we 

computed the proportion of genes that overlap at least one peak for the RBP of interest at 

that tile as a fraction of all genes that overlap one or more peaks for that RBP at any tile. The 

ENCODE IDs of eCLIP data are in Supplementary Table 18.

Enrichment of DDX3X targets in differentially regulated genes—Genes were 

divided into two groups based on whether their 5’UTR(s) exclusively overlap at least one 

IDR eCLIP peak for DDX3X or another RNA binding protein (RBP). For each group, 2D 

kernel density estimates for differential gene expression in tumors (DDX3X mutant vs. WT) 

and cell lines (DDX3X knockdown vs. control) were estimated using the kde2d function 

from the MASS package in R. The bandwidth parameter of the function was set to 0.4. The 

difference in densities between the two groups of genes was computed and plotted in Fig. 3c 

and Extended data Fig. 5d.

Gene set enrichment analyses for DDX3X differential expression—We tested for 

enrichment of gene sets in differentially expressed genes using weighted logistic regression 

models. For each gene set in the Reactome database (downloaded October 6, 2019), we 

modeled the presence or absence of each gene in the set (i.e. number of ‘successes’), 

as a fraction of the total number of sets to which the gene is annotated (i.e. number of 

‘trials’), using differential gene expression as an explanatory variable. In this model, each 

observation (fraction of successes) is weighted by the number of trials. We extracted the 

differential gene expression coefficients and their corresponding P-values from each model 

for plotting and further analysis. P-values were adjusted for multiple hypothesis testing 

using the Benjamini-Hochberg procedure.
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Survival analysis

The majority of TCGA specimens analyzed were from metastases (363 of 465). For some 

patients, this was years after their primary melanoma diagnosis. Because the biology of 

a metastatic melanoma and its immune cell content may differ from that of its original 

primary melanoma, we focused on post-accession survival times as in the melanoma TCGA 

marker publication.4 In summary, patient vital status and the number of days from primary 

melanoma diagnosis to death or last follow-up were acquired from the GDC data portal 

(overall survival). We also obtained the number of days between primary diagnosis and 

sample procurement (sample procurement times) from the Broad Institute TCGA GDAC 

Firehose website:

(https://gdac.broadinstitute.org/). We subtracted these sample procurement times from the 

overall survival times to obtain “post-accession survival times”.

We modeled survival time using Cox proportional hazards regression in R. Kaplan-Meier 

estimator plots were generated using the survfit function from the survival package (version 

2.43–3) in R. In all Kaplan-Meier plots, we limited our survival analysis to patients with 

molecularly profiled metastatic melanoma lymph node specimens only (n = 216). P-values 

associated with Kaplan-Meier plots are from a log-rank or Mantel-Haenszel test performed 

using the survdiff R function.

Neoantigen analysis

HLA typing of the TCGA-SKCM samples was performed with Optitype78 using the 

BAM files from the normal tissue samples. MHC-I binding predictions were obtained 

with netMHCpan479. Variant processing was performed as follow. We first extracted the 

mutated and wild-type sequences of a 17aa window centered on each missense mutation 

using the Biostrings and ensembldb R packages. These sequences were then processed with 

netMHCpan4 to predict their MHC-I binding affinity, using a 9aa window. We used the 

default percentile rank thresholds provided by netMHCpan4 to classify peptides into strong 

(<0.5%) or weak (<2%) binders. Predicted antigenic mutations were grouped into 4 tiers 

of decreasing specificity as follow: Tier 1 includes mutations creating at least one peptide 

with strong binding prediction but whose wild-type form is not predicted to be a strong 

binder. Tier 2 includes any mutation with a strong binding prediction, without regard to the 

binding predictions of the wild-type forms. Tier 3 includes mutations creating at least one 

peptide with weak binding prediction, but whose wild-type form is not predicted to bind. 

Tier 4 includes any mutation with weak binding prediction, without regard to the binding 

predictions of the wild-type forms. Finally, all tiers were updated to include mutations from 

less specific tiers (i.e. tier k includes any mutations in tier k-1). Only variants with median 

expression > 1 TPM (as estimated by Kallisto)80 were considered as potential neoantigens.

To test for evidence of negative selection, we compared the number of predicted antigenic 

mutations in the TCGA-SKCM cohort with the distribution obtained over 1000 random 

permutations of the HLA alleles across patients. Importantly, to remove bias that could 

results from population structure or the HLA-typing step, we considered the sum of 

predicted antigenic mutations over the six HLA alleles in each patient (i.e. antigenic 
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mutations recognised by homozygous HLA loci are counted twice). We estimated the 

statistical power of this approach by applying the same procedure on randomized datasets 

in which varying proportions of antigenic mutations were specifically removed to simulate 

increasing levels of negative selection. For predicted MHC-I strong binding peptides (tiers 1 

and 2), power reached 80% when 7.5% of antigenic mutations were removed.

Adjusting TMB for WES coverage and purity

For each TCGA sample, we determined the proportion of the coding genome that has 

sufficient read coverage to provide 80% power for mutation detection using ABSOLUTE 

estimates. We divided the observed TMB by this value to obtain the expected TMB if 

coverage was sufficient for 100% of the coding genome.

Statistics and reproducibility

In this study, we aimed to analyze the largest possible cohort of melanoma whole exomes. 

No statistical method was used to predetermine sample size, as this number was dictated by 

the availability of published datasets.

Four TCGA patients had multiple corresponding tumor samples. Prior to our analyses, 

we decided to exclude the following redundant samples, arbitrarily prioritizing primaries 

over metastases: TCGA-ER-A19T-06A, TCGA-ER-A2NF-06A, TCGA-D3-A1Q6–07A and 

TCGA-D3-AlQA-07A.

