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The heritability of Alzheimer’s disease estimated from twin studies is greater than the heritability derived from genome-based studies,
for reasons that remain unclear. We apply both approaches to the same twin sample, considering both Alzheimer’s disease polygenic
risk scores and heritability from twin models, to provide insight into the role of measured genetic variants and to quantify uncaptured
genetic risk. A population-based heritability and polygenic association study of Alzheimer’s disease was conducted between 1986 and
2016 and is the first study to incorporate polygenic risk scores into biometrical twin models of Alzheimer’s disease. The sample in-
cluded 1586 twins drawn from the Swedish Twin Registry which were nested within 1137 twin pairs (449 complete pairs and 688
incomplete pairs) with clinically based diagnoses and registry follow-up (Mage=85.28, SD=7.02; 44% male; 431 cases and 1155
controls). We report contributions of polygenic risk scores at P, 1×10−5, considering a full polygenic risk score (PRS), PRS without
theAPOE region (PRS.no.APOE) and PRS.no.APOE plus directly measured APOE alleles. Biometric twin models estimated the con-
tribution of environmental influences and measured (PRS) and unmeasured genes to Alzheimer’s disease risk. The full PRS and
PRS.no.APOE contributed 10.1 and 2.4% to Alzheimer’s disease risk, respectively. When APOE ɛ4 alleles were added to the model
with the PRS.no.APOE, the total contribution was 11.4% to Alzheimer’s disease risk, where APOE ɛ4 explained 9.3% and
PRS.no.APOE dropped from 2.4 to 2.1%. The total genetic contribution to Alzheimer’s disease risk, measured and unmeasured,
was 71% while environmental influences unique to each twin accounted for 29% of the risk. The APOE region accounts for
much of the measurable genetic contribution to Alzheimer’s disease, with a smaller contribution from other measured polygenic in-
fluences. Importantly, substantial background genetic influences remain to be understood.
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Graphical Abstract

Introduction
Alzheimer’s disease is multifactorial with contributions of
genetic and environmental influences. Twin studies lever-
aging the relative similarity of Alzheimer’s disease risk
among identical or monozygotic (MZ) versus fraternal or di-
zygotic (DZ) twin pairs suggests an overall heritability of
0.58, with a maximum heritability of 0.79 if shared environ-
mental influences are discounted.1 Thus, 58–79% of the lia-
bility to late-onset Alzheimer’s disease is heritable. By
comparison, measured loci contributing to late-onset
Alzheimer’s disease risk may capture up to 50% of the her-
itability.2 However, the comparability of estimates remains
unclear as the estimation of polygenic contribution varies
across study designs. We sought to provide insight into the
role of APOE, which codes for apolipoprotein E, the major

cholesterol transporter in the brain, and other measured gen-
etic variants using polygenic risk scores (PRSs), as well as
quantify uncaptured genetic risk in Alzheimer’s disease,
within the same sample of twins.

The application of the PRS approach, aweighted sumof sin-
gle nucleotidepolymorphism (SNP)variants basedon the effect
sizes fromgenome-wideassociation study (GWAS), leads to en-
hanced accuracy in the prediction of Alzheimer’s disease risk.
For example, in case–control samples from the GERARD con-
sortia, the best prediction accuracy using area under the curve
(AUC) was 0.78 (0.77–0.80) based on a logistic regression
model with measured apolipoprotein E (APOE) genotypes, a
PRS comprising 20 SNPs from the Lambert et al.3 GWAS
meta-analysis, sex and age.4 APOE ɛ4 alone achieves an
AUCof about 0.685; however, whenAPOE ɛ4 carriers are ex-
cluded, the prediction accuracy of the PRS achieves an AUC of
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0.65.5 That is, PRS prediction of risk is substantial even for
those who do not carry the ɛ4 allele. Moreover, AUC model-
based inferred heritability from maximum prediction models6

suggests that in neuropathologically confirmed cases and con-
trols, heritability estimates can be inferred to lie between 27
and 55%7 based on common genome-wide SNPs contributing
to liability and accounting for age-related increases in preva-
lence. This range is in line with other estimates of SNP-based
heritabilityof24–53%,withAPOE ɛ4accounting for approxi-
mately one-quarter of the genetic contributions to liability.8,9

Apart from APOE, other genes identified in recent GWAS
are involved in amyloid precursor protein (APP) metabolism/
β-amyloid (Aβ) formation and regulation ofAPP catabolic pro-
cess, τ-protein binding, lipid metabolism and immune
response.10,11

