TABLE 1.
Antibacterial and Immunomodulatory Effects of MSCs and MSC-Exos in in vitro and in vivo studies.
Study type | Source of MSC | Outcomes | References |
In vivo: Mouse and dog models of chronic infections |
AT-MSC | ↑ Cathelicidin secretion ↑ Clearance of bacteria ↑ Monocyte recruitment ↑ M2 phenotype ↑ Neutrophil bacterial Phagocytosis |
Johnson et al., 2017 |
In vivo: Murine Cystic fibrosis |
BM-MSC, AT-MSC | ↑ Enhance antibiotic sensitivity ↑ Capacity to kill bacteria (Pseudomonas aeruginosa, Staphylococcus aureus) ↑ LL-37 |
Sutton et al., 2017 |
In vitro: Bacterial growth in Equine model |
BM-MSC, AT-MSC, EM-MSC | ↓ Growth of E. coli ↑ Lipocalin-2 expression ↑ MCP-1, IL-6, IL-8, and CCL5 |
Cortés-Araya et al., 2018 |
In vitro and In vivo: Murine sepsis model |
BM-MSC | ↓ Genes expression of apoptosis ↓ Genes expression of Pro-inflammatory cytokine ↑ Antibacterial peptides ↑ Anti-inflammatory cytokines ↑ Animal survival rates ↑ Bacterial clearance (Staphylococcal enterotoxin B) |
Saeedi et al., 2019 |
In vitro: Chronic skin wounds in Equine model |
PB-MSC | ↓ Growth of E. coli and S. aureus biofilms ↑ Cystatin C, elafin, lipocalin, cthelicidin |
Harman et al., 2017 |
Ex vivo: Acute Lung Injury in Mice |
HU-MSC | ↑ Keratinocyte growth factor (KGF) ↓ Influx of neutrophils ↓ Lung protein permeability ↓ Pulmonary edema |
Zhu et al., 2014 |
In vivo: Chronic inflammation (Staphylococcus aureus) of the ovaries in mice |
BM-MSC | ↓ Leukocyte infiltration in ovaries ↓ Number of atretic follicles ↑ Ovary morphological parameters ↓ Apoptotic oocytes ↑ Pregnancy rate |
Volkova et al., 2017 |
In vivo: Chronic salpingitis (E. coli) model in rabbits |
WJ-MSC | ↓ TNF-α ↑ Oviductal glycoprotein ↑ Repaired the structure of the tubal epithelium ↑ Pregnancy rates |
Li et al., 2017 |
In vivo: Chronic salpingitis (Chlamydia trachomatis) murine model |
hUC-MSC | ↓ Macrophage infiltration ↑ IL-10 ↓ FT cell apoptosis (Caspase-3) ↑ Pregnancy rate |
Liao et al., 2019 |
In vitro: Human Fetal Liver |
FL-MSC-Exos | ↓ Proliferation, activation, and cytotoxicity of NK cells via TGFb |
Fan et al., 2019 |
In vivo: Intrauterine adhesions in a female rat model |
UC-MSCs-EVs | ↓TNF-α, ↓TGF-β ↓IL-1, ↓IL-6 ↓RUNX2, ↓Fibrosis ↓collagen-I ↓VEGF ↓IUA |
Ebrahim et al., 2018 |
In vivo: Premature ovarian insufficiency model mice |
hU-MSC-Exos | ↑Restored ovarian phenotype and function ↑ovarian cells proliferation ↑exosomal miR-17-5P ↓SIRT7 expression |
Ding et al., 2020 |
In vitro: inflammation in endometrial cells of equine models |
A-MSC- MVs | ↓Apoptosis rate ↓Pro-inflammatory gene expression ↓Pro-inflammatory cytokines secretion |
Perrini et al., 2016 |
Ex vivo: Lung injury models in mice |
BM-MSC-EV | ↑M2 macrophage marker expression ↑Phagocytic macrophage Phenotype ↑Mitochondrial transfer to macrophage ↓Inflammation and lung injury |
Morrison et al., 2017 |
In vitro: Asthma in human |
BM-MSC-Exos | ↑IL-10 ↑TGF-β1 ↑Immunosuppression capacity of Tregs |
Du et al., 2017 |
MSC, mesenchymal stem cell; AT-MSC, adipose tissue-MSC; HU-MSC, human-MSC; BM-MSC, bone marrow-MSC; EM-MSC, endometrium-MSC; PB-MSC, peripheral blood-MSC; FL-MSC, fetal liver-MSC; WJ-MSC, wharton’s jelly; hUC-MSC, human umbilical cord-MSC; A-MSC, amniotic-MSC; MCP-1, monocyte chemoattractant protein-1; CCL5, chemokine ligand-5; FT, Fallopian tube; IUAs, intrauterine adhesions.