Statistical analyses were performed in R (v3.3.0-v3.5.3). These included one-sided and two-

sided Fisher’s exact test, two-sided Mann–Whitney U test, one-sided Kolmogorov–Smirnov 

test and generalized linear models, as indicated. P-values were adjusted for multiple testing 

using the Benjamini-Hochberg procedure, as indicated. A detailed list of R packages 

and software programs used in this study is provided in Supplementary Table 20. The 

experiments were not randomized. The Investigators were not blinded to allocation during 

experiments and outcome assessment.

DATA AVAILABILITY

Previously published melanoma somatic variants that were reanalyzed in this study are 

available from the associated publications:

Hodis et al. 2012 (https://doi.org/10.1016/j.cell.2012.06.024, Supplementary Table S4A),

Krauthammer et al. 2015 (https://doi.org/10.1038/ng.3361, Supplementary Data 3) and

Van Allen at al. 2015 (https://doi.org/10.1126/science.aad0095, Supplementary Table S1).

The human melanoma data generated by the TCGA Research Network (http://

cancergenome.nih.gov/) can be accessed from the GDC Data Portal (https://

portal.gdc.cancer.gov/), after approval for dbGap Study Accession phs000178 (https://

www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000178.v10.p8), due to 

the presence of personally identifiable information, such as a patient’s germline DNA 

variants.
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The following MAFs were used:

TCGA.SKCM.muse.4cd49f89-d7e2–4333-9872–0bff5327c896.protected.maf

TCGA.SKCM.mutect.bd022199-d399–45db-8474–6dc1f3aad457.protected.maf

TCGA.SKCM.somaticsniper.4ff8ab0f-1a75–44f6-af48–2b30fc6d5a08.protected.maf

TCGA.SKCM.varscan.a83548c2-e6b2–45cf-a7c3-ec099daf30ce.protected.maf

The somatic variants from 183 human melanoma whole genomes (Hayward et al. 2017) can 

be accessed from the International Cancer Genome Consortium (ICGC) data portal (https://

dcc.icgc.org/releases/release_23/Projects/MELA-AU), without restriction.

RNA-seq data from DDX3X knockdown in HT144 cell lines can be accessed from 

the Sequence Read Archive (https://www.ncbi.nlm.nih.gov/sra), using accession identifiers 

provided in Supplementary Table 14.

eCLIP data and expression data from DDX3X knockdown in K562 and HepG2 human cell 

lines can be downloaded from the ENCODE portal (https://www.encodeproject.org/), using 

accession identifiers provided in Supplementary Table 16 and 15, respectively.

Regions considered for neutral mutation rate estimation were defined using the following 

files available from Ensembl or the UCSC Genome Browser website:

http://hgdownload.cse.ucsc.edu/goldenpath/hg19/database/phastConsElements100way.txt.gz

http://hgdownload.cse.ucsc.edu/goldenpath/hg19/encodeDCC/wgEncodeMapability/

wgEncodeCrgMapabilityAlign75mer.bigWig

http://hgdownload.cse.ucsc.edu/goldenpath/hg19/encodeDCC/wgEncodeMapability/

wgEncodeDukeMapabilityRegionsExcludable.bed.gz

http://hgdownload.cse.ucsc.edu/goldenpath/hg19/encodeDCC/wgEncodeMapability/

wgEncodeDacMapabilityConsensusExcludable.bed.gz

http://hgdownload.cse.ucsc.edu/goldenpath/hg19/database/pseudoYale60.txt.gz

ftp://ftp.ensembl.org/pub/release-75/gtf/homo_sapiens/Homo_sapiens.GRCh37.75.gtf.gz

ENCODE’s ETS transcription factor binding sites were downloaded from the UCSC 

Genome Browser website:

https://hgdownload.cse.ucsc.edu/goldenpath/hg19/encodeDCC/wgEncodeRegTfbsClustered/

wgEncodeRegTfbsClusteredWithCellsV3.bed.gz

CCLE cell lines gene expression data was obtained from:

https://portals.broadinstitute.org/ccle/data/

CCLE_DepMap_18q3_RNAseq_reads_20180718.gct
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Cell line annotations were obtained from DepMap:

https://depmap.org/portal/download/all/DepMap-2018q4-celllines.csv

Gene lengths used for RPKM calculations were obtained from:

ftp://ftp.ensembl.org/pub/release-86/gtf/homo_sapiens/Homo_sapiens.GRCh38.86.gtf.gz

The mutated genes pathway enrichment analysis was based on the

EpiFactors database

(downloaded on 2018–01-21, http://epifactors.autosome.ru/) and the

Reactome database

(downloaded on 2018–01-20, https://reactome.org/, ENSEMBL- to-pathways).

The mRNA subgroups pathway enrichment analysis was based on

MSigDB (v6.2): https://www.gsea-msigdb.org/gsea/msigdb/index.jsp

We obtained transcript level expression (in TPM) for TCGA-SKCM from: https://osf.io/

gqrz9

Gene set enrichment analyses for DDX3X differential expression was based on the

Reactome database (downloaded on 2019–10-06): https://reactome.org/

For the GISTIC2 analysis of recurrent focal copy-number alteration, we used the following 

reference file provided by the GDC: snp6.na35.liftoverhg38.txt.zip

(https://gdc.cancer.gov/about-data/data-harmonization-and-generation/gdc-reference-files/)

The COSMIC Mutation Signature definitions were downloaded from the DeconstructSigs 

website:

https://github.com/raerose01/deconstructSigs/blob/master/data/

signatures.exome.cosmic.v3.may2019.rda

The combined set of reannotated variants, excluding those protected by the TCGA, can be 

accessed at our GitHub repository:

https://github.com/ianwatsonlab/multiomic_melanoma_study_2019

CODE AVAILABILITY

Code related to the main findings of the study is available at GitHub at: https://github.com/

ianwatsonlab/multiomic_melanoma_study_2019
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Extended Data

Extended Data Figure 1. Identification of melanoma mutational signatures using NMF.
(a) Determination of the optimal NMF decomposition rank (k) based on the average 

of the mean squared error (MSE) between observed trinucleotide mutation counts and 

predictions of masked values (y-axis) imputed by NMF. The average, calculated across three 

repetitions of 5-fold cross validation, is plotted against the decomposition ranks (x-axis). 

