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Editorial

The Bayesian brain and cooperative communication 
in schizophrenia

Lena Palaniyappan, MBBS, PhD; Ganesan Venkatasubramanian, MD, PhD

The act of will and the action of the body are not two different states…; 
they do not stand in the relation of cause and effect but are one and the 
same thing…. The action of the body is nothing but the act of will …. 
translated into perception. – Arthur Schopenhauer, 18191

Our social world is an ever-changing milieu in which 
boundless verbal and nonverbal signals are generated by fel-
low humans. To ensure our survival, we must perceive cer-
tain regularities from the complexity that surrounds us. A 
failure to meet this daily challenge may prove costly for 
some; social encounters trigger several psychiatric symp-
toms, while social withdrawal reduces their intensity, at least 
temporarily.2 For example, disorganization (or formal 
thought disorder), one of the central features of schizophre-
nia, presents primarily as a disruption in cooperative com-
munication that occurs in a social context. Though many 
technical advances now allow us to study “socially” interact-
ing agents in the laboratory (for example, see Kingsbury and 
colleagues3), psychiatric symptoms are rarely studied in the 
context of neural mechanisms of social encounters. To tackle 
this challenge, we need empirical tools to study the dynamic 
neural framework of social interaction, starting from a 
2-person perspective. In this editorial, we first present such a 
tool: an emerging “active inference” perspective of coopera-
tive communication between 2 individuals. We then intro-
duce the 2-brain problem of formal thought disorder in 
schizophrenia as an exemplar case of its utility and map 
resulting theoretical expectations to known signs of this con-
struct. Lastly, we highlight several experimental opportun
ities that arise from casting of formal thought disorder in the 
active inference framework.

Brain as a Bayesian organ

One of the important pursuits of clinical neuroscience is to 
explain how computational failures of the brain result in 
symptoms and signs experienced by patients. To get here, we 
need a framework on how the brain is employed to compute 
solutions for the challenges (e.g., recognizing an object or 
talking to a stranger) it purports to solve. One biologically 
plausible unifying hypothesis casts the brain as a Bayesian 

statistical organ whose function is to generate and refine 
models of the hidden properties of the world (i.e., causes and 
consequences) in order to reduce uncertainty4 (Box 1). Ac-
cordingly, the brain’s models of the world are predictions (or 
“priors”) held by neuronal units, while perceptions are infer-
ences that arise from the probability estimations of sensory 
data against models. When the senses convey data that are 
not explained by the held models (“prediction errors”), this 
leads to either further data gathering (e.g., attending to the 
object or acting on the environment) or a model revision to 
reduce further prediction errors. In this framework, actions 
fulfill behavioural predictions; they simply arise from the 
drive to reduce the error between the predicted future (prior 
“expectations”) and current motor states.5 This idea, termed 
“active inference,” provides an algorithm for perceptions and 
actions,6 which, combined with a plausible implementational 
sketch of neural circuits (dynamic causal models; not dis-
cussed here, but see Petzschner and colleagues7 and Limongi 
and colleagues8 for examples), opens the door for parsimoni-
ous mechanistic explanations for psychiatric symptoms.

Precision-driven active inference

To function as a statistical engine, the brain needs to overcome 
2 challenges: model selection and significance detection. First, 
as the sensory world is infinite, it is not plausible to instantly 
scan the entire model space to select a model to fit the incom-
ing data. This is solved by a hierarchical framework of predic-
tion propagation wherein specific model choice is dictated by 
the immediately higher level of predictive representations.9 
For example, when we perceive what is being said by the per-
son speaking to us in a noisy bar (“Would you like one more 
of the same?”), our models are progressively constrained by 
the situation (the bar), the speaker (the bartender who knows 
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Box 1. Definition

The term “Bayesian” refers to the process of assigning probabilities 
based on prior knowledge when interpreting data.
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you by name), the context (having a recently emptied glass), 
and the event (running a tab). Second, many a time, there is 
likely to be a mismatch between our expectations (prior 
models) and sensations (sensory data); this mismatch, termed 
“prediction error,” can be a “chance occurrence” due to inac-
curacies in the data we gathered. The brain, as an optimal 
Bayesian machine, must allow only the “reliable” prediction 
errors to propagate further, and trigger model revision or fur-
ther data acquisition (as these are expensive).

