Skip to main content
. 2022 Feb 7;19(3):1858. doi: 10.3390/ijerph19031858
Algorithm 2 LSTM Training Methods
Require: ILI, Respiratory, and AQI Dataset integration
Ensure: Sum up the number of disease cases per week and order them
  •   1:

    df=df[:100]Call the first 100 observation data

  •   2:

    MinMaxScalerNormalize dataset with MinMaxScaler

  •   3:

    trainsize=int(len(df)0.8)

  •   4:

    valsize=len(df)trainsize

  •   5:

    train,val=df[0:trainsize,:],df[trainsize:len(df),:]Training and validation data partition

  •   6:

    previous=5Number of previous parameter

  •   7:

    X_train,Y_train=create_dataset(train,previous)

  •   8:

    X_val,Y_val=create_dataset(val,previous)

  •   9:

    model=tf.keras.Sequential()Create LSTM model

  • 10:

    model.add(LSTM(4,input_shape=(1,previous)))Add LSTM layers with 4 hidden layers

  • 11:

    model.add(Dense(1))Add Dense Layer

  • 12:

    model.compile( loss=’mean_squared_error’, optimizer=’adam’)Compile the model using Adam optimizer

  • 13:

    model.fit( X_train, Y_train, epochs=150, batch_size=1, verbose=2)Train the model in 150 epochs

  • 14:

    RMSECalculate the RMSE