How much heritable variation a PRS captures for
Alzheimer’s disease risk may be related to its genetic archi-
tecture. Recent work suggests that Alzheimer’s disease may
be oligogenic, or influenced by a limited set of common gen-
etic variants compared with other complex traits.12

However, the age distribution among Alzheimer’s disease
cases versus controls, and thus differences in the prevalence
of APOE ɛ2 versus ɛ4 allele frequencies can impact PRS pre-
diction.13 In addition to Alzheimer’s disease risk, APOE is
associated with longevity where the allele frequencies for
ɛ2 become more prevalent in older samples and ɛ4 alleles be-
come less prevalent, at least in samples of European and
Asian ancestries.14–17 Moreover, the methods used to con-
struct PRSs for Alzheimer’s disease can impact the compos-
ition of genetic variants included and hence prediction. A
PRS constructed from a clumping and P-value threshold ap-
proach PRS(C+T) and related methods outperform or are
comparable with other approaches (e.g. LDPRED and
SBayesR).13 The best prediction was observed in a model
combining directly measured APOE with the PRS excluding
the APOE region at a threshold of P≤ 0.10, whereas the
prediction accuracy was attenuated at more relaxed thresh-
olds despite increases in variants.13 Altogether, recent find-
ings suggest that Alzheimer’s disease is polygenic and the
age-related nature of the risk is essential to consider.13

The gap betweenheritability estimates fromgenome-based
and twin-based studies is notable, although the upper range
of genomeor SNP-basedheritability is at the cuspof heritabil-
ity estimates observed in twin studies. That said, genome-
based and twin-based estimates capture discrete components.
While twin analyses typically model additive genetic effects,
these estimates capture both additive and non-additive genet-
ic variance shared among twins as well as gene–environment
interplay, and contributions fromboth rare and commonvar-
iants (and often is referred to as ‘broad-sense heritability’),18

whereas genome-basedmethods capture additive variance at-
tributable to informative common genetic variants on geno-
typing arrays (known as ‘narrow-sense heritability’).8 In the
current study, we implement two methods within the same
twin samples and evaluate howAlzheimer’s disease PRS con-
tributions to heritability vary and what Alzheimer’s disease
PRS contributes beyond APOE.

Materials and methods
Participants
All participants were drawn from the Swedish Twin Registry
(STR).19 The primary analysis sample included twins from
four STR-based sub-studies: The Study of Dementia in
Swedish Twins (HARMONY),20 the Swedish Adoption
Twin Study of Aging (SATSA),21 Aging in Women and
Men (GENDER)22 and Origins of Variance in the Oldest
Old: Octogenarian Twins (OCTO-Twin),23 where informed
consent was obtained from participants. Dementia was as-
sessed using equivalent protocols that permits the combining
of these data.24,25 SATSA, begun in 1984, followed 859 in-
dividuals aged 50 years and older from same-sex pairs across
three decades with 10 in-person testing assessments com-
mencing in 198621; the current analysis sample included
522 SATSA participants. OCTO-Twin, initiated in 1991,
followed 351 same-sex twin pairs aged 80 years and older
across 8 years with five biennial visits23; the current analysis
sample included 66 OCTO-Twin participants. GENDER,
initiated in 1995 includes three in-person follow-ups of
498 opposite-sex twin pairs aged 70 years and older22; the
current analysis sample included 326 GENDER partici-
pants. HARMONY, commencing in 1998, screened 13
939 individuals from all STR individuals aged 65 years
and older.20 Those who evidenced possible cognitive dys-
function were referred for a complete clinical work-up as
well as their co-twin, plus a control sample, with a total clin-
ical sample of 1557. A longitudinal follow-up after 2 years
was done of those in the clinical work-up samples who
showed possible dysfunction but did not meet the criteria
for dementia. The current analysis sample included 666
HARMONY participants. Clinically based dementia and
Alzheimer’s disease diagnoses were available from the in-
person evaluations1 beginning in 1986 with additional
follow-up through population-based registries up through
2016. Diagnoses available via registry sources are reliable.26

For individuals diagnosed with dementia, age at dementia
diagnosis was used as the last follow-up. For controls, age at
last follow-up was based on the age as on 31 December 2016
or death, whichever occurred first for those with register in-
formation as described below. The age at last follow-up,
death or dementia onset was Mlastage= 85.28, SD= 7.02
years with 44% of the sample being male. Age distributions
across cases and controls are similar although controls are
on an average 2.32 years younger than the cases (see
Supplementary Table 1). Age distributions within the sub-
studies are generally similar among cases and controls over-
all, with average age differences between controls and cases
ranging from−5.11 to 0.45 years, with the largest difference
for SATSA.