If the sensory data are noisy and highly variable, then any 
information in that data that we did not predict with our 
prior models cannot be trusted. The prediction error trig-
gered from processing these data will be considered to be un-
reliable or less precise (i.e., precision is the inverse of the vari-
ance). We can say that an unreliable prediction error is given 
less importance (or weighting) over the prior predictions, 
and the prior model is retained. Similarly, our prior models 
themselves also have variable degrees of precision; we can-
not always rely on our models. Ultimately, for every encoun-
ter with some form of incoming data, our inferential bias 
toward our models (priors) versus data should be dictated by 
the reliability (or precision) of these 2 sources. In effect, this 
reliability is the learned probability of success of a model 
from previous experiences of deploying the model. To put it 
simply, if the brain is a flawless statistical organ, then any 
“significant effect” that it detects from the gathered data 
must be based on both the magnitude of the signal (deviation 
of the data from prior model) and the reliability (inverse vari-
ance) of both the data and the model.

Several lines of evidence indicate that precision is encoded 
by the brain (arguably, at the synaptic level) and is used to 
assign weight to sensory data (in the form of prediction 
errors as they ascend) as well as priors (in the form of predic-
tions that descend).10,11 At times when our predictions are im-
precise, for example, if a new bartender with an accent is 
speaking to us in a noisy environment, we either ask him to 
repeat what he said, move closer, tilt our head and pay more 
attention to his voice, or stubbornly stick to our expectations. 
In other words, in a volatile world where model revisions are 
often required, we either commit neural resources to improve 
the precision of sensory data (attentional selection12) or inflate 
the emphasis toward our predictions (confidence13). A similar 
process also operates for motor behaviour; when the conse-
quences of a planned act are highly variable, we can still bias 
toward selecting an action by increasing precision afforded to 
a chosen policy or plan (i.e., increased commitment or moti-
vation14). Note that this line of conceptualization brings us 
close to Schopenhauer’s assertion: action is nothing, but will 
translates to perception. This statement indeed foresees the 
perception–action loop articulated by active inference 
whereby action can be seen as the realization of motivated 
motor prediction.

The precision-driven active inference framework has been 
invoked in multiple transdiagnostic studies, including some 
published in JPN,15,16 to explain abnormalities in perception,17 
interoception18 and emotional expression,19 to name a few. 
Here, we theoretically expand its application to disrupted com-
munication in psychosis as a clinical phenomenon of interest.

Active inference and cooperative communication

The basic premise of active inference is that our interactions 
with the world are attempts to reduce the uncertainty about the 
models we hold of it. In our social world, the most critical un-
certainty is the mental state of those we interact with. Speech is 
a crucial act by which we interact with our social world. The 
process of engaging in a discourse with another person in-
volves both perception and action; this can be understood as an 
active inference process jointly deployed by the speakers to de-
crease their respective uncertainties about each other’s mental 
state.20 We achieve this by asking and answering questions 
directly to infer each other’s “model of the world.”21

For cooperative communication to occur, the 2 brains’ causal 
models and expectations should have a certain degree of align-
ment22,23 (see also Kingsbury and colleagues24). Language, by 
its very nature, provides these shared tools at several levels of 
the hierarchical priors (phonetics, semantics, syntax).25 Other 
features, such as culture, shared identity and common context, 
also provide higher-level alignment for shared message pass-
ing.26 This sort of prior alignment is said to be species-specific 
and adaptive, making cooperative communication less 
demanding and more likely to occur in our social world.20 

Brown and Kuperberg argue that predictive processes oper-
ate hierarchically across 3 levels in the generative model of lan-
guage — semantic selection, syntactic construction and phono-
logical articulation.9 Thus, higher-order priors (e.g., subject of 
interest to be discussed) hierarchically constrain the choice of 
downstream action sequences (e.g., ideas, sentences, words) to 
achieve the desired outcome of a social discourse. The hier
archical generative process is subject to internal (comparing the 
lower-level selections against the discourse plan and the mes-
sage, to make changes as we speak) and external monitoring 
(comparing intended and achieved perceptual consequences of 
the output) at each level. Once a discourse is initiated, the fur-
ther choice of messages and the structure and the length of 
responses depend on this self-monitoring feedback from articu-
lation as well as the feedback from the listener (other monitor-
ing). Both the verbal and nonverbal outputs from the self and 
the other person are crucial for this feedback process.

