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Abstract: CCCH zinc finger proteins are a large protein family and are classified as either tandem
CCCH zinc finger (TZF) or non-TZF proteins. The roles of TZF genes in several plants have been
well determined, whereas the functions of many non-TZF genes in plants remain uncharacterized.
Herein, we describe biological and molecular functions of AtC3H12, an Arabidopsis non-TZF protein
containing three CCCH zinc finger motifs. AtC3H12 has orthologs in several plant species but has
no paralog in Arabidopsis. AtC3H12-overexpressing transgenic plants (OXs) germinated slower
than wild-type (WT) plants, whereas atc3h12 mutants germinated faster than WT plants. The fresh
weight (FW) and primary root lengths of AtC3H12 OX seedlings were lighter and shorter than those
of WT seedlings, respectively. In contrast, FW and primary root lengths of atc3h12 seedlings were
heavier and longer than those of WT seedlings, respectively. AtC3H12 was localized in the nucleus
and displayed transactivation activity in both yeast and Arabidopsis. We found that the 97-197 aa
region of AtC3H12 is an important part for its transactivation activity. Detection of expression levels
and analysis of Arabidopsis transgenic plants harboring a Pacapi2::GUS construct showed that
AtC3H12 expression increases as the Arabidopsis seedlings develop. Taken together, our results
demonstrate that AtC3H12 negatively affects seed germination and seedling development as a
nuclear transcriptional activator in Arabidopsis. To our knowledge, this is the first report to show
that non-TZF proteins negatively affect plant development as nuclear transcriptional activators.

Keywords: Arabidopsis; AtC3H12; CCCH zinc finger; non-TZF; seed germination; seedling develop-
ment; transcriptional activator

1. Introduction

Zinc finger proteins constitute a large group of protein families categorized to different
types, such as C2H2, C2C2, C2HC, C2C2C2C2, C2HCC2C2, and CCCH, on the basis of the
number and order of cysteine (Cys) and histidine (His) residues that bind to a zinc ion [1,2].
They participate in various biological processes, including transcription, apoptosis, and
protein assembly [1,3,4].

CCCH zinc finger proteins, which are broadly found in yeast and higher eukaryotes,
are determined based on the CCCH zinc finger motif, which consists of three Cys residues
and one subsequent His residue [5]. Sixty-eight CCCH zinc finger protein genes have been
recognized in the Arabidopsis (Arabidopsis thaliana) genome, whereas 67 genes have been
recognized in rice (Oryza sativa) [5]. Of the 68 CCCH zinc finger proteins in Arabidopsis, 26
are tandem CCCH zinc finger (TZF) proteins with two tandem CCCH zinc finger motifs,
and 42 are non-TZF proteins with one or more than two CCCH zinc finger motifs [6].

To date, the functions of TZF genes have been well studied in several plants. In
Arabidopsis, AtTZF3/Oxidation-related Zinc Finger 2 (AtOZF2) is engaged in abscisic acid
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(ABA) response and the salt stress response [7]. AtTZF4/SOMNUS (SOM) negatively
regulates seed germination by regulating ABA and gibberellic acid (GA) metabolic genes [8].
AtTZF6/PEI1 plays an important role during embryogenesis [9]. AfTZF9 mediates immune
response triggered by pathogen-associated molecular patterns [10]. AtTZF10/ Salt-inducible
Zinc Finger 2 (AtSZF2) and AtTZF11/AtSZF1 function in the salt stress response [11]. In rice,
OsTZF1 confers abiotic stress tolerance and negatively modulates leaf senescence under
stress conditions [12]. OsC3H10 modulates the expression of stress-responsive genes and
improves drought tolerance [13]. PvC3H72, a TZF gene in switchgrass (Panicum vigatum), is
involved in cold tolerance by controlling the ICE1-CBF-COR regulon and ABA-responsive
genes [14]. Overexpression of PeC3H74, a TZF gene in moso bamboo (Phyllostachys edulis), in
Arabidopsis renders the transgenic plants drought tolerant [15]. Similarly, overexpression
of PAC3H17 in poplar (Populus deltoides x P. euramericana) enhances drought tolerance [16].