Twins were selected for analyses where one or both mem-
bers of the pair had information about a diagnosis consistent
with Alzheimer’s disease or mixed Alzheimer’s disease and
APOE genotyping. Exclusions included early-onset
Alzheimer’s disease cases (aged ,60 years, n= 3) and
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individuals with other forms of dementia (n= 382).
Controls were excluded if they died before the age of 70
years (n= 38) or if they had possible cognitive impairment
but did not meet the criteria for dementia (n= 110).
Additional exclusionary criteria included no genome-wide
genotyping (n= 76) or undetermined zygosity (n= 7).
After these exclusions, a total of 1586 twins were available
for the analytic samples (431 Alzheimer’s disease or mixed
Alzheimer’s disease cases, 1155 controls). The 1586 twins
were nested within 1137 twin pairs, with 898 individuals re-
presented among 449 complete pairs and 688 individuals re-
presented from 688 incomplete pairs.

Measures
Alzheimer’s disease assessment
A two-stage procedure identified dementia cases. First, cogni-
tive screening by telephone was performed across the entire
STR population by HARMONY or where twins missed a
longitudinal assessment (SATSA, OCTO-Twin and
GENDER), or where longitudinal performance declined
markedly (e.g. mental status performance via a Mini-Mental
Status Exam (MMSE)27 score ,25 or a longitudinal drop
by three points; low cognitive performance on verbal or spa-
tial tasks in the bottom 10th percentile or dropping the
equivalent of 1 SD from the prior assessment). Second, poor
performance on the screening led to referral for in-person de-
mentia diagnostic work-up for those twins, along with their
cotwins.1 All studies also worked up samples of twin pairs
who did not perform poorly on the cognitive screening. For
individuals lost to follow-up due to the end of the parent
study, or if a twin skipped an assessment wave, administrative
sources were consulted, including the Swedish National
Patient Register, the Cause of Death Register and the
Prescribed Drug Register. The present study updated demen-
tia status through 31 December 2016, using International
Classification of Disease codes for Alzheimer’s disease and
other dementias or Anatomical Therapeutic Chemical codes
for Alzheimer’s disease medication (used as a proxy for an
Alzheimer’s disease diagnosis).28

Genotyping
Direct APOE genotyping for two markers (rs7412 and
rs429358) was available for all participants included in the
analysis as described elsewhere.29 The distribution of
APOE ɛ2/ɛ3/ɛ4 alleles in this analysis sample was 9.4/
74.2/16.4% (taking all DZ twins and selecting one indivi-
dual from each MZ pair). Genome-wide data were available
from the Illumina PsychArray (N= 1451) or the Human
OmniExpress array (N= 135) and imputed to 1000
Genomes Project phase1 version3.30 Initial exclusions of
SNPs included those with a minor allele frequency of 0,
.2% missing calls and those out of Hardy–Weinberg equi-
librium (P,1× 10−6). Ancestral outliers (based on princi-
pal components) and individuals with .1% missing
genotypes were excluded. PRSs were created in Plink 1.931

using summary statistics from the 2019 Alzheimer’s disease

genetic meta-analysis.10 All non-ambiguous SNPs in the
summary statistics were selected for PRS generation if they
were also present in the study sample data with a minor al-
lele frequency of 1% or higher and info score.0.8 (indicat-
ing good imputation quality) on both genotyping arrays.
Using Plink 1.9,31 independent genetic variants were obtained
through linkage disequilibrium (LD) clumping, setting the LD
parameter r2 to 0.01. PRSs were then computed by summing
up the number of risk alleles at each SNP, weighted by the ef-
fect size from the GWAS summary statistics.31 Eight different
PRSs were computed based on significance level in the
GWAS, at P≤ 1, P≤ 0.5, P≤ 0.05, P≤ 0.01, P≤ 1× 10−3,
P≤ 1× 10−4, P≤1× 10−5 and P≤5× 10−8, with and with-
out theAPOE region. For 183 of theMZ twin pairs, only one
twin was genotyped and the co-twin’s PRS imputed by taking
the genotyped twin’s PRS.

