
����������
�������

Citation: Rubio-Armendáriz, C.;

Alejandro-Vega, S.; Paz-Montelongo,

S.; Gutiérrez-Fernández, Á.J.;

Carrascosa-Iruzubieta, C.J.;

Hardisson-de la Torre, A.

Microplastics as Emerging Food

Contaminants: A Challenge for Food

Safety. Int. J. Environ. Res. Public

Health 2022, 19, 1174. https://

doi.org/10.3390/ijerph19031174

Academic Editors: William A.

Toscano and Paul B. Tchounwou

Received: 21 November 2021

Accepted: 15 January 2022

Published: 21 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

International  Journal  of

Environmental Research

and Public Health

Review

Microplastics as Emerging Food Contaminants: A Challenge for
Food Safety
Carmen Rubio-Armendáriz 1,* , Samuel Alejandro-Vega 1 , Soraya Paz-Montelongo 1,
Ángel J. Gutiérrez-Fernández 1 , Conrado J. Carrascosa-Iruzubieta 1,2 and Arturo Hardisson-de la Torre 1

1 Grupo de Investigación en Toxicología Alimentaria y Ambiental, Universidad de La Laguna (ULL),
38200 San Cristóbal de La Laguna, Spain; alu0100992397@ull.edu.es (S.A.-V.); spazmont@ull.edu.es (S.P.-M.);
ajguti@ull.edu.es (Á.J.G.-F.); conrado.carrascosa@ulpgc.es (C.J.C.-I.); atorre@ull.edu.es (A.H.-d.l.T.)

2 Departamento de Patología Animal, Producción Animal, Bromatología y Tecnología de los Alimentos,
Universidad de Las Palmas de Gran Canaria (ULPGC), 35001 Las Palmas de Gran Canaria, Spain

* Correspondence: crubio@ull.edu.es

Abstract: Microplastics (MPs) have been identified as emerging environmental pollutants classified
as primary or secondary based on their source. Composition, shape, size, and colour, among other
characteristics, are associated with their capacity to access the food chain and their risks. While the
environmental impact of MPs has received much attention, the risks for humans derived from their
dietary exposure have not been yet assessed. Several institutions and researchers support that the
current knowledge does not supply solid data to complete a solid risk characterization of dietary
MPs. The aim of this paper is to review the current knowledge about MPs in foods and to discuss
the challenges and gaps for a risk analysis. The presence of MPs in food and beverages has been
worldwide observed, but most authors considered the current data to be not only insufficient but
of questionable quality mainly because of the outstanding lack of consensus about a standardized
quantifying method and a unified nomenclature. Drinking water, crustaceans/molluscs, fish, and
salt have been identified as relevant dietary sources of MPs for humans by most published studies.
The hazard characterization presents several gaps concerning the knowledge of the toxicokinetic,
toxicodynamic, and toxicity of MPs in humans that impede the estimation of food safety standards
based on risk. This review provides a tentative exposure assessment based on the levels of MPs
published for drinking water, crustaceans and molluscs, fish, and salt and using the mean European
dietary consumption estimates. The intake of 2 L/day of water, 70.68 g/day of crustaceans/molluscs,
70.68 g/day of fish, and 9.4 g/day of salt would generate a maximum exposure to 33,626, 212.04,
409.94 and 6.40 particles of MPs/day, respectively. The inexistence of reference values to evaluate the
MPs dietary intake prevents the dietary MPs risk characterization and therefore the management
of this risk. Scientists and Food Safety Authorities face several challenges but also opportunities
associated to the occurrence of MPs in foods. More research on the MPs characterization and
exposure is needed bearing in mind that any future risk assessment report should involve a total
diet perspective.

Keywords: microplastics; dietary MPs; risk analysis; hazard identification; hazard characterization;
exposure assessment; risk characterization

1. Introduction

Microplastics (MPs) have been identified as emerging environmental pollutants spe-
cially affecting the marine ecosystem, but they should also be considered as a growing
food contaminant. Between five and thirteen tons of plastic (1.5–4% of the total global
production) reach the marine ecosystems every year [1]. Furthermore, MPs also pose a
growing risk for terrestrial ecosystems, as MPs have also been detected in farming soils [2].
Recently, the prevention measures against the spread of the COVID-19 virus have been
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contributing to an increase of the plastic waste’s accumulation, as protective clothing,
accessories, masks, and additional plastic containers and bags are single use [3–5].