In contrast, the functional roles of non-TZF genes have not been well studied compared
to TZF genes. In Arabidopsis, KHZ1/AtC3H36 and KHZ2 /AtC3H52 act not only in stress
responses and aging but also in flowering [17]. AtC3H17 pleiotropically modulates devel-
opment and the salt stress response [6,18]. In rice, the leaf and tiller angle increased controller
(OsLIC) is known to participate in architecture regulation mediated by brassinosteroid
signaling [19]. IbC3H18, a non-TZF gene in sweet potato (Ipomoea batatas), is associated
with abiotic stress tolerance [20]. Male Fertility 30a (BcMF30a) and BcMF30c in Chinese
cabbage (Brassica campestris) are involved in pollen development [21,22]. AtC3H59/ZFWD3
interacting with deSUMOylating isopeptidasel (Desil) participates in seed germination,
seedling development, and seed development [23]. Despite an increasing number of studies
on non-TZF genes, the roles of many non-TZF genes in plants still remain unclear.

CCCH zinc finger proteins are known as RNA-binding proteins and associated with
post-transcriptional regulation of mRNA. In Arabidopsis, AtTZF1, AtC3H14, AtC3H15/
AtCDM], cleavage and polyadenylation specificity factor 30 (AtCPSF30), and HUA1 have
been revealed to bind to RNA [4,24-26]. The TZF motif of AtTZF1 plays a key role in
binding to RNA [25]. AtC3H3 possesses ribonuclease function, binding to RNA [27].

In addition to its role in RNA metabolism, most recent studies demonstrated that
CCCH zinc finger proteins also modulate transcription. Two Arabidopsis TZF proteins,
AtC3H14 and AtC3H15/AtCDM]1, display transactivation activity and bind to both DNA
and RNA in vitro [4]. OsLIC activates transcription via its EELR domain [19]. Recently,
AtC3H17, PAC3H17, IbC3H18, and PvC3H72 have also been revealed to be transcriptional
activators [6,14,16,20].

Well-conserved transactivation motifs have been recognized on transcriptional activa-
tors in plants. In CCCH zinc finger proteins, the EELR motif in OsLIC has been identified
as a transactivation motif [19]. Similarly, the EELR-like motif of AtC3H17 is responsible for
transactivation activity [6]. The AHA motif in the homeodomain-leucine zipper (HD-Zip)
I family proteins, including Homeobox 1 (AtHB1), AtHB7, AtBH12, and AtHB13, also
functions in transcriptional activation [28]. Additionally, the LWSY and EDLL motifs serve
as transactivation motifs in Apetala 2 (AP2)/ ethylene-responsive factor (ERF) transcription
factors, such as related to AP2.12 (RAP2.12), RAP2.2, and AtERF98 [29,30]. Recently, EELL-,
VDDG-, and LWSY-like motifs in AtERF73/hypoxia-responsive ERF 1 (HRE1), an Ara-
bidopsis AP2/ERF transcription factor, have been reported as transactivation motifs [31].

In this study, we selected a previously uncharacterized Arabidopsis non-TZF protein,
AtC3H12 showing strong transactivation activity and characterized its biological and
molecular functions. We demonstrated that AtC3H12 negatively affects seed germination
and seedling development as a nuclear transcriptional activator. Our findings will enable us
to expand our knowledge of the functions of non-TZF proteins as transcriptional regulators.