But what prompts a change in our planned discourse? Our 
individual beliefs (probability estimates) about the most socially 
valuable message choice tune the commitment placed on our 
discourse plan, and this in turn affects the precision afforded to 
the syntactic, lexical and phonetic choices down the hierarchy 
that we employ to convey the message (propagation of preci-
sion). Sufficiently precise priors at each level are required for the 
discourse not to drift on the basis of incoming cues; this also 
considerably increases the speed of action selection and imple-
mentation (i.e., winning combination chosen at an optimal 
psychomotor speed; see Parr and colleagues27 for limb move-
ments). Through precision modulation, we afford sufficient 
commitment to the ongoing discourse plan, thus attenuating the 
relative impact of the sensory feedback. When the other person 
generates sufficiently precise output (for the speaker, this is 
feedback) that overcomes this commitment, we revise the on
going speech production (e.g., changing the topic when we 
detect a reliable sign of displeasure).
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In summary, cooperative human communication fits well 
with the active inference algorithm. Two speakers engage in a 
discourse to infer each other’s mental state, thus reducing the un-
certainty about each other. Based on their probabilistic estimates 
(beliefs), they choose messages, discourse structure, and lexical 
choices with maximum likelihood to serve the goal of “reverse 
inferring” the other person’s mental state from the expected 
responses. The top–down conditional dependence of the subpro-
cesses means that if the goal to infer the other person’s mental 
state is imprecise, this reduces the precision of message selection 
and the implemented discourse plan, as we discuss below.

Thought and language disorder in schizophrenia

Traditionally, linguistic abnormalities in schizophrenia have 
been considered as a part of a notable symptom cluster often 
termed “formal thought disorder” (FTD) or “disorganization,” 
while later the emphasis shifted to “speech disorder.”28 These 
debates arise from a “Cartesian” approach that sees language as 
merely an expressive system that encodes an independently 
constituted thought process. Recent developments in generative 
linguistics have emphasized an interactive interface between 
thought and language; in this Un-Cartesian approach, language 
and thought are seen as indissociable;29 this approach eschews 
the thought versus language versus speech disorder problem in 
understanding schizophrenia.30 When extending to the thought 
versus speech disorder issue in schizophrenia, the Un-Cartesian 
approach is also compatible with Schopenhauer (will v. act) and 
the active inference framework (prediction v. behaviour).

For some, FTD is essentially a 2-brain problem, and schizo-
phrenia is primarily a disorder of communication.31,32 Dis-
rupted speech arises from the speaker using ideas, words and 
phrases in such a way that their meanings are not socially 
shared.32 Several psychotic symptoms can be traced back to 
how the patient employs language to communicate (delusions, 

hallucinations).33 Nevertheless, unlike discrete language disor-
ders such as aphasia, the hierarchical representations that form 
linguistic structure are affected in a reversed gradient.34 In 
schizophrenia, the pragmatics are affected more than semantic 
and syntactic levels, while the phonemic choices are mostly un-
affected.34,35 Cohesive ties in a discourse are not preserved 
(positive FTD: distractibility, tangentiality, derailment, peculiar 
word choices) and verbal productivity diverges from context
ual requirements (negative FTD: reduced speech, weakened 
goal, perseveration). These communication deficits play a crit
ical role in long-term functional deficits.36,37

In an attempt to explain language comprehension and pro-
duction abnormalities in schizophrenia, Brown and Kuperberg 
hypothesized “a breakdown of generative circuits linking high-
level message representations and lexical representations’’ and a 
failure of the time-sensitive predictive processing (whereby 
priors are accessible only after the bottom–up inputs are fully 
accessed) as the basis of positive FTD in schizophrenia.9 We ex-
tend these ideas to accommodate the social context of normal 
discourse (i.e., the 2-brain problem). In placing emphasis on 
2 brains rather than 1 brain, we underscore that the neural pro-
cesses pertaining to both individuals partaking in a conversation 
influence the “organization” or coherence. Thus, the processes 
that lead to verbal disorganization or FTD are best studied with 
both “brains” considered together, rather than seeking individ-
ual brain–symptom correlations as we practise at present.