Primary MPs are made to be of this size and are intentionally added to commercial
products, such as personal hygiene products and textile fibres, among others. They account
for a small percentage of the total of MPs present in the oceans and seas, but sewage
has been identified as the main source because purification systems do not seem to be
able to remove them. The prevention of the environmental impact of primary MPs is
simple. In fact, the EU, following the recommendations of the European Chemicals Agency
(ECHA) [6], has started a process to limit the use of these materials, and industries have
applied voluntary steps in this regard [7].

In 2017, the European Commission (EC) asked ECHA to evaluate the existing scientific
evidence with the aim of establishing, at a European level, legal measures concerning the
intentional addition of MPs in industrial production processes. In January 2019, ECHA
proposed far-reaching restrictions about the use of MPs in products commercialized in
the EU to minimize their release into the environment. The EC is also considering other
options as part of its Plastic Strategy and the new circular economy action plan [6].

Secondary MPs come from the fragmentation of larger-sized plastics exposed to UV
light, thermal degradation, thermo oxidative degradation, mechanic abrasion, biodegrada-
tion, and hydrolysis [8]. There are many sources of secondary MPs, but fishing equipment,
sewage, plastic bags, containers, industrial waste, textiles, and tyres are worth mentioning.

MPs are made from a wide variety of polymers, but the most abundant are polyethy-
lene (PE), polypropylene (PP), polyvinyl chloride (PVC), polystyrene (PS), polyethylene
terephthalate (PET), and polyurethane (PU) [9,10]. Medical face masks can be manufactured
from different nanofibre and/or microfibre polymeric materials, such as polypropylene
(PP), polyurethane (PU), polyacrylonitrile (PAN), polystyrene (PS), polycarbonate (PC),
polyethylene (PE), or polyester (PES) [11–13] (Annex 1). However, the emerging of new
materials, such as Tritan, that look for the solution of different technological issues should
also be considered in future research, as an increase of their use is expected [14].

Furthermore, the morphology of MPs fragments is highly diverse, including fibres,
microbeads, films, foams, pellets, etc. (Figure 1).
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In the marine ecosystem, MPs morphology, abundance, size, and density, among other
variables, seem to affect the bioavailability of the MPs uptake by the zooplankton and
therefore both the biomagnification process and the transfer between trophic levels [16,17].
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Current literature suggests that most marine organisms are at risk of interacting with
MPs [18–22].

While the environmental impact of MPs has received much attention from the scientific
community, regulators, and society in general, the health risk for humans derived from
dietary exposure to MPs has not been assessed to date [23–28]. There is a persistent and
considerable lack of knowledge on the major additives of concern that are used in plastic
industry, on their fate once microplastics are disposed into the environment, and on their
consequent effects on human health [24]. In 2019, Cox et al. [29] concluded that despite
increasing evidence that MPs contaminate a large variety of food and beverages in addition
to outdoor and indoor environments and the possibility of deleterious effects on human
health following ingestion and/or inhalation, an investigation into the cumulative human
exposure to MPs has not been conducted [29].

The toxicity of MPs needs to be considered not only the one from their moieties, even
though most of the MPs intake is excreted (>90%), as only the particles smaller than 150
µm may translocate across the gut epithelium. [30] However, there is a great knowledge
gap about the MPs health risk. It has been reported that there is potential immunotoxicity
through immunosuppression and immune activation, disruption of the genetic expression
of oxidative stress control, and activation the E2 (Nrf) nuclear factor expression, among
others. [28,30].

Institutions, such as the European Food Safety Authority (EFSA) or the Spanish
Food Safety and Nutrition Agency (AESAN), among others, affirm that with the avail-
able knowledge and data, the basis to make a risk characterization of MPs is not strong
enough [2,28,30–33]. The growing awareness of this problem has led to several initia-
tives and projects even within the Horizon 2020 European program, including Imptox,
Plasticsfate, Plasticsheal, and Polyrisk [34–37].