2. Results
2.1. AtC3H12 Has Three CCCH Zinc Finger Motifs

To isolate non-TZF protein(s) that act as transcription factors, we screened non-TZF
gene(s) that show high transactivation activity in yeast and selected AtC3H12 (At1g32360)
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for further study (data not shown). AtC3H12, a non-TZF protein, has three CCCH zinc
finger motifs that are designated as C-Xg-C-X5-C-X3-H (Figure 1a). In order to identify
homologous genes of AfC3H12, BLASTP analysis was performed. AtC3H12 has no paralog
in Arabidopsis but has several orthologs in other plant species, such as Arabidopsis lyrata,
Camelina sativa, Capsella rubella, Eutrema salsugineum, Brassica napus, Brassica rapa, and
Brassica oleracea (data not shown). Multiple-sequence alignment showed that amino acid
sequences were highly conserved among AtC3H12 and its orthologs, especially in the
N-terminus, CCCH zinc finger motifs, and C-terminus (Figure 1b).

178 197 266 285 384 aa

. CCCH zinc finger motif (C-Xg-C-X5-C-X3-H)

300 * 320 * 340 * 360 * 380 * 400

CCCH zinc finger motif |:| EELR motif |:| Conserved Glu residues

Figure 1. Protein domain of AtC3H12 and multiple alignment among AtC3H12 and its orthologs.
(a) CCCH zinc finger motifs of AtC3H12. CCCH zinc finger motifs are represented as black boxes.
(b) Multiple-sequence alignment was performed using the Clustal W2 program with amino acid
sequences of AtC3H12 and its orthologs. Three conserved CCCH zinc finger motifs are annotated
as yellow boxes. Black-, dark-gray-, and light-gray-shaded amino acids represent 100%, 80%, and
60% conservation rate, respectively. Blue and green boxes represent the EELR motif and conserved
Glu residues, respectively. * display positions which have a single, fully conserved residue. The
GI number of each protein sequence is as follows: AtC3H12, 840128; A. lyrata, 9329782; C. sativa,
104777267; C. sativa, 104757605; C. rubella, 17899247; C. sativa, 104741835; E. salsugineum, 18991820; B.
napus, 106437497; B. rapa, 103874741; B. oleracea, 106296110; B. napus, 106352957.

2.2. AtC3H12 Is Negatively Associated with Seed Germination and Seedling Development

To study the biological functions of AtC3H12, we generated AtC3H12-overexpressing
transgenic plants (OXs) and selected homozygous atc3h12 mutants (Figures S1 and S2). First,
seed germination was analyzed. Seeds of AtC3H12 OX plants germinated significantly
slower than those of WT plants, whereas atc3h12 mutants germinated faster than WT
(Figure 2a,b and S3a,b). In particular, the germination percentage of AtC3H12 OXs and
atc3h12 mutants was significantly lower and higher, respectively, than that of the WT 2 days
after germination (DAG) (Figure 2b and S3b). However, the final germination percentage
did not differ among AtC3H12 OXs, atc3h12 mutants, and WT (Figure 2b and S3b). During
seedling development from 7 to 18 DAG, AtC3H12 OX seedlings were smaller and lighter
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than WT seedlings (Figure 2¢,d and S3c,d). In contrast, atc3h12 seedlings were heavier and
larger than WT seedlings (Figure 2c,d). In particular, the increase in fresh weight (FW) from
10 to 14 DAG in atc3h12 mutants was higher than that of WT (Figure 2d). In addition, we
found that the primary root length of AtC3H12 OXs was shorter than that of WT, whereas
the primary root length of atc3h12 mutants was longer than that of WT from 7 to 18 DAG
(Figure 2e,f and S3e,f). These results indicate that AtC3H12 has a negative role in seed
germination and seedling development.
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Figure 2. Seed germination and seedling development of AtC3H12 OXs and atc3h12 mutants.
(a) Four-day-old WT, AtC3H12 OX-7, and atc3h12 seedlings grown on Murashige and Skoog (MS)
agar plates under short-day (SD) conditions. (b) Germination percentage of WT, AtC3H12 OX-7,
and atc3h12 mutants measured at specified times after sowing on MS agar plates. Germination was
verified by radicle protrusion. Error bars display standard deviation (1 = 20). (c) Fourteen-day-old
WT, AtC3H12 OX-7, and atc3h12 seedlings grown on MS agar plates under SD conditions. (d) Fresh
weight of WT, AtC3H12 OX-7, and atc3h12 seedlings grown on MS agar plates at 7, 10, 14, and 18
DAG. Error bars display standard deviation (n = 5). (e) Elongation of primary roots of WT, AtC3H12
OX-7, and atc3h12 seedlings at 14 DAG. The white lines indicate scale bar = 1 cm. (f) Primary root
lengths of WT, AtC3H12 OX-7, and atc3h12 seedlings grown on MS agar plates under SD conditions
were measured at 7, 10, 14, and 18 DAG. Error bars display standard deviation (n = 10). In (b,d f),
different letters display significant differences (p < 0.05).

