
����������
�������

Citation: Cascione, M.; Rizzello, L.;

Manno, D.; Serra, A.; De Matteis, V.

Green Silver Nanoparticles Promote

Inflammation Shutdown in Human

Leukemic Monocytes. Materials 2022,

15, 775. https://doi.org/10.3390/

ma15030775

Academic Editors: Laura Polito,

Marcello Marelli and Paulo José

Gomes Coutinho

Received: 19 November 2021

Accepted: 18 January 2022

Published: 20 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

materials

Article

Green Silver Nanoparticles Promote Inflammation Shutdown in
Human Leukemic Monocytes
Mariafrancesca Cascione 1,† , Loris Rizzello 2,3,4,†, Daniela Manno 1 , Antonio Serra 1

and Valeria De Matteis 1,*

1 Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, Via Arnesano,
73100 Lecce, Italy; mariafrancesca.cascione@unisalento.it (M.C.); daniela.manno@unisalento.it (D.M.);
antonio.serra@unisalento.it (A.S.)

2 Department of Pharmaceutical Sciences (DISFARM), University of Milan, Via G. Balzaretti 9,
20133 Milan, Italy; loris.rizzello@unimi.it

3 Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology,
Baldiri Reixac 10–12, 08028 Barcelona, Spain

4 National Institute of Molecular Genetics (INGM), Via F. Sforza 35, 20122 Milan, Italy
* Correspondence: valeria.dematteis@unisalento.it
† These authors equally contributed to this work.

Abstract: The use of silver nanoparticles (Ag NPs) in the biomedical field deserves a mindful analysis
of the possible inflammatory response which could limit their use in the clinic. Despite the anti-cancer
properties of Ag NPs having been widely demonstrated, there are still few studies concerning their
involvement in the activation of specific inflammatory pathways. The inflammatory outcome depends
on the synthetic route used in the NPs production, in which toxic reagents are employed. In this
work, we compared two types of Ag NPs, obtained by two different chemical routes: conventional
synthesis using sodium citrate and a green protocol based on leaf extracts as a source of reduction
and capping agents. A careful physicochemical characterization was carried out showing spherical
and stable Ag NPs with an average size between 20 nm and 35 nm for conventional and green
Ag NPs respectively. Then, we evaluated their ability to induce the activation of inflammation in
Human Leukemic Monocytes (THP-1) differentiated into M0 macrophages using 1 µM and 2 µM
NPs concentrations (corresponded to 0.1 µg/mL and 0.2 µg/mL respectively) and two-time points
(24 h and 48 h). Our results showed a clear difference in Nuclear Factor κB (NF-κb) activation,
Interleukins 6–8 (IL-6, IL-8) secretion, Tumor Necrosis Factor-α (TNF-α) and Cyclooxygenase-2
(COX-2) expression exerted by the two kinds of Ag NPs. Green Ag NPs were definitely tolerated
by macrophages compared to conventional Ag NPs which induced the activation of all the factors
mentioned above. Subsequently, the exposure of breast cancer cell line (MCF-7) to the green Ag NPs
showed that they exhibited antitumor activity like the conventional ones, but surprisingly, using the
MCF-10A line (not tumoral breast cells) the green Ag NPs did not cause a significant decrease in
cell viability.

Keywords: green route; silver nanoparticles; physico-chemical properties; inflammation response