Error bars represent the standard error of the mean (SEM). (b) Sample-wise Spearman’s 
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correlation between the observed and NMF’s fitted trinucleotide mutation counts (n = 

96 trinucleotide mutations, n = 1,014 tumors). The color gradient represents the number 

of mutated trinucleotides in each tumor sample and is meant to highlight that lower 

correlations result simply from the low sparsity of NMF’s fit. (c) Percentage contribution 

of trinucleotide mutations for each mutational signature. (d) Percent contribution of each 

mutational signature to the total number of mutations per tumor. (e) The proportion of UVR-

signature mutations per tumor. Melanoma subtypes are distinguished by different colours. 

(f) Comparisons of our trinucleotide mutational signatures to the Catalogue of Somatic 

Mutations in Cancer (COSMIC) set of signatures. Left panels show the Person’s correlation 

(y-axis) between the percent contribution of trinucleotide mutations to our signatures (the 

values in c) and each of 65 signatures in COSMIC (x-axis) (n = 96 trinucleotide mutations). 

Right panels show the mean squared difference (y-axis) between the percent contributions 

(n = 96 trinucleotide mutations). (g) Heatmap showing the column-sum normalized weights 

of COSMIC mutational signature (rows) in our set of 1,014 tumor samples (columns), 

estimated using non-negative linear regression (via the nnlm() function implemented in the 

NNLM R package). Our unsupervised estimates of mutation signature contributions are 

shown at the top. There is strong agreement between our estimates and those based on the 

COSMIC signatures.
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Extended Data Figure 2. Summary of OncodriveFML (OFML) results.
(a) Quantile-quantile (Q-Q) plots of OFML (right-tailed permutation test) p-values (y-axis) 

plotted against uniformly distributed p-values (x-axis) (n = 177 UVR-low tumor samples, 

n = 824 UVR-high tumors). Each point represents one gene. Genes with an FDR adjusted 

p-value of <10% are labelled. (b-c) Venn diagrams showing the overlap between genes 

identified in each UVR group (b) and using each scoring function (c). (d) Detailed 

breakdown of OFML subset analyses. Each row of the matrix contains the genes identified 

as significantly mutated (FDR < 1%) in an analysis using the labelled score (leftmost row 
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label), the UVR group (centre) and melanoma subset (right). Sample sizes are as follows: 

(UVR-low, UVR-high, all subtypes n = 1,001 tumors); (UVR-low, non-acral cutaneous n = 

77 tumors); (UVR-low, all subtypes n = 177 tumors); (UVR-high, non-acral cutaneous n = 

690 tumors); (UVR-high, all subtypes n = 824 tumors). (e) Mutation frequency of SMGs 

stratified by cohort, (f) melanoma subtype and (g) UVR-group. The number of mutated 

tumors is indicated above each bar for panels (f) and (g). All FDR adjusted p-values were 

obtained using the Benjamini-Hochberg procedure.
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Extended Data Figure 3. Summary of criteria used to flag potential false positive SMGs.
(a) Distribution of mutation frequency near transcription start sites (TSS) of expressed 

transcripts (> 1 TPM) that overlap (red) or do not overlap (black) ETS transcription factor 

peaks. (b) Number and proportion of gene mutations that fall within an ETS transcription 

factor peak. (c) Recurrent mutations at ETS binding sites overlapping SMGs (STK19, 

SLC27A5, SUCO). For each gene, the top to bottom panels show (1) the gene locus. (2) 

the various transcripts at that locus. (3) the cumulative median expression of all transcripts, 

per DNA strand, in units of transcripts per million (TPM). (4) the cumulative median 

expression of all transcripts, per DNA strand, restricted to their coding regions (CDS), in 

TPM. (5) the number of mutations at each position in the region. (6) the locations of ETS 

transcription factor ChIP-seq peaks. (d) Neutral mutation frequency, per tumor sample per 

nucleotide, for SMGs and other potential drivers (see methods). (e) mRNA expression of 

genes in melanoma cell lines from the cancer cell line encyclopedia (CCLE) (n = 55 cell 

lines) (top) and melanoma TCGA tumors (second to fourth panels). Each point on the plot 

represents one tumor or cancer cell line. Expression levels are in log transformed units of 

reads per kilobase per million (RPKM). For each gene, TCGA tumors were stratified by 

mutation status. The colour of TCGA data points corresponds to the Spearman’s correlation 

between gene mRNA expression and tumor purity. The number of tumors used to compute 

the correlation coefficient is denoted for each gene and mutation type at the top of each 

panel.
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Extended Data Figure 4. Enrichment of biological processes and protein complexes in the top 
OncodriveFML (OFML) hits.
(a and b) Left panel: gene set membership for 66 genes which had an OFML FDR < 10%. 