Since MPs entail potential risks to human health when ingested, the presence of MPs
in foods and the magnitude of the dietary intake should be investigated. Therefore, the aim
of this paper is not only to revise the current knowledge, knowledge gaps, and challenges
about dietary MPs but also to assess them following the four steps of the risk analysis
method concerning the dietary exposure from their main dietary sources.

2. Materials and Methods

Web of Science, PubMed, and Scopus were used to search those papers published
from 2011 to 2021 related to the abundance, sources, and analytical methods of MPs in
food and drinking water as well as dietary exposure studies. The keywords used were as
follows: microplastics, nanoplastics, microplastic risk assessment, microplastic exposure
assessment, microplastic hazard characterization, microplastic health, microplastic health
effects, microplastic hazard identification, microplastic risk characterization, microplastic
detection method, microplastic food, microplastic fish, microplastic salt, microplastic water,
microplastic bivalves, and microplastic crustacean. Only the papers from first quartile or
official sources and suitable information were selected.

The exposure assessment was performed using the Equation (1). MPs concentrations
in the different food categories (water, fish, molluscs and crustaceans, and salt, among
others) reported in the revised literature were used. The consumption portions used
for these food categories are those published by EFSA, Eurobarometer for the European
Market Observatory for Fisheries and Aquaculture Products (EUMOFA), and the European
Commission [38–40].

EDI = MPs concentration
[

particles
g

]
·Daily ration

[
g

day

]
(1)

Equation used to calculate the Estimated Daily Intake.
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3. Results

A total of 101 references were selected, and among them, eight were official reports
about microplastics. All revised references that are not scientific reports from official bodies
were included in the Q1. Nineteen references have as their main issue the MPs pollution,
44 the occurrence of MPs in different food matrix, 24 were mainly about MPs’ toxicity in
animals, 5 were about analytical method, and 1 mainly referred to challenges about MPs.
From them, 74 were used for the results section.

There is a great lack of knowledge about the risk characterization of MPs as a growing
food hazard. However, a few steps forward have been taken thanks to the application of
the four-step risk assessment methodology, in other words, MPs hazard identification, the
MPs hazard characterization, MPs exposure assessment, and MPs risk characterization.

Hazard identification is the first step in risk assessment and involves the identifica-
tion of those biological, chemical, and physical agents capable of causing adverse health
effects [41]. MPs are considered emerging food hazards that pose growing challenges and
opportunities for researchers. Many studies have identified the presence of MPs in food and
beverages, but the current available data could be considered not only insufficient but also
of questionable quality. Even though Fourier Transform Infrared Spectroscopy (FTIR) is the
most widely used detection method, the absence of consensus about unified nomenclature
and a standardized quantifying method, as other techniques, such as Raman Spectroscopy
or Thermo-extraction and desorption (TED) GC/MS, are also used [42–45], affects the
quality of the data. The need of a standardized pre-treatment method for each matrix and
the development of new ones for the study of new matrices to be able to accomplish a
global dietary exposure assessment is also a great challenge. [42,44]

Fish [46–48], crustaceans and molluscs [49–51], drinking water [52,53], and salt are
the main food categories with MPs occurrence data reports (Tables 1–4). According to
Danapoulos et al., most studies identified MPs contamination in seafood and reported
MPs content <1 MPs/g. These authors reported that molluscs collected off the coasts
of Asia were the most heavily contaminated (0−10.5 MPs/g), followed by crustaceans
(0.1–8.6 MPs/g) and fish (0–2.9 MPs/g) [54]. In 2021, Jin et al. [55] demonstrated that
aquatic food products (fish and bivalves) have a wide range of MPs levels (0–10.5 items/g
for bivalves and 0–20 items/individual for fish). These same authors reported that drink-
ing water and salt are also a pathway of MPs exposure to humans, with concentrations
ranging from 0–61 particles/L in tap water, from 0–3074 MPs/L in bottled water, and from
0–13,629 particles/kg for salt [55,56]. However, MPs have been also being identified in
other foods, such as sugar (249 ± 130 particles/kg), fruits (5.2 particles/100 g), vegetables
(6.4 particles/100 g), cereals (5.7 particles/100 g), honey (1992–9752 particles/kg), meats
(9.6 particles/100 g), dairy products (8.1 particles/100 g), soft drinks (40 ± 24.53 particles/L),
tea (11 ± 5.26 particles/L), energy drinks (14 ± 5.79 particles/L), and beers
(152 ± 50.97 particles/L) [42,44,57–62].