We investigated the flowering time of AtC3H12 OXs and afc3h12 mutants to determine
whether AtC3H12 functions at the reproductive developmental stage as well as at the
vegetative developmental stage. To determine flowering time, the number of rosette leaves
was counted at bolting under long-day conditions. There was no considerable difference in
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flowering time among WT, AtC3H12 OXs, and atc3h12 mutants (Figure S4), indicating that
AtC3H12 may not be engaged in the regulation of flowering time.

2.3. AtC3H12 Protein Is Localized in the Nucleus

We studied the subcellular localization of the AtC3H12 protein in Arabidopsis proto-
plasts using N-terminal (sGFP-AtC3H12) and C-terminal (AtC3H12-sGFP) synthetic green
fluorescent protein (sGFP)-fused AtC3H12 constructs to determine the potential molec-
ular function of the protein (Figure 3a). As a result, GFP signals of sGFP-AtC3H12 and
AtC3H12-sGFP constructs were exclusively observed in the nucleus (Figure 3b), indicating
that AtC3H12 may exert its functions in the nucleus.
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Figure 3. Subcellular localization of AtC3H12. (a) Schematic maps of the sGFP-fused, full-length ORF
of AtC3H12 constructs. (b) Subcellular localization of AtC3H12 protein investigated by transient
expression of sGFP-AtC3H12 and AtC3H12-sGFP constructs in Arabidopsis protoplasts. Left, GFP
signal; middle, 4’ 6-diamidino-2-phenylindole (DAPI) staining; right, light microscopic picture. The
white lines indicate scale bar = 10 um.

2.4. The 97-197 aa Region of AtC3H12 Is Responsible for Its Transactivation Activity

To determine the transactivation domain of AtC3H12, AtC3H12 was divided into two
regions: the N-terminal 1-197 aa region (N197), in which the first and the second CCCH
zinc finger motifs were contained, and the C-terminal 178-384 aa region (C207), in which the
second and third CCCH zinc finger motifs were present (Figure 4b). The full-length open
reading frame (ORF), N197, and C207 were separately cloned into pBD-GAL4 to generate
GAL4 DNA-binding domain (BD)-AtC3H12 fusion constructs (Figure 4a) and transformed
into yeast. In a quantitative 3-galactosidase orthonitrophenyl-f3-D-galactopyranoside
(ONPGQG) assay and yeast growth assay, N197 showed transactivation activity in yeast as
well as full-length ORF (Figure 4c,d and Sba).