An active inference account of discourse in 
schizophrenia

Several lines of evidence argue for a deficiency in precision 
modulation in schizophrenia.38,39 Within the hierarchical gener-
ative models of cooperative communication, we propose that a 
gradient of a precision modulation deficit affecting the highest 
levels of priors exists in patients with schizophrenia (Figure 1). 

Fig. 1. A gradient of a precision modulation deficit affecting the highest levels of priors in schizophrenia is hypothesized to result in speech 
disturbances in social settings. When demands arise, patients cannot afford increased precision to their higher-order “adaptive” priors. When 
engaging a second person, this imprecision presents as a failure of commitment to a discourse plan (or narrative) with low confidence on the 
message choice that increases the likelihood of frequent shifts in conversational goal, messages and speech structure.

Discourse = mutual reduction
of uncertainty in 2 brains

n

Precision weighting

at e
ach level

Adaptive priors

Narrative

Sentences

Words

Sounds

Incoming
self/other

data

What is he
thinking?

What is she
thinking?

H
ie

ra
rc

hi
ca

l
ge

ne
ra

tio
n 

of
pr

ed
ic

tio
ns

H ge p

S
p

e
ech in psycho

s
is



The Bayesian brain and cooperative communication in schizophrenia

	 J Psychiatry Neurosci 2022;47(1)	 E51

When demands arise, patients cannot afford increased preci-
sion to their higher-order priors. When engaging a second per-
son, this imprecision presents as a failure of commitment to a 
discourse plan40 with low confidence on the message choice 
(ambivalence). This state of low precision of higher-order pri-
ors makes all lower-level models equally likely for selection;41 
this increases the likelihood of frequent shifts in conversational 
goal, messages and speech structure (loosened associations: 
derailment, incoherence).

The presence of imprecise priors at various higher levels of 
active inference considerably reduces the speed of message 
selection (reduced spontaneity) and implementation (reduced 
rate of speech). The relatively low precision of priors compared 
with sensory data enables external cues to repeatedly redirect 
the discourse (distractibility). The between-speaker asymmetry 
in the precision of shared priors, and the unpredictable shifts in 
the discourse increases the interlocutor’s uncertainty about the 
speaker’s mental state, who loses the conversational rapport 
(and is left with a “Praecox feeling”42). The external cues of this 
uncertainty are available to the speaker, but owing to the diffi-
culty in precision affordance to the higher-order priors, the 
speaker presses on with the same imprecise stream of com
munication (circumstantiality, empty speech with little infor-
mation). Nevertheless, as the precision afforded to lower-level 
priors is relatively preserved, this leads to word-level errors 
(repetitions, perseveration, persisting with peculiar word 
choices) and vague references. Further, the imbalance in the 
dyad’s relative precisions (of higher-order priors) also pre-
cludes the speakers from taking appropriate turns,23 leading to 
conversational failures. This precision-weighting imbalance 
also means that, after a few exchanges, the information flow be-
comes lopsided. Such asymmetric exchanges arising from non-
aligned priors lead to the conclusion that the patient did not in-
fer the mental state of the other speaker.43,44 In due course, the 
expectation that a social discourse can assist in inferring the 
other person’s mental state diminishes greatly, as it turns out to 
be a costly exercise with low returns. This is especially likely if 
the other person also has imprecise conversational priors.45 
One’s estimated probability of causally influencing the immedi-
ate social world reduces over time, driving down any further 
active inference via speech/action (diminished expressivity, 
negative symptoms46 over the longer time course).