Hazard characterization is the second step of any risk assessment and involves defin-
ing the nature of the adverse health effects associated with those biological, chemical, and
physical agents that may be present in food. The hazard characterization should, if possible,
involve an understanding of the doses involved and related responses [63]. As mentioned
above, there are large knowledge gaps concerning the toxicokinetic, toxicodynamic, and
toxicity effects of MPs in humans [28,64]. Therefore, the potential risks of dietary MPs to
human health have been little explored. In other words, these knowledge gaps impede the
estimation of food safety standards based on risk [2,30]. Therefore, more research in animals
is needed to identify biomarkers of MPs toxicity, such as the disruption in immunity indices
(acid phosphatase and alkaline phosphatase activity) and oxidative stress indices (total
antioxidant capacity and malondialdehyde content) previously observed, for example, in
juvenile and adult sea cucumbers [65,66]. Polyethylene microparticles have been shown to
have an effect on haematological and biochemical indices, the antioxidant defence system,
and expression of selected genes associated with the immune profile [67].
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The size of MPs seems to have a relevant role in their toxicokinetic, as their gastroin-
testinal absorption has been observed to reach only 0.3% of ingested MPs and is limited to
those MPs smaller than 1.5 µm [31,68]. Some evidence suggest that MPs are able to pass
through the human placental barrier [69,70].

Regarding the toxicodynamic of these food pollutants, it is suspected that their ac-
tion mechanism in humans is like that observed in animals [65]. Therefore, it is to be
expected that the MPs could affect many molecular pathways [68,71], disrupt the genetic
expression of oxidative stress control, and activate the E2 (Nrf) nuclear factor expression,
among others. Alterations and changes in the oxidative stress, immune response, genomic
instability, endocrine system alteration, neurotoxicity, reproductive abnormalities, embry-
otoxicity, and transgenerational toxicity, among others, may be a consequence of these
action mechanisms [68].

Tissue abrasion, intestinal obstruction, chronic inflammation, body mass and metabolism
reduction, neurotoxicity, behavior changes, cancer, fertility affectation, and mortality and
morbidity increase, among many others, have been described as potential health effects
associated with MP exposure [23,64,68,72–80]. These results were obtained after the ad-
ministration of different doses of MPs (0.001 mg/L and 10 mg/L for 10 days, 0.1% of food
weight for 90 days, 396 MPs per 100 mg of food for 28 and 56 days, 0.1 g/L for 4 days,
110 particles/mL for 14 days, 5 particles per 1.5 g of feed for 8 months, among other
doses) in fishes, bivalves, mice, and nematodes [68,72–75,78–80]. The oral intake of PS MPs
has been specifically associated with the decrease of intestinal mucosa, the malfunction
of the intestinal barrier, and changes in the biodiversity of the intestinal microbiota and
metabolism [81].

Exposure assessment is third step in any risk assessment study. This step relates to a
thorough evaluation of who or what has been exposed to a hazard and a quantification of the
amounts involved [82]. The need to know the total dietary exposure and the contribution of
the different dietary sources have aroused researchers’ interest in analysing and evaluating
the MPs levels in the different food categories and assessing the dietary exposure in
different scenarios.

The presence of MPs in drinking water has been confirmed by many studies in different
locations and different types of waters (tap water, bottled, and groundwater) (Table 1).
Oßmann et al. reported 2649 ± 2857 and 3074 ± 2531 particles of MPs/L in single-use
plastic bottled water and glass bottled water, respectively [56]. The most common polymers
found in drinking waters are PE ≈ PP > PS > PVC > PET [53], and the most frequent
morphologies are fragments, fibres, films, foams, and pellets [53].