To narrow down the transactivation domain, N197 of AtC3H12 was divided into
two regions, the 1-115 aa region (NN115) and 97-197 aa region (NC101), and cloned
into pBD-GAL4 (Figure 5a,b). In the ONPG assay and yeast growth assay using the
yeast transformants containing GAL4 BD-AtC3H12 fusion constructs, NC101 showed
transactivation activity, whereas NN115 displayed no activity (Figure 5c,d and S5b).
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Figure 4. Transactivation activity assay of AtC3H12 in yeast. (a) Schematic map of the GAL4 BD-
fusion vector for transactivation activity assay in yeast. (b) Schematic maps of full-length ORF, N197,
and C207 of AtC3H12 for transactivation activity assay. (c) Quantitative 3-galactosidase ONPG assay.
-Galactosidase activities were measured to quantify the transactivation activities. Error bars display
standard deviation (n = 3). Different letters display significant differences (p < 0.05). (d) Yeast growth
assay. Yeast transformants were grown on SD media lacking Trp and Ura (SD-Trp/-Ura). In (c,d),
empty pBD-GAL4 vector was used for a negative control. NC, negative control.
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Figure 5. Transactivation activity assay of N197 of AtC3H12 in yeast. (a) Schematic map of the GAL4
BD-fusion vector for transactivation activity assay in yeast. (b) Schematic maps of N197, NN115, and
NC101 of AtC3H12 for transactivation activity assay. (c¢) Quantitative 3-galactosidase ONPG assay.
-Galactosidase activities were measured to quantify the transactivation activities. Error bars display
standard deviation (n = 3). Different letters display significant differences (p < 0.05). (d) Yeast growth
assay. Yeast transformants were grown on SD-Trp/-Ura. In (c,d), empty pBD-GAL4 vector was used
for a negative control. NC, negative control.
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To verify the transactivation activity of AtC3H12 in Arabidopsis, effector vectors, in
which the full-length ORF, N197, or NC101 of AtC3H12 were linked to GAL4 BD, were
generated and introduced into Arabidopsis protoplasts (Figure 6a). Transient expression of
each effector vector along with reporter vector demonstrated that all of the full-length ORF,
N197, and NC101 showed transactivation activity (Figure 6b). These results are compatible
with the data acquired from yeast (Figures 4c and 5c) and suggest that NC101 is responsible
for the transactivation activity of AtC3H12.

a
@ Effector vector -{ Prodified camv 355 m GAL4BD
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O = N W H» 00O N
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Figure 6. Transactivation activity assay of AtC3H12 in Arabidopsis protoplasts. (a) Schematic maps of
the effector vector, reporter vector, and reference vector for transactivation activity assay. (b) Relative
firefly luciferase (FF LUC) activities of full-length ORF, N197, and NC101 of AtC3H12 in Arabidopsis
protoplasts. The reference vector was used for the normalization of transformation efficiency. The
empty effector vector was used for a negative control. Normalized FF LUC activity of negative
control was set to 1. Error bars display standard deviation (n = 3). Different letters display significant
differences (p < 0.05).

Next, we compared the amino acid sequences of NC101 of AtC3H12 and the corre-
sponding regions of AtC3H12 orthologs. Amino acid sequences of the regions were highly
conserved among the NC101 and orthologs, especially in the EELR motif and Glu residues
(Figure 1b). It has previously been reported that the EELR motif is important for transacti-
vation activity [19]. In addition, acidic amino acid residues, such as Glu and Asp, are also
involved in transactivation activity [32]. These results suggest that the EELR motif and
conserved Glu residues in NC101 of AtC3H12 might play a key role in its transactivation
activity.

2.5. Expression Levels of AtC3H12 during Development and in the Organs of Arabidopsis

We examined the expression patterns of AtC3H12 in different developmental stages
and organs by quantitative RT-PCR (RT-qPCR). The AtC3H12 transcript level was slightly
elevated as the seedlings developed from 4 to 21 days after germination (DAG) (Figure 7a).
In mature plants, cauline leaves and rosette leaves showed a higher level of AtC3H12
transcripts than other organs, such as roots, stems, floral clusters, and siliques (Figure 7b).
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Figure 7. Temporal and spatial expression patterns of AtC3H12. (a) Quantitative RT-PCR (RT-qPCR)
analysis of AtC3H12 in 4-, 7-, 11-, 14-, and 21-day-old WT seedlings grown under SD conditions.
Transcript level in 4-day-old seedlings was set as 1. (b) RT-qPCR analysis of AtC3H12 in organs of
50-day-old WT plants grown under long-day conditions. Transcript level in RT was set as 1. RT, roots;
RS, rosette leaves; ST, stems; CA, cauline leaves; FC, floral clusters; SI, siliques. GAPc was used for an
endogenous control gene. At least two biological replicates showed similar results. Error bars display
standard deviation (1 = 3). Different letters display significant differences (p < 0.05).