How does this imprecision of priors come about? First, pre-
cise priors emerge when large amounts of data have been sam-
pled, with reinforcement of choices (termed “confidence accu-
mulation” in decisional neuroscience47); for language, this is a 
developmental challenge,48 which when not met, increases the 
chance of priors to operate with lower precision. Second, 
Adams and colleagues49 argue a primary role for the glutama-
tergic system in maintaining synaptic gain and modulating 
precision; several empirical observations support a role for 
glutamatergic hypofunction in schizophrenia.50 Third, it is pos-
sible that patients perceive the social environment to be more 
volatile,51 thus estimating the consequences of their action 
plans to be less reliable than others. This can also arise from 
developmental adversities (trauma, bullying52) or experiences 
of significant shifts in social contexts (as in immigration). 
While the associations we make here are currently speculative, 

experimental determination of precision weighting of different 
levels of priors during social conversation is entirely plausible, 
in line with similar studies in perceptual processing.53

Recent observations indicate that noradrenergic neuro
modulation may affect the precision of our priors;54 thus, 
stressful states where adrenergic arousal is high may reduce 
reliance on (i.e., precision weighting of) priors. In contrast, 
dopamine may play a crucial role in precision weighting of 
prediction errors, rather than coding predictions per se,55 
while nondopaminergic modulators such as acetylcholine 
may affect the weighting of higher-order priors.56,57 Thus, a 
hyperdopaminergic state (as seen in some patients with psy-
chosis58) may increase the rate at which the speech production 
priors are revised, further adding to their uncertainty. D2-
blockers may reduce error-induced shifts in the discourse 
plan, correcting the positive FTD features, but cannot improve 
the (nondopaminergically mediated) precision of the higher-
order discourse plan per se, and the eventual gravitation 
toward reduced speech output (negative FTD), as seen in the 
long term. More broadly, neuromodulatory aberrations in the 
higher-level association cortex result in excitation/inhibition 
imbalance that underwrites precision modulation38 as well as 
FTD59 in schizophrenia. Specific brain regions, such as anter
ior insula,60 dorsal anterior cingulate cortex61 and hippocam-
pus,62 appear to play a key part in precision-weighting mech
anisms; the course of FTD may relate to the volumetric63 and 
connectivity64,65 changes of these regions in schizophrenia. It is 
important to note that irrespective of the location of lesions, 
the hierarchical precision-weighting framework enables prop-
agation of failures at 1 level to the other levels of speech gen-
eration (see Palaniyappan66 for further discussion on the 
broader systems theory notion in psychosis).

In summary, FTD can be cast as a problem of precision 
modulation of higher-order priors during dyadic social 
encounters. This view concurs with that of Brown and 
Kuperberg,9 who also proposed a role for imprecise priors 
(message-level predictions) and the resulting over-
adjustment of the production plan. Our extension empha-
sizes a mismatch in the precision of shared priors in the 
speaker and listener as a crucial component of communica-
tion failure, and an inability to afford precision to discourse 
plans when demands arise (e.g., in a volatile social context) 
as a critical deficit in schizophrenia. Our model explains both 
positive and negative FTD and accommodates their trajectory 
and treatment response.

Putting ideas to test

The active inference account of communication deficits pre-
sented here casts many elements of FTD as a 2-brain prob-
lem of social inference. As such, scientific scrutiny of this 
theory mandates ecologically valid experiments to build 
empirical evidence. Psycholinguistic studies in psychosis 
generally focus on lexical or sentence-level processing rather 
than dialogic interactions; novel insights on communication 
emerge when natural conversation is studied, even at a 
single-brain level (for example see Castellucci and col-
leagues67). Second-person paradigms (e.g., hyperscanning to 
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capture interpersonal interactions68 and brain–computer 
interfaces69) offer tantalizing possibilities in this regard. In-
deed, emerging insights on “interbrain synchrony” of 
neural dynamics from healthy individuals have opened the 
door for second-person neuroscience in psychiatry.70 Many 
applications for investigating FTD can emerge from the ad-
vances being made in setting up (e.g., leader–follower ex-
periments71), recording (e.g., functional near-infrared spec-
troscopy) and calculating (e.g., Granger causal models) 
interbrain dynamics, some involving more than 2 interact-
ing agents in a social context.24