1. Introduction

Today, Ag NPs are the most used nanomaterials in several fields of application [1]
due to their remarkable physicochemical properties [2,3]. Ag is known to have a sharp
and strong plasmon resonance peak [4], showing high toxicity in cancer cells [5–7], ex-
tensively demonstrated in vitro [8] as well as antibacterial and antimycotic features [9,10].
However, the application of Ag NPs in clinical trials is often hindered by the activation
of the inflammatory response [11]; in general, this occurs because the foreign material is
recognized as an antigen [12]. Ideally, the NPs should not trigger the immune response
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in living organisms, when they are used as vectors or therapeutic agents [13]. The inflam-
mation phenomenon in living organisms starts with the activation of different cells, such
as neutrophils, basophils, eosinophils, monocytes and macrophages [14–16]. These cells
release anti-inflammatory mediators through the action of inducible transcription factor
NF-κB [17], which stimulates the expression of several pro-inflammatory cytokines genes,
such as IL-6, IL-8 and TNF-α [18]. In addition, certain types of enzymes, such as COX
are up-expressed as a result of the inflammation cascade [19–21]. A prolonged state of
inflammation is responsible for neoplasm development [22] and other diseases [23], includ-
ing rheumatoid arthritis [24], atherosclerosis [25], diabetes [26], and neurodegenerative
pathologies [27]. Then, if the NPs are employed as drug carriers with specific surface
functionalization able to bind cellular receptors, they would never reach the target due
to the activation of the immune system [28]. In the case of biomedical applications, the
immune system can be stimulated by the presence of synthetic residues and solvents used
for the subsequent steps of NPs manufacture (washing, precipitation, etc.) that bind their
surface [29,30]. In general, conventional synthetic methods used to obtain NPs require the
use of toxic and hazardous agents [31–33]. To overcome this limitation, recent efforts have
been made to replace such procedures with eco-friendly protocols [34–36], based on the
use of plant or microorganism extracts as sources of reducing and capping agents [34,37].
The synthesis of metallic NPs mediated by plants can be obtained employing extracellular
and intracellular routes [38]; moreover, phytochemicals previously isolated from plants are
used to obtain NPs [39,40]. A large number of biomolecules, such as vitamins, phenols,
proteins, flavonoids, saponins and aldehydes are involved in the reduction of Ag+ to Ag0

in aqueous solution [41,42] due to the presence of functional groups, such as –C–O–C–,
–C–O–, –C=C–, and –C=O– [43]. The phytochemical profile of plants can vary according
to the species; then, the size, shape and surface charge of NPs change together with pH,
metal salt concentration, temperature and contact time [44]. The presence of biomolecules
adsorbed on the NPs surface makes them safer for medical applications as therapeutic tools
or antibacterial agents [45,46]. In the latter case, the capping agents were able to bind recep-
tors of bacterial membranes damaging the respiratory system causing cell death [47,48].
Among different types of Mediterranean plants, Laurus Nobilis [49] is a valid source of polar
molecules, such as polyphenols, which are demonstrated to have strong antioxidant and
anti-inflammatory effects [50,51]. In addition, they take part in the biosynthesis of metallic
NPs, such as Ag NPs acting as reducing and capping agents [52].

In this work, we synthesized Ag NPs using Laurus Nobilis extracts with an easy and
reproducible one step route. First, a careful NPs characterization through different tech-
niques, such as Transmission Electron Microscopy (TEM), RAMAN spectroscopy, UV-vis,
Fourier-transform infrared spectroscopy (FTIR) and Dynamic Light Scattering (DLS) was
carried out. Afterward, we evaluated the effects of Ag NPs in Human Leukemic Monocytes
(THP-1) differentiated into macrophage-like cells (M0) mimicking native monocyte-derived
macrophages. The obtained results were compared with those obtained exposing the
cells to Ag NPs produced by the conventional synthetic method, based on sodium cit-
rate and high temperature. The inflammation response was analyzed by measuring the
amount of cytokines IL-6/IL-8 and the expression levels of TNF-α and COX-2. The nu-
clear translocation of NF-κB was evaluated by confocal microscopy and the morphometric
parameters relating to nuclei and actin alterations using Fiji software. Our data showed
that macrophages were less stimulated by exposure to green Ag NPs compared to those
achieved by the conventional protocol. In addition, the potential antitumoral effects of
green Ag NPs were explored on MCF-7 comparing the results with those obtained in
non-tumoral cells (MCF-10A) showing high toxicity only in cancer cell lines.
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2. Materials and Methods
2.1. Synthesis of Ag NPs
2.1.1. Conventional Approach

Ag NPs were synthesized using an aqueous solution of tri-sodium citrate (1.4 mM)
and 2.9 µM tannic acid. The mix was heated up to 60 ◦C in a silicon oil bath under reflux.
After, the AgNO3 solution (0.6 mM) was added while stirring was heated up to the boiling
point (ca. 120 ◦C) until the color turned to dark brown). Finally, the solution was washed
with ethanol/water and centrifugated at 4000 rpm for 45 min to obtain NPs. Several washes
were carried out to purify the NPs.