Some authors affirm that the dietary exposure to MPs from bottled water tends to
be greater than from tap water [29,56]. The present study has considered the European
Food Safety (EFSA) water daily intake estimation of 2 L to assess the dietary exposure
to MPs from drinking water [38]. An estimated daily intake (EDI) has been calculated
from this beverage observing a wide range of MPs intakes (2 × 10−5–33,626 particles/day)
considering the MPs levels observed in the different drinking water types shown in Table 1
and a 2 L/day ingestion (Table 1).

In Saudi Arabia, given a mean average recommended water intake of 3.7 and 2.7 L per
day for men and women, respectively, the corresponding daily exposure to MPs would
be 0.1–0.2 particles/Kg bw. This estimated dietary exposure for high consumers of water
increases to a daily exposure of 1.7–1.9 particles/Kg bw based on the WHO recommended
intake for drinking water in hot climates [84].

Seafood has been identified as the main dietary source of these food contaminants.
Therefore, and due to the nutritional importance of seafood consumption, addressing any
knowledge gap related to seafood hazards is a critical priority [85]. The studies reviewed
evinced the presence of theses pollutants in crustaceans, molluscs, and fish (Tables 2 and 3).
There are studies reporting noteworthy levels: 287,527 particles/fish, 103–183 particles/fish,
and 2.19 particles/individual [86–88].
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Table 1. MPs levels in different drinking waters and estimated dietary intake in a 2 L water/day
consumption scenario.

Location Food Total Count of
MPs

Estimated Intake of MPs
When Drinking 2 L

Water/Day
MPs Size Composition

of MPs
MPs

Shape Reference

Germany

Reusable plastic
bottled water

3633
particles/L 7266 particles/day

90% < 5 µm PET, PE, PP Not
specified

[56]
Single use plastic

bottled water
2649 ± 2857
particles/L 5298 ± 5714 particles/day

Glass bottled
water

3074 ± 2531
particles/L 6148 ± 5062 particles/day

Asia, Australia,
Europe, and

North America

Bottled water 4–16,813
particles/L 8–33,626 particles/day

1- > 5000 µm. PE, PP, PS,
PVC, PET

Fragments
Fibres
Films
Foam
Pellets

[53]

Tap water 10−4–100
particles/L

2 × 10−4–200
particles/day

Germany Raw water
(ground water)

7 particles/m3

(7 × 10−3

particles/L)
0.014 particles/day 50–150 µm PE, PA,

PS, PVC Fibres [83]

Saudi Arabia Drinking water 1.9–4.7
particles/L 3.8–9.4 particles/day 25–500 µm. PE, PS, PET. Not

specified [84]

MPs intake range: 2 × 10−5–33,626 particles/day.

In Europe, seafood consumption has been estimated at 25.8 kg per capita/year, which
means 494.76 g/week or 70.68 g/day [39]. Considering the MPs levels in the molluscs and
crustaceans and a 70.68 g/day portion, an estimated daily intake has been calculated for
each type of seafood. A wide range of MPs intakes (0–212.04 particles/day) is observed
(Table 2). The EDI was only estimated for those types of seafood where the levels of
MPs were reported in particles/g but not for those products where the units used were
particles/individual. The highest intake levels of intakes are observed after the ingestion of
Scotland coast mussels due to the high levels of MPs reported.

Table 2. MPs contents in bivalve molluscs and crustaceans and dietary intake estimation in a
70.68 g/day consumption scenario.

Location Total Count
of MPs

Estimated Intake (EDI)
When a 70.68 g/day Edible

Portion Is Ingested
MPs Size Composition

of MPs MPs Shape Reference

Germany 0.36–0.47
particles/g w.w. 25.44–33.22 particles/day 5–25 µm Not specified Fibres

Particles [89]

English
Channel and

Southern
North Sea

0.68 ± 0.55
particles/g w.w. 48.06 ± 38.87 particles/day 200–1000 µm Not specified Fibres [90]

Coast of
Scotland

3.0 ± 0.9
particles/g w.w. 212.04 ± 63.612 particles/day

Not
specified

PET, PU Fibres [51]
3.2 ± 0.52

particles/mussel -

South Korea

0.15 ± 0.20
particles/g 10.60 ± 14.14 particles/day

43–4720 µm
65% < 300 µm

PE, PP. PS, PES Fragments: 78%
Fibres: 23%

[50]
0.97 ± 0.74 parti-
cles/individual -

China 0.5–3.3 parti-
cles/individual - 7–5000 µm

CPE, PET, PVDF,
PVDC-PE, PVE,
Nylon, PE, PEI,

PVDC-PAN, PVC,
CPE, Rayon.

