
An Efficient Approach to Perform MR-Assisted PET Data
Optimization in Simultaneous PET/MR Neuroimaging Studies

Kevin T. Chen1,2, Stephanie Salcedo1, Kuang Gong3, Daniel B. Chonde1,2,4, David Izquierdo-Garcia1,
Alexander Drzezga5, Bruce Rosen1, Jinyi Qi3, Bradford C. Dickerson6, and Ciprian Catana1

1Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard
Medical School, Charlestown, Massachusetts; 2Program in Health Sciences and Technology, Massachusetts Institute of Technology,
Cambridge, Massachusetts; 3Biomedical Engineering Department, University of California at Davis, Davis, California; 4Program
in Biophysics, Harvard University, Cambridge, Massachusetts; 5Department of Nuclear Medicine, University Hospital Cologne,
Cologne, Germany; and 6Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts

A main advantage of PET is that it provides quantitative measures

of the radiotracer concentration, but its accuracy is confounded by

factors including attenuation, subject motion, and limited spatial

resolution. Using the information from one simultaneously acquired
morphologic MR sequence with embedded navigators for MR motion

correction (MC), we propose an efficient method, MR-assisted PET

data optimization (MaPET), for attenuation correction (AC), PET MC,

and anatomy-aided reconstruction. Methods: For AC, voxelwise lin-
ear attenuation coefficient maps were generated using an SPM8-

based method on the MR volume. The embedded navigators were

used to derive head motion estimates for event-based PET MC. The
anatomy provided by the MR volume was incorporated into the PET

image reconstruction using a kernel-based method. Region-based

analyses were performed to assess the quality of images generated

through various stages of PET data optimization. Results: The opti-
mized PET images reconstructed with MaPET were superior in image

quality to images reconstructed using only AC, with high signal-to-

noise ratio and low coefficient of variation (5.08 and 0.229 in a com-

posite cortical region compared with 3.12 and 0.570, P , 10−4 for
both comparisons). The optimized images were also shown using the

Cohen’s d metric to achieve a greater effect size in distinguishing

cortical regions with hypometabolism from regions of preserved me-
tabolism. Conclusion: We have shown that the spatiotemporally cor-

related data acquired using a single MR sequence can be used for

PET attenuation, motion, and partial-volume effects corrections and

that the MaPET method may enable more accurate assessment of
pathologic changes in dementia and other brain disorders.
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Interest in simultaneous PET and MRI (PET/MRI) has been
growing because of its ability to provide complementary, and
concurrent, information about morphologic, functional, metabolic,
and neurochemical changes in many neurologic disorders (1,2),

including dementia (1–4), and whole-body applications (3). Im-
portantly, in addition to providing a simultaneous look at these
features through the strengths of each modality individually, the
combined tool allows us to leverage the MR information to im-
prove the quantification of PET data (1). Although PET has the
potential to provide highly quantitative measures of the radiotracer
concentration over time, its accuracy is confounded by several
factors. First, the attenuation of the 511-keV annihilation photons
needs to be accounted for in both qualitative and quantitative
studies. Second, subject motion is difficult to avoid, particularly
in patients with disorders of the central nervous system, and leads
to degradation of the images when it has large amplitude (5).
Third, the limited spatial resolution leads in PET to under- or
overestimation in tissue activity concentrations (i.e., partial-vol-
ume effects [PVEs]) that depend on the activity distribution and
the size and shape of the structures from which the measurement
is being made (6). These subject-dependent effects are especially
apparent in dementia subjects, who are more prone to motion (7)
and may have brain atrophy with regional variability (8).
Since the transmission or CT-based methods traditionally used to

produce attenuation maps (m-maps) that describe tissue attenuation
are not available in integrated PET/MRI scanners, MR-based meth-
ods had to be developed for attenuation correction (AC) (9). There
are 2 main approaches for MR-based AC: atlas-based and segmen-
tation-based techniques. In the former, an atlas that provides the
linear attenuation coefficients is warped and coregistered to each
new subject (10,11); in the latter, discrete coefficients are assigned
to classes of voxels segmented through image processing or ma-
chine learning (12–14). In addition, methods that combine the
strengths of both methods have been proposed (15–17); one of these
methods has been shown to produce accurate m-maps from one
T1-weighted MR morphologic image alone (16).
To minimize the effect of head motion, other than methods