2.1.2. Green Approach
Preparation of Leaves Extracts

Laurus nobilis leaves were washed with MilliQ to eliminate pollution and dried at
room temperature for one day. Then, 10 g of leaves were sliced and transferred to a glass
flask containing 100 mL of MilliQ water. The solution was boiled at 100 ◦C (20 min). After
cooling, the solution was filtered by a cellulose membrane before use.

Synthetic Procedure

2.5 mL of leaves extract was added to 50 mL of AgNO3 (1 mM) and heated to 60 ◦C
for about 45 min. During this time, the reaction color switched from light yellow to deep
brown indicating the chemical reduction of Ag+ ions into Ag0 (pH 7). Finally, solutions
were moved to centrifuge tubes and centrifuged at 4000 rpm for 1 h to achieve NPs.

2.2. Characterization of Conventional and Green Ag NPs
2.2.1. Transmission Electron Microscopy (TEM) Analysis

Structural, morphological analyses and Selected Area Electron Diffraction (SAED)
patterns were performed by Hitachi 7700 Transmission Electron Microscope (Hitachi High-
Tech, Tokyo, Japan), operating at 100 kV; 10 µL of the two different Ag NP solutions were
dropped onto standard 400-mesh carbon-supported copper grids and air-dried overnight.
Statistical analysis of Ag NPs size was obtained by Gatan Digital Micrograph software (Las
Positas Blvd., Pleasanton, CA, USA).

2.2.2. Dynamic Light Scattering (DLS) and ζ-Potential Analyses

The DLS and ζ-potential measurements were recorded by a Zetasizer Nano-ZS,
equipped with a HeNe laser (4.0 mW) working at 633 nm detector (ZEN3600, Malvern
Instruments Ltd., Malvern, UK) in aqueous solutions (25 ◦C, pH 7).

2.2.3. UV-Vis Analysis

In order to acquire the absorption spectra (in the spectral range 300–800 nm) of the two
different Ag NPs (conventional and green), a Varian Cary 5 spectrophotometer (ZEN3600,
Malvern Instruments Ltd., Malvern, UK) equipped with a quartz cuvette of 10 mm path
length was used at room temperature.

2.2.4. Raman Scattering Analysis

Raman scattering measurements were obtained in back-scattering geometry with a
RENISHAW spectrometer (Wotton-under-Edge, Gloucestershire, UK) coupled to a LEICA
metallographic microscope. Excitation radiation was given out by an argon ion laser
operating at a wavelength of 514.5 nm and an incident power of 10 mW to avoid the
thermal effects provided by the excitation. Raman shifts were calibrated using silicon (111)
reference spectra after each measurement.

2.2.5. Fourier Transform Infrared (FTIR) Spectroscopy

Jasco-670 Plus FTIR spectrometer (Jasco, Tokyo, Japan) was used to measure the FTIR
spectra over a range of 800–4000 cm−1 of the two types of Ag NPs at a resolution of 4 cm−1.
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2.3. THP-1 Culture and Differentiation

The Human Leukemic Monocytes (THP-1) (ATCC-TIB-202) were grown in Roswell
Park Memorial Institute medium (RPMI-1640) supplemented with 2 mM L-glutamine,
25 mM HEPES (Sigma-Aldrich, Dorset, UK), 10% (v/v) fetal bovine serum (FBS, Sigma-
Aldrich, Dorset, UK), 1% (v/v) penicillin-streptomycin (Sigma-Aldrich, Dorset, UK), and
0.1% (v/v) amphotericin B (Sigma-Aldrich, Dorset, UK). Before starting the experiments,
THP-1 were differentiated into a mature macrophage-like state (M0-macrophages) by
incubation with 10 ng/mL of phorbol 12-myristate 13-acetate (PMA, Sigma-Aldrich, Dorset,
UK) for 48 h in a humidified atmosphere and standard conditions (95 % air and 5% CO2,
at 37 ◦C).