Fibres
Fragments

Films
Granules

[91]
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Table 2. Cont.

Location Total Count
of MPs

Estimated Intake (EDI)
When a 70.68 g/day Edible

Portion Is Ingested
MPs Size Composition

of MPs MPs Shape Reference

South Korea 1.21–2.19 parti-
cles/individual - 50–5000 µm

PP, PES, PET, PE,
PS, PA, PVA, PU,

PVC, PTFE.

Fragments
Fibres
Films

Granules

[86]

India 0–0.008
particles/g 0–0.565 particles/g 100–300 µm PS, PP, PE.

Fragments
Sheets
Fibres

[92]

MPs intake range: 0–212.04 ± 63.612 particles/day.

Table 3. MPs contents in fish and estimated daily intake in a 70.68 g fish/day consumption scenario.

Location Total Count
of MPs

Estimated Daily Intake
(EDI) When a 70.68 g/day
Edible Portion Is Ingested

MPs Size Composition
of MPs MPs Shape Reference

Portuguese
coast

0.27 ± 0.63
particles/fish - 217–4810 µm PP, PE Fibres: 65.8%

Fragments: 34.2% [48]

Portugal,
Mondego
estuary

1.67 ± 0.27
particles/fish - <1000–5000 µm PES, PP Fibres

Fragments [93]

Ireland 103 ± 41–183 ± 51
particles/fish - 100–5000 µm

EVA, EPDM,
PVF, PS, PTFE,

PET, PP

Fibres
Fragments

Films
[88]

Adriatic Sea

2014: 1.73 ± 0.05
particles/fish -

<100–500 µm
PVC, PP, PE,

PES, PA
Fragments: 78%

Fibres: 28%

[46]

2015: 1.64 ± 0.1
particles/fish - [87]

Egypt 28–7527
particles/fish - ≤25–≤2000 µm

PEVA, LDPE,
HDPE, PET, PP,

Nylon

Fragments
Fibres
Foam

[87]

USA,
Charleston

Harbour

5.8 ± 1.6
particles/g 409.94 ± 113.09 particles/day Not specified HDPE, LDPE,

PS

Fibres
Fragments

Foam
[22]

As mentioned above, the exposure assessment faces the challenge of a non-existing
normalized unit system for MPs. Only the study from Charleston Harbour (USA) [22]
reports the MPs levels in particles/g. Therefore, this is the only study reviewed here that
provided the MPs levels necessary for the calculation of the estimated daily intake (EDI)
(409.94 ± 113.09 particles/day) derived from the consumption of a daily fish portion of
70.68 g [39].

Comparing the MPs levels detected in bivalves and crustaceans (range: 0.15–3.2 particles/g,
Table 2) and the only study of MPs in fish expressed in particles/g (range: 5.8 ± 1.6 particles/g,
Table 3), the fish food category presents higher levels of MPs than crustaceans. That is the
reason why the dietary exposure to MPs after ingesting the same portion size would expose
the consumer to a higher intake of MPs when eating fish. However, the exposure to MPs
derived from fish intake could be lowered in those scenarios where the fish is consumed
after removing the gastrointestinal tract, liver, and gills, which are known to be the main
locations of MPs in fish. The dietary exposure is expected to be lower, as these parts are
usually discarded. In the case of ingestion of small fish consumed without discarding
any of its content, all the MPs present in the individual are ingested, and the consumer is
expected to be exposed to the total count of the MPs detected in the fish. Therefore, it is
recommended that future MPs studies in fish report its MPs contents in the edible parts, so
the dietary exposure estimation would be more accurate.
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Salt is another food product where MPs levels have been analysed and detected
worldwide (Table 4). The occurrence of MPs in sea salt, rock salt, and lake salt demonstrate,
as mentioned above, the ubiquity, diversity, and variability of MPs. Among all the data, the
levels of MPs observed in salts from Croatia (27.13–31.68 particles/g) stand out [94].