using restraints in an attempt to eliminate movement (18), motion
correction (MC) can be done through motion tracking with an ex-
ternal system, such as an optical system with cameras or markers
(19), or with image-based systems. This tracking information can be
used to compensate for subject motion before, after, or during image
reconstruction. In the postreconstruction methods, the PET data are
divided into smaller frames, and the images reconstructed from
these frames are coregistered (20,21). The obvious limitation of this
class of methods is that the intraframe motion cannot be fully
accounted for (22). In contrast, event-based methods reposition
the raw list-mode PET data to compensate for subject motion during
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the scan (23). When combined PET/MR systems for simultaneous
data collection are used, however, the MR volumes acquired using
echo planar imaging–based sequences can be exploited to imple-
ment an image-based system for motion tracking (24).
Finally, PVE correction (PVEC) can also use theMR data to improve

PET quantification. One group of methods take a postprocessing
route, such as solving the inverse of a matrix that relates the spill
in–spill out relations of all brain regions of interest (the geomet-
ric transfer matrix method (25)) or the application of a voxelwise
map of recovery factors obtained through convolving the brain
regions with the point-spread function (the Müller-Gärtner method
(26)). Another approach introduces modifications during image re-
construction by performing resolution modeling (27) or incorporat-
ing morphologic information (28,29). One such method uses a
combination of MR morphology–based kernel functions to model
the image to be reconstructed; this was shown to be superior in
quantifying PET activity in static images with similar contrast levels
compared with the traditional maximum-likelihood expectation-
maximization method or the Bowsher method (30).

In this work, we combine each of these
broad capabilities (AC, MC, and anatomy-
aided reconstruction [AAR]) into a single
workflow. We proposed using the magnetiza-
tion-prepared rapid gradient echo (MPRAGE)
sequence with embedded short 3-dimensional
echo planar imaging volumetric navigators
(‘‘vNav-MPRAGE’’) (31), originally used for
within-sequence motion tracking and prospec-
tive MC of the MR data, to perform PETAC
(16), MC (24), and AAR (30), a combined
data processing approach we call MR-assis-
ted PET data optimization (MaPET). In
addition, for postprocessing and analysis,
the vNav-MPRAGE sequence was also used
for segmenting the regions of interest (Fig.
1). MaPET was applied to the PET data
acquired simultaneously with the MPRAGE
data to generate static PET images in demen-
tia and mild cognitively impaired (MCI) sub-
jects. The incremental and overall effects of

these component corrections, with a focus on MC and AAR (AC
is a standard part of established algorithms), on the resulting
PET images were assessed qualitatively and quantitatively at a
group level.

MATERIALS AND METHODS

Data Acquisition and PET Reconstruction

Twenty patients (19 dementia, 1 MCI; Table 1) were recruited to
undergo 1 PET/MR examination. The study was approved by the local

Institutional Review Board. Written informed consent was obtained
from all participants or an authorized surrogate decision-maker. The

PET data were acquired with a prototype MR-compatible brain PET
scanner (‘‘BrainPET’’; Siemens Healthcare Inc.). Approximately

180 MBq of 18F-FDG were administered shortly after initiation of the
MR acquisition, and dynamic PET data were acquired for 70 min. For

each subject, a static 7-min frame (8 min for 3 subjects) consisting of
PET data acquired simultaneously with the vNav-MPRAGE sequence

(parameters provided in the following section) was reconstructed using
the standard ordered-subsets expectation maximization (OSEM) algo-

rithm (32), with 16 subsets and 4 iterations, accounting for random

FIGURE 1. A diagram of how MR information could be used to assist PET reconstruction,

postprocessing, and analysis.

TABLE 1
Subjects Scanned in This Study

Characteristic Total number

Patients 20

Male 11

Female 9

AD 11

Typical AD 6

Posterior cortical atrophy 1

Logopenic primary progressive aphasia 4

FTD 8

Behavioral variant FTD 4

Semantic dementia 3

Progressive nonfluent aphasia 1

Amnestic mild cognitive impairment 1
FIGURE 2. Transverse sections of representative subject acquired us-

ing MPRAGE sequence (left) and vNav-MPRAGE sequence (right).
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coincidences (33), detector sensitivity, attenuation, and scatter (34),

and resolution modeling with the point-spread function defined in
Bowen et al. (35).