Right panel: P-values from a one-tailed Fisher’s exact test of the overlap of Reactome (a) or 

EpiFactors (b) gene sets with genes that passed an OncodriveFML FDR of <10%. Only gene 

sets that passed an FDR threshold of <20% are shown. FDRs were computed form p-values 

using the Benjamini-Hochberg procedure. (c) Bar plot showing the frequency of somatic 

mutations in (SWI/SNF)/BAF complex subunits (ARID2, ARID1A, ARID1B, BRD7, and 
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PBRM1) and MLL complex subunits (KMT2A, KMT2B, KANSL1, and MEN1) that passed 

an OncodriveFML FDR of <10%. Number of samples = 1,014 tumors.

Extended Data Figure 5. DDX3X functional analysis and DDX3Y expression and mutation 
profiles.
(a) Volcano plots showing the relationship between patient sex and mutation status of 

SMGs. Each panel corresponds to a logistic regression model, where the probability of 

mutations in each SMG is modeled as a function of sex and potential confounders such as 

tumor mutation burden (TMB) and age. Each point corresponds to one gene. The x-axis 
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corresponds to the value of the sex coefficient in the model (log2), the y-axis corresponds to 

its associated FDR-adjusted p-value (derived from a two-tailed z Wald test and adjusted for 

the number of hypotheses tested using the Benjamini-Hochberg procedure). These models 

show that the imbalance of DDX3X mutations between sex are not confounded by factors 

such as tumor mutation burden and age. There were a limited number of samples for which 

age was available. Therefore, the FDR value corresponding to DDX3X increases when age 

is included to the model, as do the FDR values of other SMGs. Models not including age at 

diagnosis were fitted to 1,013 tumors (59 DDX3X mutant tumors). The model including age 

at diagnosis was fitted to 841 tumors (50 DDX3X mutant tumors). Data is only shown for 

genes with at least five mutations. (b) Scatter plots showing DDX3X associated differences 

in gene expression in tumors (x-axis; n = 22 mutant DDX3X tumors vs n = 167 wildtype 

tumors) compared against gene expression differences in cancer cell lines (y-axis; two 

biologically independent replicates of DDX3X knockdown per cell line vs two biologically 

independent controls per cell line). In each panel, the (log2) odds ratio (OR) between 

the sign of expression differences in the corresponding cell line vs the sign of expression 

differences in the tumors are shown. Only genes that had a differential expression p-value < 

0.05 in tumors were considered in this analysis (p-values were estimated using the Limma 

R package; parameterized to perform a two-tailed t-test on linear model coefficients). (c) 
Expression differences of individual genes between DDX3X mutant and wildtype samples 

(TCGA, left panel) or DDX3X knockdown and control samples (HT144 cell line, right 

panel). See (b) for sample sizes and statistical test used with TCGA data. P-values for 

TCGA were adjusted for multiple testing using the Benjamini-Hochberg procedure. For 

HT144 data, a two-tailed z Wald test was performed on negative binomial model coefficients 

fitted using DESeq2. Genes are ordered according to differential expression p-values 

in HT144. (d) Heatmaps showing the difference in density of differentially expressed 

DDX3X targets relative to the targets of other RBPs. Each panel corresponds to a different 

combination of datasets used to determine differential expression (x and y-axis) and DDX3X 

or other RBP targets (indicated at top of panel). Target genes were identified based on the 

overlap of their 5’UTR with eCLIP peaks in K562 (left column), HepG2 (middle column) or 

the union of peaks in both cell lines (right column). (e) mRNA expression of DDX3X and 

DDX3Y in TCGA tumors from female (left) and male (right) patients (n = 289 male tumors, 

n = 179 female tumors). Each point represents one tumor, with the color representing 

DDX3X mutation status. Expression levels are in log transformed units of reads per kilobase 

per million (RPKM). (f) Mutation matrix of loss-of-function and missense mutations of 

DDX3X and DDX3Y across all samples analyzed in this study.
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Extended Data Figure 6. Deconvolution of melanoma transcriptomes using NMF.
(a) Kaplan-Meier survival curves for 216 patients from TCGA with metastatic tumor 

samples from a regional lymph node, stratified by mRNA expression percentiles of 

lymphocytic markers. Each panel corresponds to one lymphocytic maker. (b-d) Determining 

the optimal NMF decomposition for RNA-seq data (n = 468 tumors). (b) Average of tumor 

sample connectivity matrices across 100 randomly initialized NMF runs. (c) Cumulative 

distribution function (CDF) of averaged tumor connectivity matrices. (d) Proportion of 

ambiguous clustering (PAC) by NMF – used to evaluate the stability of NMFs solution at 
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each rank (k). PAC measurements using five different definitions of ambiguity are shown. (e-
h) Distribution of NMF’s expression signatures and their relationship with non-melanocyte 

skin cells. (e) Distribution of NMF signature weights in TCGA tumors. (f and g) Scatter 

plots of each tumor’s NMF keratin weights (y-axis) and xCell keratinocyte and sebocyte 

signature scores (x-axis) (n = 468 tumors). Correlation p-value was computed using a 

two-sided Spearman’s test. (h) Distribution of keratin weights across TCGA tumor tissue 

sites (nprimary = 101 and nother = 362 tumor samples). Each point corresponds to one tumor 

sample. P-value is from a two-tailed Wilcoxon rank sum test. Boxes indicate first, second, 

and third quartiles. Whiskers extend to the minimum and maximum data points, no further 

than 1.5 times the inter-quartile range from the hinges. (i) Classical clustering recapitulates 

melanoma cell intrinsic expression signatures when the effect of varying tumor purity is 

subtracted from gene expression data. See methods for additional details. (j) Agreement 

between NMFs proposed cancer intrinsic signatures and the groups uncovered in (i). Each 

panel includes samples from a single mRNA subgroup identified in (i), indicated on the 

right side of the panel (nCommon = 299, nMITF-low = 76 and nOxPhos = 72 tumors). Shown 

on the y-axis are the NMF weights corresponding to each NMF signature indicated on the 

x-axis. Boxes indicate first, second, and third quartiles. Whiskers extend to the minimum 

and maximum data points, no further than 1.5 times the inter-quartile range from the hinges.
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Extended Data Figure 7. Characterization of melanoma mRNA subgroups.
(a-c) mRNA expression of MITF and hypoxia markers HIF1A and VEGFA in melanoma 

mRNA subgroups (nCommon = 299, nMITF-low = 76 and nOxPhos = 72 tumors). The y-axis 

corresponds to mRNA expression in log transformed counts per million (CPM). P-values 

are from a two-tailed Wilcoxon rank sum test. Boxes indicate first, second, and third 

quartiles. Whiskers extend to the minimum and maximum data points, no further than 