Analysis
Regression analyses included both complete and incomplete
pairs (N= 1586 individuals from 1137 twin pairs), whereas
biometric models included complete pairs (N= 898 indivi-
duals, 449 pairs). PRSs were adjusted for the first four ancestry
principal components and standardized within the SNP array.

PRS effects in a regression context were tested using the R
package mixor32 (v.1.04) using a probit model as follows:

probit(ADij) = b0 + b1MZ+ b2Sex+ b3LastAge

+ b4LastAge2 + b5Array+ b6zPRS (1)

where AD reflects Alzheimer’s disease risk for the ith indivi-
dual in the jth pair as predicted by an MZ twin type, Sex,
LastAge (centered on 80 years, divided by 10), Array
(Omni or Psych) and zPRS the residualized and standardized
PRS scores. Random effects for MZ and DZ pairs were esti-
mated at the pair level to account for sibling dependencies.
Fit comparisons between a baseline model with covariates
and adding the PRS or APOE alleles were made comparing
deviances distributed as chi-square (Δχ2) with d.f. equal to
the number of predictors added to the model. The probit
model was prioritized as it underlies the biometrical model
described below. However, a model assuming a logit link
produced comparable estimates and is presented in
Supplementary material for comparison with previously
published work.

PRS contributions in the context of a biometric model were
tested using the R packageOpenMx33 (v. 2.18.1), assuming a
latent-liability probit model with maximum-likelihood esti-
mation. We fitted an extended ACE biometric twin model34

(see Fig. 1), decomposing underlying liability to Alzheimer’s
disease into total additive genetic (A) influences, common
(C) and non-shared or person-specific environmental (E) in-
fluences, and covariance between A and C (covAC).
Notably, E also includes any measurement error and stochas-
tic factors. Additive genetic influences include the unmeasured
background genetic (AB) component and a latent polygenic
risk score (AP) that was perfectly defined by the measured
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PRS and its observed variance scaled by the parameter p
(i.e., σ2PRS = p2 x σ2Aᴩ). An identifying constraint included no
covariance between AB and AP (σAᴩ,Aʙ = 0). The sum of var-
iance components was constrained such that

1 = s2
AB

+ s2
AP

+ s2
C + 2sAC + s2

E (2)

Hence, σ2Aᴩ represents the proportion of variance in
Alzheimer’s disease liability explained by the measured PRS
and σ2Aᴩ + σ2Aʙ represents the proportion of variance due to
all genetic influences. In addition, the total covariance be-
tween A and C (covAC) was constrained as:

sAC = sAPC + sABC (3)

Hence, the expected correlations among MZ twins who
share 100% of their genes while DZ twins on average share
50% of their segregating alleles were:

rMZ = s2
AB

+ s2
AP

+ s2
C + 2sAC (4)

rDZ = 1
2
s2
AB

+ 1
2
s2
AP

+ s2
C + 2sAC (5)

The models freely estimated variance components without
boundary constraints to allow for unbiased fit statistics

and correct Type I error rates.35 We fixed the Alzheimer’s
disease liability threshold to 0 and estimated its mean for
ease in analysis given that the mean estimation was already
specified for the PRSs, and is a statistically equivalent ap-
proach to estimating the threshold and fixing the mean to
0.36 95% confidence intervals were estimated.

Data availability
Raw data were generated at the Department of Medical
Epidemiology and Biostatistics, Karolinska Institutet,
Stockholm, Sweden. The derived data supporting the find-
ings of this study are available from the corresponding au-
thor on request.

Results
In comparing the IGAP2 summary statistics10,11 with GWAS
of our current samples, the β coefficients suggested similar
effect sizes for those included in the PRS at P, 1× 10−5

(rGWAS= 0.54, P, 6.1× 10−8; nSNPs= 89) and P, 1×
10−4 (rGWAS= 0.36, P, 2.1× 10−8; nSNPs= 233). The best
regression predictions were observed at P, 1× 10−5 and
P, 1× 10−4 thresholds (Nagelkerke R2= 0.062 for both)
and improved over P, 5× 10−8 (Nagelkerke R2= 0.058),