For each subject, 4 PET volumes were reconstructed: PETorig
(reconstructed with the standard algorithm), PETMC (reconstructed

with the standard algorithm using motion-compensated data),
PETAAR (reconstructed with the AAR algorithm), and PETMaPET

(reconstructed with AAR using motion-compensated data). MR-
based AC was performed in all PET reconstructions. The PET vol-

umes were reconstructed in a 2-pass fashion to eliminate potential
residual attenuation-emission mismatch: the MPRAGE image was

coregistered to the first-pass PETMC volume (using SPM8, 6 degrees
of freedom rigid-body transformation), and the transformation pa-

rameters were used to generate the updated m-maps used for the
second-pass reconstruction for all PET images.

The final reconstructed PET volumes consisted of 153 slices with

256 · 256 voxels, 1.25 · 1.25 · 1.25 mm3 isotropic; this native PET
space was the reference for all analyses. Region-based analyses were

performed with the FreeSurfer-derived anatomic labels segmented
from the coregistered MPRAGE image. For the PETorig and PETAAR,

the inverse of the transformation parameters obtained by coregistering

the PETorig volume to PETMC were used to move the labels into the
PET space (SPM8).

MR Motion Estimation and Compensation

The T1-weighted vNav-MPRAGE sequence was acquired with the

following parameters: echo time (TE), 1.66 ms; repetition time (TR),
2,530 ms; inversion time (TI), 1,100 ms; reconstruction matrix size,

280 · 280 · 256 voxels with voxel size, 1 · 1 · 1 mm3; 4 averages;
total acquisition time, 7 min 23 s. In 3 cases, the following parameters

were used: TE, 1.52 ms; TR, 2,200 ms; reconstruction matrix size,
256 · 256 · 256; total acquisition time, 8 min 24 s. The vNavs are

embedded within the MPRAGE sequence with 8-mm isotropic voxels
in a 256 · 256 · 256 mm field of view and acquisition parameters as

described in Tisdall et al. (31): TE, 5 ms; TR, 11 ms; bandwidth,
4,596 Hz/px. The vNav and registration step (total acquisition and

processing time, 355–475 ms) were inserted between the inversion
pulse and readout train during each TR.

During the vNav-MPRAGE sequence acquisition, the vNav-based
head motion estimates are used to update the MR field of view to

reflect the subject’s movement every repetition time and to reconstruct
the motion-corrected MPRAGE images.

MR-Based AC

MR-based AC was performed as previously described (16). Voxel-
wise linear attenuation coefficient maps (‘‘m-maps’’) were generated

using an SPM8-based approach method. Briefly, the MPRAGE vol-
ume was segmented into 6 tissue classes and independently warped

nonrigidly to a CT-based template. The inverse transformations were
applied to warp the template back into the subject space to generate a

pseudo-CT image that was scaled to PET linear attenuation coeffi-
cients. The m-map of the MR radiofrequency coils, also serving as

the head holder and stationary in the PET space, was added to the head
m-map. The final m-map was blurred with a 4-mm full width at half

maximum gaussian kernel, forward projected, and exponentiated to
yield the final AC factors.

MR-Based PET Motion Compensation

The vNav-based motion estimates were also used to correct the

PET data before image reconstruction (24). Briefly, the motion pa-
rameters (3 translations along and 3 extrinsic rotations about the x, y,

and z [axial] axes; saved on the MR console) were converted to the
PET coordinate system and median-filtered separately with a 10-s

FIGURE 3. PETMaPET reconstructions of AD (top) and FTD (bottom)

subject, with signature hypometabolism patterns of each dementia type.

FIGURE 4. PETorig, PETMC, PETAAR, and PETMaPET images of 2 representative subjects (subject who moved the most, top; subject without much motion,

bottom). Arrows point to most apparent areas in which PETMaPET image is best at resolving anatomical structures observed in high-resolution MR image.
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temporal window; these estimates were used to adjust (per 10-s time

interval) the PET lines of response raw data for MC. The transformed

prompt and random coincidence lines of response data were binned
into sinograms. The sensitivity data were transformed similarly before

generating the normalization sinogram. The radiofrequency coil
was transformed as part of the hardware for sensitivity and AC,

whereas a time-weighted average of the coil attenuation sinograms
was added to the m-maps for scatter estimation and for the final re-

construction. The head m-map was generated only in the MPRAGE
position.