1.5 times the inter-quartile range from the hinges. (d-e) Gene set enrichment analysis 

(GSEA), performed on genes differentially expressed in each mRNA subgroup compared 
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to all out-of-group samples. Genes were first ranked by fold-difference in RNA expression 

(estimated using DESeq2). The ranked log transformed fold-differences were provided 

to the Broad Institute’s GSEA tool, which performs a one-tailed permutation test of a 

Kolmogorov-Smirnov-like statistic (number of genes = 17,481). The MSigDB hallmarks 

(d) and curated gene sets (C2) (e) databases were used. For each gene set (y-axes) an 

enrichment score (x-axes) and a corresponding FDR value (colour gradient) are assigned. 

Positive and negative enrichment scores indicate that a gene set is enriched in upregulated 

and downregulated genes, respectively. The gene sets shown here are the top seven per 

group that passed an FDR cut-off <1%. GSEA computes FDR values using a permutation 

approach. (f) Distribution of TMB in non-acral cutaneous samples, stratified by their 

dominant intrinsic mRNA signature. See panel (a) legend for sample sizes. (g) Distribution 

of UVR-mutation proportions in non-acral cutaneous samples stratified by their dominant 

intrinsic mRNA signature. See panel (a) legend for sample sizes. P-values for (a) and (b) are 

based on a Kruskal-Wallis test. (h) Bootstrap estimates (10,000 iterations) of the Spearman 

correlation between immune signature and TMB (left) or proportion of UVR mutations 

(right) in each tumor (n = 394 non-acral cutaneous tumors). In panels (f-h), Boxes indicate 

first, second, and third quartiles. Whiskers extend to the minimum and maximum data 

points, no further than 1.5 times the inter-quartile range from the hinges.
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Extended Data Figure 8. Single predictors evaluation and relative quality of multivariable post-
accession survival models in non-acral cutaneous melanomas.
(a) Univariable Cox model Hazard ratio and unadjusted p-value of single predictors (n = 347 

tumor samples). (b) Relative quality of univariable and multivariable Cox survival models 

including all subsets of predictors. Models are ordered from left to right by increasing 

Akaike Information Criteria (AIC, top). The bottom panel (binary matrix) indicates which 

predictors were included in each model (n = 347 tumor samples). (c and e) Relative 

quality of multivariable Cox regression models including different subsets of predictors 

for unstratified (n = 347) and UVR-high (n = 301) tumor samples. All models include 
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age at procurement and tumor tissue site, in addition to the predictors specified on the 

x-axis (indicated by ellipses). The y-axis shows the Akaike information criteria (AIC, 

top subpanel) and concordance index (lower subpanel). (d and f) Coefficients of the 

multivariable Cox regression models shown in (c) and (e). For each subpanel, the left part 

shows the coefficients, expressed in log2 hazard-ratios with 95% confidence intervals, and 

the right part shows the coefficient p-values. Cox model coefficient p-values in all panels 

were computed using a two-tailed z Wald test.
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Extended Data Figure 9. Single predictors evaluation and relative quality of multivariable 
overall survival models in non-acral cutaneous melanomas.
(a) Univariable Cox model Hazard ratio and unadjusted p-value of single predictors (n = 347 

tumor samples). (b) Relative quality of univariable and multivariable Cox survival models 

including all subsets of predictors. Models are ordered from left to right by increasing 

Akaike Information Criteria (AIC, top). The bottom panel (binary matrix) indicates which 

predictors were included in each model (n = 347 tumor samples). (c and e) Relative 

quality of multivariable Cox regression models including different subsets of predictors for 

unstratified (n = 347) and UVR-high (n = 301) tumor samples. All models include age 

at initial diagnosis, pathologic stage, and mRNA subgroup in addition to the predictors 

specified on the x-axis (indicated by ellipses). The y-axis shows the Akaike information 

criteria (AIC, top subpanel) and concordance index (lower subpanel). (d and f) Coefficients 

of the multivariable Cox regression models shown in (c) and (e). For each subpanel, the left 

part shows the coefficients, expressed in log2 hazard-ratios with 95% confidence intervals, 

and the right part shows the coefficient p-values. Cox model coefficient p-values in all 

panels were computed using a two-tailed z Wald test.
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Extended Data Figure 10. Relative quality of multivariable Cox regression models including 
TMB or neoantigen load.
(a) Concordance index. (b) Akaike information criteria. Models were restricted to non-acral 

cutaneous melanomas with no missing data for all predictors (n = 336 tumors, of which 293 

tumors were UVR-high).
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Figure 1. The landscape of somatic driver mutations in melanoma.
(a) Gene mutation frequencies in 1,014 melanoma tumors. Select biological roles are 

indicated by black boxes. The significantly mutated set (n = 27 genes) comprises genes 

inferred to undergo positive selection (OFML FDR < 1%). The UVR-group colour bar 

indicates whether a gene is significantly mutated in UVR-low or UVR-high tumors. The 

enriched set (n = 5 genes) comprises genes which passed a less conservative OFML FDR 

cut-off (<10%), selected based on their involvement in MAPK signalling, BAF, and MLL 

protein complexes. The other drivers set (n = 7 genes) comprises genes previously linked to 
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melanoma. (b) Mutation and DNA copy number profiles of melanomas from the TCGA (n 