Salt consumption in Europe has been estimated at 9.4 g/day [40]. Considering the
reported MPs levels (Table 4) and this daily 9.4-g salt ingestion, an estimated daily intake
(EDI) has been calculated for each type of salt. A wide range of MPs intakes derived
from salt consumption has been observed (0.015–6.40 particles/day). Sea salt from China
presented the highest total count of MPs (550–681 particles/kg) and therefore generated
the greatest dietary exposure (5.17–6.40 particles/day) (Table 4). In the case of this food
product, it was possible to calculate the EDI because all the studies reported the MPs levels
using a normalized unit system of number of particles/g (Table 4).

Table 4. MPs contents in salts and estimated daily intake in a 9.4 g salt/day consumption scenario.

Location Food Total Count of MPs
Estimated Intake (EDI)

When a 9.4 g/day Portion
Is Ingested

MPs Size Composition
of MPs MPs Shape Reference

China

Sea Salt 550–681
particles/kg 5.17–6.40 particles/day

45–4300 µm PE, PET,
cellophane

Fragments
Fibres
Pellets

[95]Rock Salt 7–204 particles/kg 0.07–1.92 particles/day

Lake Salt 43–364
particles/kg 0.40–3.42 particles/day

Spain Table Salt 50–280
particles/kg 0.47–2.63 particles/day 10–3500 µm PET, PP, PE Fibres [96]

Italy Sea Salt 1.57–8.23
particles/g 0.015–0.08 particles/day 4–2100 µm

Not
specified

Fragments
Fibres

Granules
Films
Foam

[94]

Croatia Sea Salt 27.13–31.68
particles/g 0.26–0.29 particles/day 15–4628 µm

India
(Gujarat)

Salt

46–115
particles/200 g 0.43–1.08 particles/day

100–1000 µm PE, PVC, PS.
Fragments

Fibres
Films

[97]
India

(Tamil Nadu)
23–101

particles/200 g 0.22–0.95 particles/day

India Salt 5–21 particles/10 g 0.05–0.20 particles/day Not specified LDPE, PP,
PET, Nylon. Fibres [98]

MPs intake range: 0.015–6.40 particles/day.

Some recent studies refer to the occurrence of MPs in other food groups, such as sugar
(249 ± 130 particles/kg), fruits (5.2 particles/100 g), vegetables (6.4 particles/100 g), cereals
(5.7 particles/100 g), honey (1992–9752 particles/kg), meats (9.6 particles/100 g), dairy prod-
ucts (8.1 particles/100 g), soft drinks (40 ± 24.53 particles/L), tea (11 ± 5.26 particles/L),
energy drinks (14 ± 5.79 particles/L), and beers (152 ± 50.97 particles/L) [42,44,57–62],
which had not yet been pointed as a dietary sources of MPs. MPs in agricultural soils
create a potential impact on plants, including edible species, with relative concerns on food
security [62]. Therefore, we suggest all food categories should be considered in the MPs
dietary exposure assessment studies as any food group, if contaminated with quantifiable
levels of MPs, may contribute to the total intake of MPs.

Even though, as stated above, the number of studies of MPs total dietary intake is low,
Danopoulus et al. recently reported that the maximum annual human MPs uptake was es-
timated to be close to 55,000 MPs particles [54], which means an intake of 151 particles/day.
In the present study, considering a consumption scenario where only the above-listed food
categories (water, crustaceans and molluscs, fish, and salt) are included, and the upper
intake of each one (Tables 1–4) is considered, the MPs estimated dietary intake would be
34,254 particles/day (33,626 particles/day from 2 L/day of water, 212 particles/day from
70.68 g/day of crustaceans/molluscs, 409.94 particles/day from 70.68 g/day of fish, and
6.40 particles/day from 9.4 g/day of salt) (Figure 2).
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There is no doubt that drinking-water data distorts the MPs dietary exposure esti-
mation and suggests the need of developing, harmonizing, and standardizing not only
a detection method for MPs but also the nomenclature to be used. The use of different
nomenclatures in reporting the data not only makes the discussion and comparison of
the results more difficult but also complicates the risk analysis derived from the dietary
exposure to these growing pollutants.