To visualize the expression patterns of AtC3H12, transgenic plants harboring the
Patcapi::GUS construct were generated and analyzed by a histochemical 3-glucuronidase
(GUS) assay (Figure 8a). First, we compared the promoter activities of AtC3H12 with and
without the 559-bp 5’ UTR (Figure S6a). As a result, the AtC3H12 promoter with 5 UTR
showed insignificant GUS activity (Figure S6b). Thus, we used Pacspi2::GUS transgenic
plants without the 5’ UTR for further experiments. The histochemical GUS assay revealed
that GUS activity was detected mainly in the cotyledons and the leaves of 7, 11, 14, and 21
DAG seedlings, and the activity increased as the seedlings grew (Figure 8b), supporting
the result that AfC3H12 expression increases as plants develop (Figure 7a).

(a)
PA!C3H12

(b)

|\
14

11 DAG

Figure 8. Analysis of the promoter activity of At*C3H12. (a) Schematic map of Payc3m12:GUS for
GUS assay. (b) Histochemical assay of GUS activities in transgenic plants harboring Pacsp12::GUS
at different developmental stages grown under SD conditions. Three independent T lines showed
similar results, with one shown here. The white lines indicate scale bar = 1 cm.

3. Discussion

CCCH zinc finger proteins are classified into two groups, TZF and non-TZF pro-
teins [6]. Although non-TZF genes have been recently studied in several plant species,
many still remain uncharacterized. Herein, we studied the functions of the Arabidopsis
non-TZF gene, AtC3H12.

AtC3H12 has three CCCH zinc finger motifs (Figure 1a). Our BLASTP analysis
showed that AtC3H12 has orthologs in several plant species, but no paralog in Arabidopsis
(Figure 1b), indicating that it is a unique gene in Arabidopsis. Our phenotype analysis us-
ing AtC3H12 OXs and atc3h12 mutants showed that AtC3H12 plays important roles in seed
germination and seedling development (Figure 2 and S3). AtC3H12 was localized in the
nucleus and showed transactivation activity via its 97-197 aa region (Figures 3—6), demon-
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strating that AtC3H12 has pleiotropic effects during Arabidopsis vegetative development
by transactivating downstream genes.

At the beginning of the study of the CCCH zinc finger proteins, the proteins were rec-
ognized as RNA-binding proteins participating in post-transcriptional regulation, including
AtTZF1, AtC3H14, AtC3H15/AtCDM1, AtCPSF30, and HUA1 in Arabidopsis [4,24-26].
CCCH zinc finger proteins, such as AtC3H17, OsLIC, PAC3H17, IbC3H18, and PvC3H?72,
have also been characterized as transcriptional regulators [6,14,16,19,20]. However, in spite
of functional characterization studies of CCCH zinc finger proteins as transcriptional regu-
lators, activation or repression motifs/domains have been identified in only limited CCCH
zinc finger proteins. OsLIC has an EELR domain as a transactivation domain, and the
EELR motif in the EELR domain has been well conserved among orthologs of OsLIC [19].
AtC3H17 has an EELR-like motif, which consists of EE(D/E)AL(K/R) [6]. Our study
identified the 97-197 aa region of AtC3H12 as a transactivation domain (Figures 5 and 6).
The EELR motif and Glu residues in the region are well conserved among AtC3H12 and its
orthologs (Figure 1), showing that the EELR motif and Glu residues may play important
roles in the transactivation activity of AtC3H12.