Figure 1 Biometrical ACEmodel with Alzheimer’s disease PRS. AD, Alzheimer’s disease liability; PRS, polygenic risk score. AP, additive
genetic influences due to the PRS which are correlated at 1.0 among MZ twin pair members and 1/2 for DZ twins pair members; AB, background
additive genetic influences which are correlated at 1 among MZ and 1/2 for DZ twin pairs; C, common environmental influences that are
perfectly correlated among both MZ and DZ pairs; E, non-shared environmental influences. Subscripts of 1 refer to Twin 1 and subscripts of 2
refer to Twin 2. Total A= AP+ AB+ 2covAC, where covAC is the total covariance of A and C.
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whereas predictions fell off at P,1× 10−3 (Nagelkerke
R2= 0.053) (see Supplemental Table 2 for all thresholds).
The comparable predictions based on the PRS without the
APOE region were Nagelkerke R2 values of 0.011 and
0.012 at the P, 1× 10−5 and P, 1× 10−4 thresholds, re-
spectively. We present findings for the P, 1× 10−5 thresh-
old (based on the rGWAS and comparable Nagelkerke R2),
evaluating a full PRS, a PRS without the APOE region
(PRS.no.APOE) and the latter with directly measured
APOE alleles (PRS.no.APOE+ ɛ2+ ɛ4 alleles).

Probit regression models
Entering the full PRS at P, 1× 10−5 to the baseline model
with covariates led to a significant increase in fit [Δχ2(d.f.= 1)

= 65.82, P, 4.93× 10−16; Nagelkerke R2= 0.062]
(Table 1). Entering PRS.no.APOE also led to a significant
increase in fit [Δχ2(d.f.= 1)= 11.27, P,7.86× 10−4;
Nagelkerke R2= 0.011] (Table 1). When adding directly
genotyped APOE ɛ2 alleles and ɛ4 alleles (PRS.no.APOE
+ ɛ2+ ɛ4 alleles), the resulting gain in prediction was
evident [Δχ2(d.f.= 2)= 81.29, P, 2.23× 10−18] with a
Nagelkerke R2 of 0.076, driven by APOE ɛ4 (P= 2.05×
10−12) and with a non-significant reduction in risk by the
number of ɛ2 alleles (P= 1.38× 10−1) (Table 1). The AUC
values across all models were high ranging from 0.97 to
0.98, suggesting that background characteristics perform
well in distinguishing cases from non-cases. Logistic regres-
sion models produced similar results (see Supplementary
Table 3). Sensitivity analyses using only complete twin pairs

produced consistent results as the full sample analysis
(see Supplementary Table 4). Finally, analyses adding in
adjustment for sub-study resulted in slight differences:
the Nagelkerke R2 dropped from 0.062 to 0.055= 0.007
for PRS with APOE and from 0.011 to 0.009 for
PRS.no.APOE (see Supplementary Table 5). Overall, the
best genetic prediction was observed for directly measured
APOE ɛ2 and ɛ4 plus PRS.no.APOE (Table 1).

The standardized PRS distribution at P,1× 10−5, by
Alzheimer’s disease status, is shown in Fig. 2A, adjusted
for the first four ancestry PCs and array type. The mean
PRS for controls was −0.13 (SD= 0.95) versus cases at
0.35 (SD= 1.06), an effect size difference of z= 0.48.
The standardized PRS distribution for PRS.no.APOE at
P, 1× 10−5, by Alzheimer’s disease status, is shown in
Fig. 2B, adjusted for the first four ancestry PCs and array
type. The mean PRS.no.APOE for controls was −0.06
(SD= 1.00) versus cases at 0.16 (SD= 0.97), an effect
size difference of z= 0.22. Hence, the offset in the PRS dis-
tributions between cases and controls is over 2-fold for the
full PRS containing the APOE region compared with the
distribution of PRS.no.APOE.

Biometric twin models
A simple baseline ACE model fitted to complete twin pairs
(190 MZ and 259 DZ) suggested a significant additive gen-
etic contribution (A), a non-significant common environ-
mental variance (C ), and a significant non-shared or
person-specific environmental variance (E) (see Table 2,

Table 1 Probit regression analyses (N= 1586): Alzheimer’s disease PRS at P, 1××××× 10−−−−−5

Parameters

Baseline PRS P, 1××××× 10−−−−−5
PRS.no.APOE
P, 1×××××10−−−−−5

PRS.no.APOE+++++APOE
alleles

B SE P(.|z|) B SE P(.|z|) B SE P(.|z|) B SE P(.|z|)