AAR

AAR of the PET data was performed as previously described (30).
Briefly, the anatomic information was incorporated into the image

reconstruction by formulating the image to be reconstructed as a

combination of kernel functions with ana-

tomic features derived from the structural
T1-weighted MPRAGE data. In particular,

the voxels xj of the image X to be recon-
structed were modeled as a linear combina-

tion of kernel functions k,

xj 5 +
k

akk
�
fj; fk

�
where fj and fk are anatomic feature vectors

for pixels j and k, respectively; the features
were derived from pixel intensity values in

the MPRAGE image. This combination of
kernel functions can then be substituted into

the likelihood function, and the coefficients
can be estimated using a maximum-likeli-

hood formulation for image reconstruction.
A patch size of 3 · 3 · 3 voxels, a neighbor-

hood search window of size 7 · 7 · 7 voxels,
and 27 neighboring voxels included per

search were used for the implementation of
the kernel method. Resolution modeling was

not included for this AAR implementation.

Assessment of MR-Assisted Data

Optimization on PET Images

To assess the subjects’ overall motion relative
to each other, a 21 · 21 · 21 voxel (26.25 mm

per edge) cube centered at (50,50,50) voxels in
left–anterior–superior coordinates, or (297.5,

297.5,233.75) mmmeasured from the center
of the PET image field of view, was trans-

formed according to the estimated 6 transfor-
mation parameters at every second. The

Euclidean distances of the vertices before
and after transformation were averaged to

provide a motion magnitude metric. The
motion magnitude was summed over time

to obtain the aggregate motion magnitude
for each subject during the static frame

acquisition.
Gray matter (GM) labels were obtained

from aggregating the FreeSurfer-derived cor-
tical parcellations. To minimize the influence

of biologic variability (especially given our

heterogeneous group of patients), the cortical
regions with preserved metabolism in this

population (the postcentral, precentral, and
pericalcarine regions (36,37)) were combined

into a composite region as a representative GM label. The white
matter (WM) labels were obtained by subtracting the FreeSurfer-

derived WM labels by a FreeSurfer-derived GM label that was di-
lated by 3 voxels.

The changes in signal-to-noise ratio (SNR, defined as the ratio of
the mean GM uptake to the SD of the WM uptake) and GM coefficient

of variation (CV, defined as the ratio of the SD to the mean) were used
to assess the improvement in image quality for static PET images with

and without AAR.
In addition, the contrast between affected hypometabolic regions

and regions with preserved metabolism in the patients (precuneus
and pericalcarine, respectively, for Alzheimer disease [AD]; caudal

anterior cingulate and precentral, respectively, for frontotemporal
lobar degeneration [FTD]) were assessed. The Cohen’s d effect size

(38), defined as

FIGURE 5. CV (A) and SNR (B) values of PETorig, PETMC, PETAAR, and PETMaPET images for all

subjects in composite cortical region.
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d 5
mpreserved 2 maffected

spooled

was used as a metric to indicate the interregion contrast. In the above
equation, mpreserved and maffected denote the voxelwise means, and

spooled denotes the pooled SD, defined as

spooled 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
npreserved 2 1

�
s2preserved 1

�
naffected 2 1

�
s2affected

npreserved 1 naffected 2 2

s

with npreserved and naffected denoting the number of voxels in each re-
gion and s2preserved and s2affected denoting the voxelwise variance. This

metric provides a means to assess the effect size of PET activity dif-

ferences; that is, a larger d indicates a larger effect size and potentially

a higher confidence in discerning the activity differences between

regions. Left-tailed paired t tests were used to assess the significance

of the difference of the mean effect sizes with successive image pro-

cessing across subjects at the P 5 0.05 level.