Parameters of precision modulation can be obtained from 
readily interpretable behavioural readouts such as eye move-
ments (for example see Mirza and colleagues72); such readouts 
can be acquired in conjunction with speech measures as a first 
step to test general propositions linking precision modulation 
and FTD. While concepts such as commitment to a discourse 
plan do not have direct measures, the emerging application of 
Natural Language Processing is already providing several in
direct means to estimate parameters of relevance (see Voleti 
and colleagues73 for a detailed review). This will enable us to 
acquire speech-derived measures of precision from snapshots 
of social discourse. Controlled experiments on certain neuro-
physiological phenomena related to predictive processing (e.g., 
electroencephalography/magnetoencephalography correlates 
of corollary discharge, mismatch negativity, certain evoked re-
sponse potentials such as N400) can provide measures of “syn-
aptic gain” reflecting the physiology of precision modulation.49 
Further, using perturb-and-measure neuromodulation tech-
niques like transcranial direct current stimulation and focal 
transcranial magnetic stimulation, we can test brain-network-
level specificity for these hypotheses. Such studies have been 
providing interesting leads to understand symptoms such as 
auditory verbal hallucinations in schizophrenia,74 and can also 

help uncover specific neurostimulation targets for FTD. The 
conceptual relationship between the precision of action priors 
and motivation raises the possibility that social incentives may 
nurture the physiologic markers of “synaptic gain” (represent-
ing precision) and ultimately, verbal productivity itself.75 Ap-
pealing to precision dynamics also helps to explain why certain 
therapeutic approaches (e.g., insight-oriented therapies, group 
therapies) that demand one to infer and attune with another 
person’s priors repeatedly fail in schizophrenia. Following this 
line of investigation may potentially offer new therapeutic 
speech and language approaches in psychosis.

Though active inference has provided biologically grounded 
arguments to blur the boundary between “willing” and “act-
ing” since the time of Schopenhauer, in its current edition, 
active inference is still a theoretical framework (Box 2). At 
times, this framework has been criticized as being too commit-
ted to the statistical notions of brain function, being somewhat 
abductive and, to some extent, dismissive of more conventional 
domain-specific neuropsychological concepts.78–80 While its 
simplicity and physiologic plausibility have propelled its wide 
applications,81 it is necessary to consider that empirical evi-
dence is still lacking for many of its premises; for example, 
“synaptic gain represents precision,” “neurons maintain repre-
sentational codes for various aspects of the brain’s models of 
the world,” “precision can be amplified at a subpersonal level,” 
and “compensatory changes to balance precision weights occur 
in pathological states” (see Keller and colleagues82 for a review 
of evidence on neural implementation). Nevertheless, this heur
istic has been immensely useful for mapping observed psycho-
pathology to brain functions. In the case of FTD, which con
tinues to elude neurobiological explanation, it offers a 
principled entry into the “dark matter” of social neuroscience.83
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Box 2. The fallacy of brain as a computer

Throughout this editorial, we take the stance of considering the brain as 
a statistical engine. This is in keeping with the theoretical perspective of 
active inference, wherein the neuronal precision-weighting processes 
are described as “subpersonal,”20 to distinguish them from the more 
conventional, affect-laden descriptions of these terms (e.g., “confidence” 
or “motivation” is described as precision afforded to higher-order priors 
such as an action policy). Nevertheless, the functional consequences 
implied by these terms are comparable. For instance, daily life is replete 
with examples where affordance of motivation is necessary for actions 
with highly variable consequences (e.g., going to the gym, buying lottery 
tickets). One objection to this “subpersonal” stance is that brains do not 
compute or intend; it is the person with the brain who does such 
computations and holds intentions. The mereological fallacy here is that 
we ascribe functions of the whole (person) to its parts (brains or 
neuronal units). Although detailed counterpoints against this objection 
can be found elsewhere,76 it is important to ask when, if ever, can we 
attribute the function of a whole to one of its parts. We can say “a car 
moves” and “a wheel moves,” but we cannot say “a steering moves.” 
We can also say “I drive a car,” but we cannot convey much by saying “I 
drive a wheel.” In other words, for certain qualified functions, the use of 
intentional predicates for certain parts is agreeable. Furthermore, if we 
consider human intention as a socially emergent phenomenon,77 it 
cannot be ascribed to any single part (e.g., a neuronal unit) or even a 
single person. In our view, these issues do not diminish the utility of the 
proposal made here; nevertheless, they pose a far from trivial challenge 
when applied to the philosophy of psychiatric practice.
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