To reveal the biological function of AtC3H12 in Arabidopsis development, we gen-
erated AtC3H12 OX transgenic plants and obtained atc3h12 T-DNA-inserted mutants
(Figures S1 and S2). Phenotypic analysis showed that AtC3H12 OXs germinated slower
than WT, while atc3h12 mutants germinated faster than WT (Figure 2a,b and S3a,b). More-
over, AtC3H12 OX seedlings were smaller, and primary root length was shorter than WT
seedlings, whereas atc3h12 seedlings were larger and primary root length was longer than
WT seedlings (Figure 2c—f and S3c—f). These results suggest that AtC3H12 negatively in-
fluences seed germination and seedling development in Arabidopsis. However, AtC3H12
OXs and atc3h12 mutants showed no significant differences in flowering time (Figure 54).
This is the first report to show that a non-TZF protein negatively affects plant development
as a nuclear transcriptional activator.

Several CCCH zinc finger genes participate in plant development in different ways. In
Arabidopsis, overexpression of AtC3H17 enhances seed germination, seedling development,
and seed development [6], and AtC3H59/ZFWD3 also positively affects those processes,
interacting with the PPPDE family protein Desil [23]. Similar to AtC3H12, overexpression of
AtC3H14, an Arabidopsis TZF gene, resulted in defective cell elongation and dwarfism [33].
In rice, OsLIC is known to be involved in architecture regulation by the antagonistic function
of Brassinazole-Resistant 1 (BZR1) [34]. These reports demonstrate that appropriate plant
development is orchestrated by positive and negative developmental regulations. It is
suggested that AtC3H12 might participate in the fine-tuning of development by negative
regulation, together with other positive regulators in Arabidopsis. Recently, it has been
reported that AtC3H12 has a repressing effect on root hair density and root hair length
depending on phosphorus availability [35]. It can be a clue to explain the function of
AtC3H12. To explain how AtC3H12 negatively regulates seed germination and seedling
development, further studies are required for identification of the downstream target genes
of AtC3H12.

Collectively, our data propose that AtC3H12 containing three CCCH zinc finger
motifs acts as a nuclear transcriptional activator to regulate the transcription of genes that
negatively modulate seed germination and seedling development in Arabidopsis (Figure 9).
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Figure 9. A functional model of the role of AtC3H12 in Arabidopsis development.

4. Materials and Methods
4.1. Arabidopsis Growth

Arabidopsis plants used in this research were of the Columbia (Col-0) ecotype. Ara-
bidopsis seeds were prepared, germinated, and grown as previously described [23].

4.2. Multiple-Sequence Alignment

BLASTP analysis was conducted using NCBI BLAST (https://blast.ncbi.nlm.nih.gov/
Blast.cgi, accessed on 12 August 2020). ClustalW2 (https:/ /ebi.ac.uk/Tools/msa/clustalo,
accessed on 12 August 2020) was used for multiple-sequence alignment.

4.3. Plasmid Construction

To generate constructs for subcellular localization, the full-length ORF of AtC3H12
was cloned into pFGL1283 and pFGL1292 in frame with N-terminal and C-terminal sGFP,
respectively [36]. To clone constructs for GUS assay, a 282-bp upstream region from the
transcriptional start site of AtC3H12, with and without 559-bp 5" UTR, was fused to the
GUS gene [6]. To generate vectors for AtC3H12 overexpression, the full-length ORF of
AtC3H12 was inserted into pFGL1434, including the modified CaMV 35S promoter and
N-terminal-fused HA tag [36].

To clone constructs for transactivation activity analysis in yeast, full-length ORF and
partial fragments of AtC3H12 were cloned into the pBD-GAL4 in frame with GAL4 BD.
To generate vectors for the transactivation assay in Arabidopsis protoplasts, full-length
ORF and partial fragments of AtC3H12 were fused to GAL4 BD under the control of the
modified CaMV 35S promoter [31].