Intercept −1.56 0.20 4.89E−15 −1.67 0.21 8.88E−16 −1.58 0.20 2.89E−15 −1.82 0.22 ,2.20E−16
MZ 0.04 0.16 7.92E−1 0.06 0.15 6.79E−1 0.08 0.16 6.15E−1 0.07 0.15 6.08E−1
Sex (0=M, 1= F) 0.44 0.09 3.83E−6 0.44 0.10 4.15E−6 0.44 0.09 3.02E−6 0.41 0.09 1.40E−5
LastAge 0.97 0.12 8.88E−15 0.97 0.13 2.75E−14 0.95 0.13 4.31E−14 0.96 0.13 6.51E−14
LastAge2 −0.55 0.09 5.12E−10 −0.50 0.09 1.29E−8 −0.53 0.09 1.78E−9 −0.47 0.09 4.27E−8
Array 0.40 0.16 1.55E−2 0.44 0.17 9.83E−3 0.40 0.17 1.69E−2 0.38 0.17 2.88E−2
PRS — — — 0.38 0.06 7.53E−12 0.16 0.05 1.41E−3 0.16 0.05 1.06E−3
APOE ɛ2 alleles — — — — — — — — — −0.18 0.12 1.38E−1
APOE ɛ4 alleles — — — — — — — — — 0.75 0.11 2.05E−12
Random·MZ 2.23 0.76 3.37E−3 1.77 0.62 4.49E−3 2.06 0.73 4.53E−3 1.61 0.58 5.60E−3
Random·DZ 0.37 0.23 1.04E−1 0.39 0.24 1.02E−1 0.39 0.24 1.02E−1 0.36 0.24 1.40E−1
Fit statistics
Deviance 1703.37 1637.55 1692.10 1610.81
AIC −859.69 −827.78 −855.05 −816.40
SBC −879.83 −850.44 −877.71 −844.10
ICC·MZ 0.691 0.638 0.673 0.616
ICC·DZ 0.269 0.282 0.280 0.263
AUC 0.976 0.972 0.977 0.970
R2 Nagelkerke 0.084 0.062 0.011 0.076

Regression analyses estimating varying intraclass correlations (ICCs) with clustered twin data were adapted from code in Archer et al.32 using mixor. MZ, monozygotic twin; DZ,
dizygotic twin; LastAge, age at last follow-up, death or dementia onset, centred on age 80 years and divided by 10; Array, Human OmniExpress= 0, Illumina PsychArray= 1; PRS,
polygenic risk score at P, 1× 10−5 residualized for four PCs and standardized within array type; PRS.no.APOE, PRS without APOE region; Random, random effect; Deviance, –
2ln(Likelihood); AIC, Akaike Information Criteria; SBC, Schwarz Bayesian Criterion; ICCs measured as Random·MZ/(1+Random·MZ) and Random·DZ/(1+Random·DZ)32; AUC,
area under the curve.
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Full Model 0). A reduced model dropping common envir-
onmental variance (C ) [Δχ2(d.f. = 1)= 0.81, P= 3.69×
10−1] was the best-fitting and suggested that 70.7%
of the liability for Alzheimer’s disease was attributable
to additive genetic influences (σ2A= 0.707, CI95= 0.542,

0.832) and the remainder attributable to non-shared envir-
onment (Table 2, Reduced Model 0). Model fit compari-
sons between the full baseline ACE and all sub-models
testing individual variance components are shown in
Supplementary Table 6.

Figure 2 Density plots of Alzheimer’s disease PRSs at the P, 1××××× 10−−−−−5 threshold in cases and controls. (A) PRS. (B) PRS.no.APOE
(PRS without APOE region). PRS, polygenic risk score. Vertical lines indicate the mean PRS values for Alzheimer’s disease (AD) cases (red line) and
controls (blue line). PRSs are based on independent genetic variants reaching a significance threshold of P, 1× 10−5 in the GWAS.
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Next, we expanded the full baseline ACE model to con-
sider the PRS at P, 1× 10−5 as the measured polygenic
risk (AP), remaining background additive genetic (AB) var-
iance as well as common environmental variance (C ), the
covariance of A and C (covAC) and E. Both C and
covAC could be dropped (P≥5.48× 10−1) (see
Supplementary Table 6). In Reduced Model 1, AP for the
full PRS accounted for 10.1% (σ2Aᴩ= 0.101, CI95= 0.051,
0.164) of variation contributing to Alzheimer’s disease
risk (see Table 2), whereas, in Reduced Model 2, AP for
the PRS.no.APOE accounted for 2.4% (σ2Aᴩ-APOE= 0.024,
CI95= 0.004, 0.065) (see Table 2). Notably, when APOE
ɛ4 alleles were added to the model with PRS.no.APOE,
the total measured prediction (PRS.no.APOE+ ɛ4 alleles)
was 11.4% (σ2Aᴩ-APOE= 0.021, CI95= 0.005, 0.059;
σ2Aɛ4= 0.093, CI95= 0.046, 0.152) and the remaining
genetic background variance was 59.6% (σ2A= 0.596,
CI95= 0.434, 0.728) (see Fig. 3). Overall, in the context
of twin biometrical models, the best measured genetic pre-
diction was observed for directly measured APOE ɛ4 alleles
+ PRS.no.APOE, but substantial background genetic