Risk characterization is the final step of the risk assessment, in which the likelihood
that a particular substance (MPs in this case) will cause harm is calculated in the light
of the nature of the hazard and the extent to which people are exposed to it [99]. Some
authors affirm that even though fish have been observed to be able to cope with the PE
toxic effects, their consumption could pose serious health risks to humans [67]. However,
as there are insufficient reference values to evaluate the MPs dietary intake, the MPs risk
characterization for dietary MPs is not possible at present. In 2019, however, Stock et al.
affirmed that their results suggested that the oral exposure to PS microplastic particles did
not pose acute health risks to mammals, as the data from in-vivo studies did not provide
any evidence of histologically detectable adverse effects [100]. In the same way, more
recently, Almaiman et al. reported that the exposure to MPs from drinking water did not
pose any concern to consumers in Saudi Arabia due to the low level of dietary intake of
MPs from drinking water [84].

As the risk characterization derived from dietary MPs is not yet possible because of
the existing knowledge gaps in the previous steps of the risk analysis, different authors
have aimed to characterize the risks of the pollutants and pathogens adsorbed by the
MPs [28,101], especially heavy metals.

Authors believe that further research is needed. There are huge opportunities and
challenges for food-safety researchers, managers, and regulators. The occurrence of MPs
should be monitored worldwide not only in drinking water and seafood but in all food cat-
egories. Further research on the kinetic and toxicity (dose–response assessment approach)
of MPs, including a hazard characterization according to the type and composition of MPs
in humans, is also required. Endpoints, such as NOAEL (no-observed-adverse-effect-level)
or LOAEL (lowest-observed-adverse-effect-level), should be calculated because the setting
of health-based guidance values would provide quantitative information from risk assess-
ment for risk managers, enabling decision making. Food safety would benefit from the
derivation of a health-based guidance values, such as an ADI, TDI, or acute reference dose
(ARfD); estimation of the margin of exposure (MOE); or the quantification of the magnitude
of the risk at specified levels of human exposure, among other initiatives and research.
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Authors recognize as a limitation of this review the questionable quality of research
revised on hazard identification.

4. Conclusions

While the environmental impact of MPs is receiving noticeable attention from the
scientific community and society in general, the impact of dietary MPs in human health
continues to present a challenge to risk evaluators. Human intake of MPs via ingestion is a
non-negligible exposure route, and therefore, the determination of MPs not only needs a
standardization of analytical methods but also a consensus in the definition, description,
and expression of the results. It is still not possible to estimate qualitatively or quantitatively
the possibility of occurrence of adverse effects derived from the dietary exposure to MPs
based on a hazard identification, characterization, and exposure assessment. In the absence
of MPs total diet studies, some exposure estimations identify drinking water and seafood
as the main MPs dietary sources. However, MPs have also been found in other food
categories and beverages. Future MPs dietary risk assessment reports should involve total
diet studies.
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Polyethylene PE
Polypropylene PP
Polyvinyl chloride PVC
Polystyrene PS
Polyethylene terephthalate PET
Polyurethane PU
Polyacrylonitrile PAN
Polycarbonate PC
Polyester PES
Acrylonitrile butadiene styrene ABS
Polyphenylene sulfide PPS
Polyamide PA
Ethylene vinyl acetate EVA
Chlorinated polyethylene CPE
Polyvinylidene fluoride PVDF
Polyvinylidene chloride PVDC
Polyvinyl ethers PVE
Polyethylenimine PEI
Polyvinyl alcohol PVA
Polytetrafluoroethylene PTFE
High-density polyethylene HDPE
Low-density polyethylene LDPE
Ethylene propylene diene monomer EPDM
Polyvinyl fluoride PVF
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