= 449 tumors). From top to bottom: (1) Number of single nucleotide variants (y-axis) per 

tumor (x-axis), plotted on a square root scale. (2) Tumor purity inferred by ABSOLUTE. (3) 

Patient age at the time of tumor sample procurement. (4) Gene-by-tumor matrix of mutations 

in significantly mutated genes, enriched genes, and other drivers. (5) Gene-by-tumor matrix 

of copy number alterations in genes that exhibited co-occurrence of mutations and loss-of-

heterozygosity (LOH) or DNA copy gain (p<0.05; one-tailed Fisher’s exact test). (6) Single 

nucleotide substitution frequencies per tumor. (c) Proportion of mutations per gene attributed 

to each mutational signature identified by NMF (n = 1,014 tumors). (d) Saturation analysis 

of SMG detection using OFML with CADD or LoF scores. The y-axes show the mean 

number of SMGs detected (FDR < 1%) across ten random subsamples of a given sample 

size, indicated on the x-axis. Genes are stratified by mutation frequency in UVR-high 

tumors (n = 824 tumors). Dotted lines correspond to the min and max values observed across 

the 10 replicates.
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Figure 2. DDX3X is enriched in loss-of-function (LoF) mutations in males and escapes X-
inactivation in females.
(a) Box and whisker plots showing the number of autosomal and X-chromosome single 

nucleotide variants (SNVs) in male (n = 623) and female (n = 390) melanoma tumors. Each 

point represents one tumor. Boxes indicate the first, second, and third quartiles. Whiskers 

extend to the minimum and maximum data points, no further than 1.5 times the inter-quartile 

range from the hinges. P-values are from a two-tailed Wilcoxon rank sum test. (b) Volcano 

plot showing the relationship between patient sex and the mutation frequencies of 39 driver 

genes considered in this study. Each point represents one gene. X-linked genes are labelled 

in gold. The x-axis shows the odds ratio (OR) of mutation in females (n = 390 tumors) 

relative to males (n = 623 tumors). The y-axis corresponds to FDR-adjusted p-values from 

a two-tailed Fisher’s exact test of divergence from the expected OR, denoted by a dark grey 

dotted line for autosomal genes and gold dotted line for X-linked genes. A horizontal red 

dotted line marks the FDR cut-off of 1%. (c) Frequency of DDX3X LoF in females and 

males, stratified by patient cohort. (d) Box and whisker plot of DDX3X mRNA expression 

in male TCGA tumors, stratified by DDX3X mutation status (nLoF = 12; nmissense = 12; 

nWT = 265 tumors). Each point represents one tumor. Box plot elements are described 

in (a). Violin widths correspond to the density of points. P-values are from a two-tailed 

Wilcoxon rank sum test comparing mRNA expression levels between DDX3X wild-type 

(WT) and mutant tumors. (e) Allele frequencies of DDX3X mutations in TCGA tumors 

plotted against tumor purity (i.e. proportion of cancer cells) (n = 24 tumors). Each point 

represents one tumor. The diagonal lines represent the expected allelic frequencies for 

clonal mutations in males and heterozygous females. (f) Volcano plot showing differences in 

mRNA expression of 757 X-linked genes between females (n = 174 tumors) and males (n = 

273 tumors) from the TCGA cohort. Each point represents one gene. The x-axis corresponds 

to the difference in mean expression relative to males and the y-axis shows FDR-adjusted 

p-values (using the Benjamini-Hochberg procedure). The horizontal red dotted line marks 
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an FDR cut-off of 1%. The fold-changes and FDR values were estimated using DESeq2, 

parameterized to perform a two-tailed Wald test on negative binomial generalized linear 

model coefficients. (g) Number of RNA-seq reads supporting the A (x-axis) and C (y-axis) 

alleles of SNP rs5963957 at the DDX3X locus in the TCGA cohort (n = 468 tumors). 

Each point represents one tumor. Density plots show the distribution of points along the x- 

and y-axes separately for males and females. (h) Distribution of mean DNA methylation 

at the DDX3X promoter in female tumors (blue line; n = 180 tumors) compared to the 

promoters of other X-linked genes either upregulated (red line; n = 7,200 promoters across 

180 tumors), or not upregulated (black line; n = 98,916 promoters across 180 tumors) in 

females compared to males. Blue and black distributions were compared using a one-tailed 

Kolmogorov-Smirnov test for a rightward shift in the black distribution relative to the blue 

distribution. TSS is an acronym for transcription start site.
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Figure 3. Genes and pathways dysregulated as a result of DDX3X mutations.
(a) Volcano plot showing differences in mRNA expression of genes between DDX3X 
mutant and wildtype (WT) male tumors from the TCGA cohort (n = 22 mutant; n = 167 

wildtype tumors). Each point represents one gene. The x-axis shows to the log2 fold-change 

in mean expression relative to WT samples, and the y-axis shows corresponding p-values 

(unadjusted). Eight genes with the smallest p-values are labelled on the plot. Fold-changes 

and p-values were estimated using the Limma R package, parameterized to perform a 

two-tailed t-test on linear model coefficients. (b) Distribution of eCLIP peaks for DDX3X, 
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and other RNA binding proteins (RBPs), along transcripts in K562 and HepG2 cell lines. 