Primers for cloning are shown in Table S1.

4.4. Transgenic Plants and T-DNA-Inserted Mutants

The constructs were transformed into Agrobacterium tumefaciens strain GV3101 (pMP90)
using the freeze—thaw method [37] and then introduced into WT Arabidopsis using the
floral-dipping method [38]. Transgenic plants were selected on MS agar plates containing
kanamycin (50 ug/mL). The T3 homozygous lines were used for further experiments.

T-DNA-inserted atc3h12 mutant, SALK_011253 (atc3h12) was provided by the Salk
Institute Genomic Analysis Laboratory.

4.5. Protoplast Transformation

The isolation and polyethylene glycol-mediated transformations of Arabidopsis proto-
plasts were conducted in accordance with Yoo et al. [39].

4.6. Analysis of the Transactivation Activity in Yeast

Yeast strain YD116 [40] was transformed using the Frozen-EZ Yeast Transformation
™ Kit (Zymo Research Corp., Irvine, CA, USA), in accordance with the manufacturer’s
instructions.
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Quantitative (3-galactosidase assay, -galactosidase filter assay, and yeast growth
assay were conducted as previously described [23]. In brief, a quantitative 3-galactosidase
activity using ONPG was quantified with the formula 1000 x ODyp9/(ODgpp X assay time
inmin x assay volume in mL). 3-Galactosidase filter assay was conducted using 5-bromo-
4-chloro-3-indolyl-f3-d-galactopyranoside as a substrate for 6 h. Yeast transformants grown
on SD media lacking Trp and Ura were incubated for 3-5 days at 30 °C for the growth
assay.

4.7. Dual-luciferase Assay

Firefly luciferase and Nano luciferase activities were quantified using the GloMax®-
Multi+ Detection System (Promega Corp., Madison, WI, USA) with Instinct™ Software
and Nano-Glo®Dual-Luciferase®Reporter Assay System (Promega Corp., Madison, WI,
USA).

4.8. RNA Isolation and RT-PCR

Total RNA was isolated using the RNAqueous RNA Isolation Kit (Invitrogen, Carlsbad,
CA, USA) and Plant RNA Isolation Aid (Invitrogen, Carlsbad, CA, USA), in accordance
with the manufacturer’s protocol. Total RNA (2 ug) was used for reverse transcription
using Moloney murine leukemia virus reverse transcriptase (Promega Corp., Madison, WI,
USA) as previously described [23].

RT-qPCR was conducted using a QuantStudio™ 3 real-time PCR system (Applied
Biosystems, Foster, CA, USA) and Power SYBR™ Green PCR Master Mix (Applied Biosys-
tems, Foster, CA, USA) in accordance with manufacturer’s manual. Real-time DNA am-
plification was analyzed using QuantStudio™ Design and Analysis software (version
1.4.3) (Applied Biosystems, Foster, CA, USA). Three independent reactions were conducted
for each technical replicate. Two technical replicates were conducted for each biological
replicate.

Semi-quantitative RT-PCR was conducted in accordance with previous study [23].
PCR reactions were repeated 30-31 cycles for AfC3H12 and 23-24 cycles for GAPc.

Primers for RT-PCR are shown in Table S2.

4.9. GUS Assay

Histochemical GUS assay was performed in accordance with the method described
previously [23].

4.10. Phenotype Analysis

To measure the germination percentage, FW, and primary root length, 30 seeds of each
plant were sown on the same MS agar plate and grown under SD conditions. Germination
was determined by radicle protrusion. Primary root length was measured using Image] [41].
At least three biological replicates were performed.

4.11. Statistical Analysis

Statistical analysis was performed by IBM SPSS Statistics software version 23 (IBM
Corp., Armonk, NY, USA) with one-way ANOVA using Tukey’s multiple comparison test.
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