RESULTS

Qualitative Assessment of Motion and Image Quality

All human subjects moved during the scans but to varying
degrees. The maximum amplitude of motion was 6.1 mm and

10.2�. The displacement curves of 2 representative subjects as well

as the motion magnitude and summed aggregate motion for all

subjects can be found in Supplemental Figures 1–3 (supplemental

materials are available at http://jnm.snmjournals.org).
An example of the images obtained with the standard and vNav-

MPRAGE sequences is shown in Figure 2. On visual inspection,

the morphologic MR images obtained with the vNav-MPRAGE

sequence were of excellent quality without motion artifacts,

whereas ring artifacts can be observed in the other case. The

m-maps and FreeSurfer segmentations and parcellations generated

from the vNav-MPRAGE data were generally accurate.
In all PET reconstructions, qualitatively, the cortical regions with

hypometabolism matched those expected based on clinical pheno-

type and prior reports in literature, with hypometabolism observed

in the parietal cortical regions for AD subjects, and in the frontal

and temporal cortical regions for FTD subjects (Fig. 3). After MC,

the images of the subject who moved the most showed an apparent

improvement in quality, with reduced motion-induced blurring and

better discrimination of the cortical activity. As expected, the

changes between the images before and after MC were less apparent

in the subjects who moved less (Fig. 4). Visually, the PET image

quality substantially improved after AAR.

Assessment of MR-Assisted Data Optimization on

PET Images

In the composite region, the mean CVs across the 20 subjects
decreased from PETorig, PETMC, PETAAR, to PETMaPET: 0.570,

0.554, 0.241, and 0.229 whereas the SNR increased in the same

order: 3.12, 3.21, 4.91, and 5.08. The differences were all significant

at the P 5 0.05 level. The CV decrease and SNR increase with

successive image processing generally held for each individual sub-

ject in the composite region (Fig. 5); averaged across subjects, the

mean CV decrease and mean SNR increase also held for all GM
regions and the WM label (Supplemental Fig. 4). AAR generally
produced images with lower mean GM (22.19% 6 0.94% relative
change) and higher WM (9.00% 6 2.15% relative change) uptake
(likely because resolution modeling was used only for the OSEM
reconstruction and the slower convergence of AAR).
For the differentiation between affected and preserved cortical

regions in dementia subgroups, the Cohen’s d metric indicates in-
creasing effect size as MR-assisted PVEC and MC methods are
applied in succession. When comparing the 18F-FDG uptake be-
tween the precuneus (affected) and pericalcarine (preserved) regions
in the AD subjects (nAD 5 11) between PETorig, PETMC, PETAAR,
and PETMaPET, the mean effect size increased from 0.555, 0.568,
1.21, to 1.25 (Fig. 6A). When comparing the 18F-FDG uptake
between the caudal anterior cingulate (affected) and precentral (pre-
served) regions in the FTD subjects (nFTD 5 8) for the 4 recon-
struction methods PETorig, PETMC, PETAAR, and PETMaPET, the
mean effect size increased from 0.487, 0.524, 0.827, to 0.925
(Fig. 6B). The differences between these means were all significant
at the P 5 0.05 level except for the FTD PETorig and PETMC

comparisons (P 5 0.051).

DISCUSSION

This work aimed to demonstrate that optimized morphologic
MR and metabolic PET data could be acquired efficiently using
an integrated PET/MRI scanner even in the case of the patients
exhibiting large head movements during the scan. For this purpose,
information from the vNav-MPRAGE sequence was used in the
MaPET workflow for PET AC, MC, and AAR.
We have not specifically investigated the impact of MR-AC in

MaPET because the method used in this work (16) has already
been evaluated in a multicenter setting us-
ing data acquired in dementia patients (39).
Qualitatively, the vNav-MPRAGE MR

images had fewer artifacts than those without
the vNavs. Minimal head motion was ob-
served during the 7- to 8-min acquisitions for
most of the patients enrolled in this study,
which made the assessment of the impact of
MC on the reconstructed static PET frames
difficult. In general, this task is also compli-
cated by the variability in subject motion.
Examining the PETAAR and PETMaPET im-
ages for the first subject shown in Figure 4
showed that enforcing the anatomy on the
PET reconstruction alone is not sufficient for
compensating the motion-induced emission–
anatomy mismatch; blurring is still present