The x-axis corresponds to the gene length percentile, beginning at the 5’UTR. The y-axis 

shows the proportion of genes with overlapping RNA binding protein (RBP) peaks at a 

given percentile relative to the total number of genes bound by the RBP. (c) A heatmap 

showing the difference in densities of differentially expressed DDX3X targets in TCGA 

tumors (x-axis) and K562 cells (y-axis), relative to the targets of other RBPs (n = 22 

DDX3X mutant tumors, n = 164 DDX3X wildtype tumors; n = 2 biological replicates of 

DDX3X knockdown, n = 2 biological replicates of non-targeting controls in K562 cells; n 

= 1,196 DDX3X targets, n = 2,808 other RBP targets). (d) Gene set enrichment analysis 

(GSEA) of mutant DDX3X-associated transcriptional changes in male melanomas from 

the TCGA (n = 22 mutant tumors, n = 164 WT tumors). The x-axis corresponds to the 

effect size (i.e. the coefficient from a logistic regression GLM). A positive or negative 

effect size indicates whether a gene set on the y-axis is upregulated or downregulated 

upon DDX3X loss, respectively. The colour of each bar indicates the FDR-adjusted p-value 

(using Benjamini-Hochberg procedure) associated with the effect size. Only pathways which 

passed an FDR cut-off of <1% and were concordantly dysregulated in HT144 cells after 

DDX3X knockdown (p < 0.05) are shown (n = 2 biological replicates of knockdown, n = 

2 biological replicates of non-targeting controls). GLM coefficient p-values were computed 

using a two-tailed z Wald test.
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Figure 4. The landscape of somatic DNA copy number alterations in cutaneous melanoma.
(a) Scatter plot with marginal histograms showing the distribution of mean tumor sample 

ploidy (x-axis) and purity (y-axis), inferred using ABSOLUTE (n = 449 tumors from the 

TCGA). (b) Bar plot showing the Spearman correlation between gene RNA expression 

(from Kallisto) and relative copy number (n = 448 tumors). The plot includes all 36 

autosomal drivers considered in this study, and genes highlighted by the TCGA’s 2015 

GISTIC analysis of DNA copy number alterations in melanoma (GISTIC-2015 genes). (c) 
Bar plot showing the gain and loss frequencies of autosomal chromosome arms, defined for 
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each arm by the sign of the difference between its median copy number and the overall 

median copy number in a tumor (n = 449 tumors). (d) Bar plot showing the homozygous 

deletion (HD) frequencies of SMGs and GISTIC-2015 genes that have one or more HDs in 

449 TCGA tumors. (e) Genome-wide frequencies (in 10kb bins) of copy number alterations 

in all TCGA melanomas without genome duplication (n = 289 tumors). From bottom to top: 

(1) Genome-wide frequencies of loss-of-heterozygosity (LOH) and (2) DNA copy number. 

(3) Significantly amplified or deleted genomic regions (q-value < 0.01), identified here using 

GISTIC version 2.0 (a right-tailed permutation test performed independently for gains and 

losses, with p-values adjusted for multiple testing using the Benjamini-Hochberg procedure). 

GISTIC was run on 470 TCGA tumors. (4) Genomic loci for a subset of the 36 autosomal 

driver genes considered in this study that overlapped significant GISTIC regions, exhibited 

homozygous deletion in one or more samples, or whose mutations co-occurred with LOH 

or copy gain. GISTIC-2015 genes are also shown. (f) Genome-wide frequencies (in 10kb 

bins) of copy number alterations in all TCGA melanomas that have undergone one genome 

duplication (n = 146 tumors). (g) Genome-wide frequencies (in 10kb bins) of copy number 

alterations in non-acral cutaneous TCGA melanomas without genome duplication. The top 

and middle panels contain UVR-low and UVR-high tumors, respectively (n = 29 UVR-low 

tumors, n = 234 UVR-high tumors). The bottom panel shows the unadjusted p-values from 

a two-tailed Fisher’s exact test comparing UVR-low and UVR-high distributions in each 

genomic bin, multiplied by the sign of the difference in mean copy number between the 

groups, such that a positive value indicates a higher copy number in the UVR-low group.
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Figure 5. Co-occurrence of copy number alterations and mutations in driver genes.
(a) Forest plot showing the odds-ratio of co-occurrence between loss-of-function (LoF) 

mutations and segmental loss-of-heterozygosity (LOH). The p-values are from a right-

tailed Fisher’s exact test. A vertical red dotted line marks a p-value of 0.05. (b) Forest 

plot showing the odds-ratio of co-occurrence between recurrent missense mutations and 

segmental copy gain. The p-values are from a right-tailed Fisher’s exact test. A vertical red 

dotted line marks a p-value of 0.05. For panels (a) and (b), only a subset of the 36 autosomal 

driver genes with 3 or more mutations and 3 or more copy number alterations and a Fisher’s 
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test p-value less than one are shown. Per gene sample sizes are provided in Supplementary 

Table 6. (c) Bar plot showing the frequency of local gain and loss in driver genes. Shown 

here are all 36 autosomal drivers considered in this study, and GISTIC-2015 genes. Local 

gain and loss were defined per sample for each gene by the sign of the difference between 

its absolute copy number and the median absolute copy number of its host arm (n = 

449 tumors). (d) Scatter plot showing the relationship between the local deletion of genes 

(y-axis) and enrichment of LoF mutations (x-axis). Each point corresponds to one gene. The 

correlation p-value was computed using a two-sided Spearman’s test via the asymptotic t 

approximation (n = 36 genes).
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Figure 6. Deconvolving melanoma and stromal mRNA expression in bulk tumor samples.
(a) Histogram of tumor purity (proportion of cancer cells) in TCGA melanomas, estimated 

using ABSOLUTE (n = 449 tumors). (b) Histogram of correlations between tumor purity 

and mRNA expression, per gene (n = 447 tumors, n = 17,481 genes). (c) Forest plot of the 

coefficients of a multivariable beta regression between all five NMF signature weights and 

tumor purity, with their associated 95% confidence intervals (CI) and unadjusted p-values 