contributions remain that are not captured by these mea-
sured sources.

Our observed power for our given estimate of A of 0.71
was 0.80.37 Our observed power for evaluating
PRS.no.APOE and APOE ɛ4 alleles based on the Reduced
Model 3 was 0.77 for PRS.no.APOE and approached 1.00
for APOE ɛ4 alleles.

Discussion
There are many ways to evaluate the importance of genetic
influences on Alzheimer’s disease. To date, twin-based mod-
els and contributions of PRS have been considered indepen-
dently. In bringing these approaches together for the first
time in the same twin sample, we observed that much of
the genetic variance contributing to Alzheimer’s disease lia-
bility is not explained by directly measured APOE or com-
mon genetic influences currently captured by GWAS
contributing to a polygenic score. The Alzheimer’s disease
PRS contribution to Alzheimer’s disease risk was as high

Table 2 Biometric twin model results: Alzheimer’s disease PRS at P, 1××××× 10−−−−−5

Model VC

Full model Reduced model

Est SE LL UL Est SE LL UL

0. ACE A 0.960 0.294 0.391 1.546 0.707 0.074 0.542 0.832
C −0.232 0.265 −0.774 0.258 — — — —

E 0.272 0.073 0.153 0.440 0.293 0.074 0.168 0.458
−2LL 888.71 889.52
AIC 902.71 901.52
BIC 931.46 926.16

1. PRS AP 0.136 0.040 0.058 0.342 0.101 0.029 0.051 0.164
AB 0.882 0.083 0.343 1.410 0.614 0.075 0.452 0.744
C 0.003 4.26E−4 −9.31E−7 0.668 — — — —

E 0.263 0.069 0.149 0.425 0.285 0.072 0.164 0.446
covAC −0.142 0.008 −0.618 0.098 — — — —

−2LL 2746.32 2747.52
AIC 2768.32 2765.52
BIC 2813.49 2802.48

2. PRS.no.APOE AP 0.030 0.020 0.012 0.139 0.024 0.016 0.004 0.065
AB 0.924 0.080 0.367 1.498 0.685 0.075 0.519 0.811
C 4.29E−4 3.07E−4 −1.75E−6 1.101 — — — —

E 0.271 0.071 0.152 0.439 0.291 0.074 0.167 0.456
covAC −0.113 0.005 −0.781 0.115 — — — —

−2LL 2824.69 2825.45
AIC 2846.69 2843.45
BIC 2891.87 2880.42

3. PRS.no.APOE+ ɛ4 alleles AP 0.027 0.013 0.025 0.087 0.021 0.015 0.005 0.059
Ae4 0.118 0.024 0.049 0.242 0.093 0.027 0.046 0.152
AB 0.825 0.077 0.318 1.351 0.596 0.075 0.434 0.728
C 4.17E−4 4.94E−4 −5.419E−11 0.474 — — — —

E 0.268 0.069 0.153 0.433 0.289 0.073 0.167 0.451
covAC −0.120 0.007 −0.491 0.115 — — — —

−2LL 3783.69 3784.47
AIC 3811.69 3808.47
BIC 3869.19 3857.76

Biometrical analyses of Alzheimer’s disease risk with entry of a PRS were fitted adapting code in Dolan et al.34 using OpenMx.33 VC, variance component; Est, Estimate; SE, standard
error; LL, lower 95% confidence interval; UL, upper 95% confidence interval; PRS, polygenic risk score at P, 1× 10−5 residualized for four PCs and standardized within array type;
PRS.no.APOE, PRS without APOE region; A, additive genetic influences; C, common environmental influences; E, non-shared environmental influences; AP, genetic influences due to the
PRS; Aɛ4, genetic influences due to APOE ɛ4 alleles; AB, background additive genetic influences; total A= AP+ AB+ 2covAC. The Reduced Model dropped C (common environmental
variance) and covAC. All models adjusted for Sex, LastAge and LastAge2. 95% confidence intervals are shown.
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as 0.101, or 10.1% in the twin biometric model. The APOE
region accounts for much of the measurable contribution to
Alzheimer’s disease, with smaller polygenic contribution
from other measured common genetic influences.
Considering the best biometrical model, directly measured
APOE ɛ4 explained 9.3% and PRS.no.APOE an additional
2.1% of Alzheimer’s disease risk, leaving much of the genet-
ic risk uncaptured (i.e. 71.1% total minus 11.4%measured).