FIGURE 6. Cohen’s d values between affected region and preserved region in PETorig, PETMC,

PETAAR, and PETMaPET images for AD subjects (A) and FTD subjects (B).
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in the PETAAR image compared with PETMaPET. This demon-
strated the need to apply MC before PVEC. We expect MC will
have greater impact for longer dynamic PET studies (40).
Although previous AAR studies focused on simulated PET

data and a single subject as a proof of principle, to our knowl-
edge this is the first study examining the image quality
improvement in a group of mainly dementia patients. Qualita-
tively, the PET images reconstructed with AAR were less noisy
than those reconstructed with OSEM. The Cohen’s d metric
used to quantitatively evaluate the improvement in image quality
suggests that the images are indeed of higher quality after
AAR. As noisy images make the human visual object recognition
task more challenging (41), evaluating the AAR images with
reduced noise could potentially improve clinicians’ diagnostic
confidence.
Our study had several limitations. First, the relatively small

number of patients and the group heterogeneity have not allowed us
to assess the impact of MaPET on patient group differences.
Similarly, the impact of MaPET on the clinical diagnosis at an
individual level was not assessed, as that would have required a
blinded study design and a larger group of patients with overlapping
pathology. Second, the relatively low-amplitude motion observed in
the relatively short time interval analyzed prevented us from
thoroughly studying the impact of MC at subject and group levels.
Third, whereas AAR achieves PET noise reduction with emission–
anatomy mismatch (as we previously showed by simulating an
artificial hot lesion that was reconstructed with kernels based on a
lesion-less MR anatomic image (30)), further work is needed to
assess the effect of residual motion-induced emission–anatomy mis-
matches. Finally, the effects of other PVEC methods (such as post-
processing and resolution modeling) in combination with AAR on
PET image quality should also be investigated.

CONCLUSION

In this work, we proposed an efficient approach for MR-assisted
PET data optimization (MaPET) to be used in an integrated PET/
MRI scanner. Specifically, the spatiotemporally correlated data from
a single MR sequence can be used for PET attenuation, motion, and
PVECs. From preliminary analyses of the data acquired in dementia
patients, we demonstrated that high-quality metabolic and morpho-
logic data can be efficiently obtained even in more heavily moving
patients. Optimized MR-based PET data quantification may enable
a more accurate assessment of pathologic changes in dementia and
other brain disorders.

DISCLOSURE

This work was funded by NIH grants 5R01EB014894 and
R21AG056958 and by the U.S. Department of Defense through
the National Defense Science & Engineering Graduate Fellow-
ship. Alexander Drzezga has received funding, research support
as well as speaker and/or consulting fees from Piramal, GE
Healthcare, Siemens, Eli Lilly, and AVID. No other potential con-
flict of interest relevant to this article was reported.

ACKNOWLEDGMENTS

We thank Drs. Paul Wighton, F. Isik Karahanoglu, and Stefano
Pedemonte of the Martinos Center for their help with the vNav-
MPRAGE sequence.

REFERENCES

1. Catana C, Drzezga A, Heiss WD, Rosen BR. PET/MRI for neurologic applica-

tions. J Nucl Med. 2012;53:1916–1925.

2. Herzog H, Pietrzyk U, Shah NJ, Ziemons K. The current state, challenges and

perspectives of MR-PET. Neuroimage. 2010;49:2072–2082.

3. Catana C, Guimaraes AR, Rosen BR. PET and MR imaging: the odd couple or a

match made in heaven? J Nucl Med. 2013;54:815–824.

4. Drzezga A, Barthel H, Minoshima S, Sabri O. Potential clinical applications of

PET/MR imaging in neurodegenerative diseases. J Nucl Med. 2014;55(suppl 2):

47S–55S.

5. Herzog H, Tellmann L, Fulton R, et al. Motion artifact reduction on parametric

PET images of neuroreceptor binding. J Nucl Med. 2005;46:1059–1065.

6. Erlandsson K, Buvat I, Pretorius PH, Thomas BA, Hutton BF. A review of partial

volume correction techniques for emission tomography and their applications in

neurology, cardiology and oncology. Phys Med Biol. 2012;57:R119–R159.