(computed using a two-tailed z Wald test of coefficients) (n = 447 tumors). (d) Matrix 

of NMF signature weights across tumors. Each row corresponds to a signature, and each 
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column to a tumor sample (n = 468 tumors). (e) Spearman’s correlation between the 

weights of each NMF signature across samples and each of 64 cell-type specific signature 

weights measured per sample using xCell (n = 468 tumors). (f) Kaplan-Meier survival 

curves for TCGA melanoma patients with a metastatic regional lymph node tumor sample, 

stratified according to immune signature weight (n = 216 patients). (g) Distribution of tumor 

pigmentation scores in three melanoma intrinsic mRNA subgroups. P-values are from a 

two-tailed Wilcoxon rank sum test (nOxPhos = 47, nCommon = 205, nMITF-low = 59 tumors). 

Violin widths correspond to the density of data points at a given pigmentation score.
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Figure 7. Alteration frequency of melanoma drivers differ across mRNA subgroups.
(a) Bottom to top: (1) Bar plot showing the frequency of coding mutations, homozygous 

deletions, and local amplifications in each mRNA subgroup for all 39 driver genes 

considered in this study (nOxPhos = 72, nCommon = 299, nMITF-low = 76 tumors). The number 

of altered tumors per subgroup per gene is reported in Supplementary Table 9. (2) FDR 

values from a two-tailed Fisher’s exact test for differential alteration frequency between 

subgroups (p-values were adjusted for multiple hypothesis testing using the Benjamini-

Hochberg procedure). (3) Fold-difference in median gene expression per subgroup, relative 
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to OxPhos, in samples not carrying the gene alterations listed in (1). (b) Box and whisker 

plots of mRNA expression for the four SMGs with the smallest p-values in panel (a), 
in addition to the catalytic protein kinase A (PKA) subunit, PRKACA, and its regulatory 

subunit PRKAR1A. Each point corresponds to one tumor. X-axes correspond to mRNA 

subgroup and Y-axes correspond to mRNA expression in log2 transformed counts per 

million (CPM). Boxes indicate first, second, and third quartiles. Whiskers extend to the 

minimum and maximum data points, no further than 1.5 times the inter-quartile range 

from the hinges. P-values are from a two-tailed Wilcoxon rank sum test (nOxPhos = 

72, nCommon = 299, nMITF-low = 76 tumors). (c) Illustration of protein kinase A (PKA) 

regulation by PRKAR1A. Alpha-Melanocyte-stimulating hormone (αMSH) ligand binds 

to and activates melanocortin 1 receptor (MC1R), inducing adenylyl cyclase (AC). AC 

catalyzes the cyclization of adenosine triphosphate (ATP) into second messenger molecule, 

cyclic adenosine monophosphate (cAMP). Binding of cAMP to PRKAR1A relieves its 

inhibitory effect on PRKACA. Activated PRKACA is able to catalyze phosphorylation of 

target proteins by hydrolyzing ATP to adenosine diphosphate (ADP). cAMP dependent 

phosphodiesterases (PDEs) negatively regulate PKA signalling by hydrolyzing cAMP to 

adenosine monophosphate (AMP).
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Figure 8. Correlates of immune infiltration, UV-signature, TMB and survival.
(a and b) Multivariable Cox regression models of post-accession survival times for patients 

with non-acral cutaneous melanoma (n = 347 patients). The model in (a) includes proportion 

of UVR mutations whereas (b) includes TMB. At the top of each panel are the model 

coefficients and their 95% confidence intervals, expressed in log2 hazard-ratios, with p-

values on the right (two-tailed z Wald test of coefficients). At the bottom of each panel 

are Kaplan-Meier survival curves for post-accession survival time of patients with regional 

lymph node metastasis samples. The patients are stratified into four groups based on 
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median dichotomized immune signature and UVR-group in (a) or TMB-group in (b). The 

UVR groups are defined using a 50% cut-off for the proportion of UVR mutations. The 

TMB groups are based on a 15th-percentile cut-off, in order to obtain similar UVR and 

TMB group sizes (23 UVR-low, 142 UVR-high, 29 TMB-low, 136 TMB-high patients). 

(c) Relative quality of different multivariable Cox regression models of post-accession 

survival in patients with non-acral cutaneous melanoma and a high UVR signature (n = 301 

patients). All models include age at procurement and tumor tissue site, in addition to the 

predictors specified on the x-axis (symbolized using ellipses). The y-axis shows the Akaike 

information criteria (AIC). Lower AIC indicates better relative quality. (d) Proportion of 

UVR mutations versus TMB. Each data point represents one tumor (the number of tumors 

per group are: acral = 51, acral or non-cutaneous = 11, mucosal = 14, non-acral cutaneous 

= 772, unknown or unavailable = 166). (e) Schematic representation of the pipeline used 

to predict antigenic mutations. Note that each increment of neoantigen tier includes all 

previous tiers. (f) Scatter plot showing the number of predicted antigenic mutations per 

tumor sample (y-axis) versus the total number of expressed missense mutations (median 

TPM > 1, x-axis). For visualization purposes, one hypermutated sample is not shown in 

this plot. (g) Top recurrent predicted antigenic peptides (the left red dots) with associated 

mutations (right blue dots). Numbers indicate how many TCGA patients are expressing 

them. All 4 tiers were included. *Likely not expressed (see Filtering potential false positives 

in text and Extended Data Fig. 3)
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