Our estimates of measured contributions of the PRS to
background heritability for Alzheimer’s disease risk, in the
same sample, are smaller than the SNP-heritability estimates
as well as that for APOE ɛ4.7–9 While the small contribution
of the PRS in this study can potentially be explained by the
fact that it is based on the most significant SNPs (N= 89),7

we note that including PRSs at more relaxed P-value
thresholds did not pick up more heritability than SNPs with
P,1× 10−5. As the GWAS of Alzheimer’s disease is still of
comparatively small sample size, based on 21982 cases and
41944 controls, this may indicate that substantial genetic
variation will be discovered as GWAS sample size increases.

PRS methods rely on the power of GWAS, whereas other
genome-wide heritability methods, such as GCTA, are less
affected but also often fall short of estimates from twin
and family studies.38 Moreover, genome-wide methods pro-
duce narrow-sense heritability estimates due to additive ef-
fects from common SNPs,8 whereas twin estimates include
both additive and non-additive genetic influences (e.g. dom-
inance and epistasis),18 or broad-sense heritability, and with
contributions from all variants, common and rare.
However, recent work suggests that heritability is ‘recov-
ered’ for complex traits such as human height and body

mass index (BMI) when using sequencing data such that
SNP-based heritabilities are in line with twin and family-
based estimates.39,40 Thus, disagreement between biometric
and SNP-based heritabilities is not universal. That substan-
tial variation may be attributed to rare variants has also
been observed for other complex disease traits such as pros-
tate cancer41 and for phenotypes in other species such as
yeast.42,43 The missing heritability is likely not due to simple
additivity across common variants but also to contributions
from rare variants as well as to non-additive effects includ-
ing dominance and epistasis.42,44 Studies of rare variants
and Alzheimer’s disease risk have observed effects for rare
coding variants in genes such as ABCA7, BIN, NOTCH3,
PLCG2, SORL1, TREM and ABI3 among others45–47 not
captured by PRSs. Apart from a rare variant in TREM2
(p.Arg47His), little replication work has been reported.8

However, an Icelandic study observed a protective mutation
in the APP gene (A673T), that codes for APP, with replica-
tion analyses suggesting that it predicted higher cognitive
status scores among nursing home residents.48

Moreover, gene–environment interplay may increase esti-
mates of genetic influences.49 For example, a correlation
may be induced between genes and environments (rGE)
whereby individuals at higher genetic risk may construct
contexts that buffer expression of Alzheimer’s disease,
such as engagement in physical or cognitive activities.
Empirical examples of rGE for Alzheimer’s disease are
rare. On the contrary, studies testing for gene–environment
interaction (G×E) are more common for Alzheimer’s dis-
ease and related traits, typically evaluating APOE,49–51

e.g. risk for Alzheimer’s disease is magnified for those with
APOE risk alleles who are also obese or have high blood
pressure in midlife. Moreover, reports from the IGEMS con-
sortium using a within-pair MZ twin design report
small-to-moderate G×E effects across country and gender
for cross-sectional measures of BMI, depressive symptoms,
cognitive performance52 as well as grip strength.53

Furthermore, APOE may partly account for G×E effects
for depressive symptoms and spatial reasoning whereby ɛ4
individuals may show less sensitivity to the environment.52

In conclusion, in the context of a Swedish twin study, the
APOE region explains much of themeasured genetic contribu-
tion to Alzheimer’s disease, with smaller contributions from
other measured polygenic influences, yet much of the back-
ground genetic liability to risk is unexplained. Sensitive designs
that capture all the measured genetic influences, such as the se-
quencing of rare variants, as well as models that evaluate direct
and indirect contributions and gene–environment interplay
may reconcile the high background heritability observed in
twin and family studies with the extant estimates of measured
polygenic risk from genome-wide approaches.
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