7. Ikari Y, Nishio T, Makishi Y, et al. Head motion evaluation and correction for

PET scans with 18F-FDG in the Japanese Alzheimer’s disease neuroimaging

initiative (J-ADNI) multi-center study. Ann Nucl Med. 2012;26:535–544.

8. Dickerson BC, Bakkour A, Salat DH, et al. The cortical signature of Alzheimer’s

disease: regionally specific cortical thinning relates to symptom severity in very

mild to mild AD dementia and is detectable in asymptomatic amyloid-positive

individuals. Cereb Cortex. 2009;19:497–510.

9. Izquierdo-Garcia D, Catana CMR. Imaging-guided attenuation correction of PET

data in PET/MR imaging. PET Clin. 2016;11:129–149.

10. Hofmann M, Steinke F, Scheel V, et al. MRI-based attenuation correction for

PET/MRI: a novel approach combining pattern recognition and atlas registration.

J Nucl Med. 2008;49:1875–1883.

11. Montandon ML, Zaidi H. Atlas-guided non-uniform attenuation correction in

cerebral 3D PET imaging. Neuroimage. 2005;25:278–286.

12. Berker Y, Franke J, Salomon A, et al. MRI-based attenuation correction for

hybrid PET/MRI systems: a 4-class tissue segmentation technique using a com-

bined ultrashort-echo-time/Dixon MRI sequence. J Nucl Med. 2012;53:796–804.

13. Catana C, van der Kouwe A, Benner T, et al. Toward implementing an MRI-

based PET attenuation-correction method for neurologic studies on the MR-PET

brain prototype. J Nucl Med. 2010;51:1431–1438.

14. Keereman V, Fierens Y, Broux T, De Deene Y, Lonneux M, Vandenberghe S.

MRI-based attenuation correction for PET/MRI using ultrashort echo time se-

quences. J Nucl Med. 2010;51:812–818.

15. Chen KT, Izquierdo-Garcia D, Poynton CB, Chonde DB, Catana C. On the

accuracy and reproducibility of a novel probabilistic atlas-based generation for

calculation of head attenuation maps on integrated PET/MR scanners. Eur J Nucl

Med Mol Imaging. 2017;44:398–407.

16. Izquierdo-Garcia D, Hansen AE, Forster S, et al. An SPM8-based approach for

attenuation correction combining segmentation and nonrigid template formation: ap-

plication to simultaneous PET/MR brain imaging. J Nucl Med. 2014;55:1825–1830.

17. Poynton CB, Chen KT, Chonde DB, et al. Probabilistic atlas-based segmentation

of combined T1-weighted and DUTE MRI for calculation of head attenuation

maps in integrated PET/MRI scanners. Am J Nucl Med Mol Imaging. 2014;4:

160–171.

18. Pilipuf MN, Goble JC, Kassell NF. A noninvasive thermoplastic head immobi-

lization system. Technical note. J Neurosurg. 1995;82:1082–1085.

19. Olesen OV, Sullivan JM, Mulnix T, et al. List-mode PET motion correction using

markerless head tracking: proof-of-concept with scans of human subject. IEEE

Trans Med Imaging. 2013;32:200–209.

20. Montgomery AJ, Thielemans K, Mehta MA, Turkheimer F, Mustafovic S,

Grasby PM. Correction of head movement on PET studies: comparison of meth-

ods. J Nucl Med. 2006;47:1936–1944.

21. Picard Y, Thompson CJ. Motion correction of PET images using multiple acqui-

sition frames. IEEE Trans Med Imaging. 1997;16:137–144.

22. Jin X, Mulnix T, Gallezot JD, Carson RE. Evaluation of motion correction

methods in human brain PET imaging–a simulation study based on human

motion data. Med Phys. 2013;40:102503.

23. Qi J, Huesman RH. Correction of motion in PET using event-based rebinning

method: pitfall and solution [abstract]. J Nucl Med. 2002;43:146P.

24. Catana C, Benner T, van der Kouwe A, et al. MRI-assisted PET motion correc-

tion for neurologic studies in an integrated MR-PET scanner. J Nucl Med.

2011;52:154–161.

25. Rousset OG, Ma Y, Evans AC. Correction for partial volume effects in PET:

principle and validation. J Nucl Med. 1998;39:904–911.
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