Skip to main content
. 2022 Jan 28;14(3):665. doi: 10.3390/cancers14030665

Table 1.

Summary of reported diagnostic performance of US radiomics in head and neck oncology (studies have been summarized in alphabetical order).

Authors Radiomics Platform Number of Features Statistical Analysis/Model Performance
Acharya et al., 2012 [13] Not reported 5 Malignant vs. benign thyroid nodules
Training AUC: 0.99
Ardakani et al., 2018 (Eur J Radiol) [14] Not reported 40 Hot (hyperfunctioning) vs. cold (hypofunctioning) thyroid nodules
Training AUC: 0.99 (95% CI: 0.978, 1.000)
Validation AUC: 0.95 (95% CI: 0.874, 1.000)
Ardakani et al., 2018 (J Ultrasound Med) [15] Not reported 4 LNM vs. no LNM
Radiologic + textural features
Training AUC: 0.99 (95% CI: 0.998, 0.999)
Validation AUC: 0.95 (95% CI: 0.911, 0.993)
Bhatia et al., 2016 [16] MATLAB 15 Malignant vs. benign thyroid nodules
Training AUC: 0.97 (p < 0.0001)
Chang et al., 2016 [17] Not reported 74 Malignant vs. benign thyroid nodules
Adaboost
CAD AUC: 0.98
RAD AUC: 0.98
Chen et al., 2020 [18] MATLAB 23 Benign vs. lymphomatous
AUC: 0.95 (p < 0.001)
Lymphomatous vs. metastatic
AUC: 0.93 (p < 0.001)
Benign vs. malignant AUC: 0.84 (p < 0.001)
Benign vs. metastatic AUC: 0.72 (p < 0.001)
Ding et al., 2012 [19] Not reported Not reported Malignant vs. benign thyroid nodules
Training accuracy: 95%
Galimzianova et al., 2020 [20] Not reported 219 Malignant vs. benign thyroid nodules
Training AUC: 0.83 (95% CI: 0.715, 0.942)
Jiang et al., 2020 [21] PyRadiomics 6 LNM vs. no LNM
Training AUC: 0.85 (95% CI: 0.791, 0.912)
Validation AUC: 0.83 (95% CI: 0.749, 0.916)
Kim et al., 2015 [22] MATLAB 10 Malignant vs. benign thyroid nodules
Gray-scale AUC: 0.80
Elastography AUC: 0.68
Kim et al., 2017 [23] MATLAB 5 LNM vs. no LNM
OR: 0.98; 95% CI: 0.48-1.99, p > 0.05
Kwon et al., 2020 [24] PyRadiomics 6 LNM vs. no LNM
Training AUC: 0.93
Validation AUC: 0.90
Li et al., 2020 [25] Ultrosomics 690 LNM vs. no LNM
Training AUC: 0.76
Validation AUC: 0.80
Liang et al., 2018 [26] AI Kit 19 Malignant vs. benign thyroid nodules
Training AUC: 0.92 (95% CI: 0.877, 0.965)
Validation AUC: 0.93 (95% CI: 0.884, 0.977)
Liu et al., 2018 [27] MATLAB 25 LNM vs. no LNM (B-mode + SE-US)
Training AUC: 0.90
Liu et al., 2019 [28] MATLAB 50 LNM vs. no LNM
Training AUC: 0.78 (95% CI: 0.731, 0.833)
Validation AUC: 0.73 (95% CI: 0.653, 0.801)
Nam et al., 2016 [29] MATLAB 5 Malignant vs. benign thyroid nodules
Skewness AUC: 0.61 (95% CI: 0.563, 0.647)
Kurtosis AUC: 0.65 (95% CI: 0.607, 0.691)
Entropy AUC: 0.64 (95% CI: 0.596, 0.681)
Park et al., 2020 [30] MATLAB 14 LNM vs. no LNM
Training AUC: 0.71 (95% CI: 0.649, 0.770)
Validation AUC: 0.62 (95% CI: 0.560, 0.682)
Park et al., 2021 [31] MATLAB 66 Malignant vs. benign thyroid nodules
Training AUC: 0.85 (95% CI: 0.830, 0.870)
Validation AUC: 0.75 (95% CI: 0.690, 0.810)
Prochazka et al., 2019 [32] MATLAB Not reported Malignant vs. benign thyroid nodules
Accuracy: 94%
Raghavendra et al., 2017 [33] Not reported Not reported Malignant vs. benign thyroid nodules
Training AUC: 0.94
Tong et al., 2020 [34] MATLAB 21 LNM vs. no LNM
US radiomics nomogram
Training AUC: 0.94 (95% CI: 0.911, 0.982)
Validation AUC: 0.91 (95% CI: 0.842, 0.987)
Yoon et al., 2021 [35] MATLAB 15 Malignant vs. benign thyroid nodules
Radiomics score + clinical variables AUC: 0.84 (95% CI: 0.775, 0.897)
Clinical variables alone AUC: 0.58 (95% CI: 0.435, 0.693)
Zhao et al., 2021 [36] Intelligence Foundry 6 Malignant vs. benign thyroid nodules
ML-assisted US visual approach
Training AUC: Not reported
Validation AUC: 0.90
Test AUC: 0.92
Zhou et al., 2020 [37] MATLAB 23 LNM vs. no LNM
Training AUC: 0.87 (95% CI: 0.802, 0.938)
Validation AUC: 0.86 (95% CI: 0.785, 0.930)

AUC, area under the curve; LNM, lymph node metastasis; CAD AUC, computer-aided diagnosis area under the curve; RAD AUC, radiologist area under the curve.