2.4. MCF-7 and MCF-10 Cell Culture

Human breast cancer cell (MCF-7) (ATCC-HTB-22) and non-tumorigenic epithelial
breast cell line (MCF-10) (ATCC-CRL-10317) were cultured in high glucose Dulbecco’s
Modified Eagle Medium (DMEM) with 50 µM of glutamine, 10% FBS, 100 U/mL of peni-
cillin and 100 mg/mL of streptomycin. Cells were maintained in a humidified controlled
atmosphere with a 95% to 5% ratio of air/CO2, at 37 ◦C.

2.5. Viability Assay of THP-1, MCF-7 and MCF-10

The THP-1, MCF-7 and MCF-10 cells were seeded at a concentration of 5 × 103 cells
per well in 96-well plates. THP-1 was differentiated as described above. After 24 h of
stabilization, Ag NPs stock solutions (conventional Ag NPs and green Ag NPs) were added
to the culture medium at 1 µM (0.1 µg/mL) and 2 µM (0.2 µg/mL) for 24 h and 48 h. After
these times, cell viability was calculated using a standard WST-8 assay (Sigma-Aldrich,
Dorset, UK) following the procedure described in [53]. Data were expressed as mean ± SD.
To calculate the half maximal inhibitory concentration (IC50), i.e., concentration causing a
50% inhibition compared to the controls, data were fitted to a regression model equation
for a sigmoid curve: y = max/[1 + e − (x − IC50)/b)] + min, where: max represented the
maximal response measured, b represented the slope of the curve and min the minimal
response.

2.6. NPs Concentration and Uptake Determination by Elemental Analysis

The concentrations of the conventional Ag NPs and green Ag NPs were calculated
by elemental analysis using an ICP-OES Perkin Elmer AVIO 500 (Waltham, MA, USA)
following the procedure described in [3].

In order to measure the cellular content of NPs internalized by cells, 1 × 105 of THP-1
(after differentiation), cells were seeded in 1 mL of the medium in a 6-well plate. After
24 h, the cell culture medium was discarded and restored with 1 µM and 2 µM of Ag
NPs (conventional and green) dissolved in fresh medium for 24 h and 48 h. At the end
of time points, NPs were removed, and cells were washed several times with Phosphate
Buffered Saline (PBS, Sigma-Aldrich, Dorset, UK). After detachment, cells were counted by
an automatic cell counting chamber to obtain 360,000 cells dispersed in 200 µL of MilliQ.
The digestion process was made by Nitric Acid (>90%, Sigma-Aldrich, Dorset, UK) for one
week. The solutions were analyzed to evaluate the Ag amount after dilution with MilliQ
water, using an ICP-OES Perkin Elmer AVIO 500 (Waltham, MA, USA).

2.7. Interleukins 6, 8 (IL-6, IL-8) Quantification by ELISA Assay

Cytokines IL-6 and IL-8 were measured by an enzyme-linked immunosorbent assay
(ELISA) on differentiated THP-1 exposed to 1 µM and 2 µM of conventional and green Ag
NPs for 24 h and 48 h. After a centrifugation step at 2000× g for 10 min, the supernatants
from the cultures containing 0.5 × 106 cells/mL in a final volume of 1 mL were collected and
stocked at −80 ◦C until the analyses. Human IL-6 and IL-8 ELISA kits (Abcam, Cambridge,
UK) were employed, following the manufacturing protocol and the quantifications were
spectrophotometry carried out.
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2.8. TNF-α and COX-2 Expression Levels by Western Blot Analysis

Western blots were performed on THP-1 cell extracts following the treatment by con-
ventional and green Ag NPs (1 µM and 2 µM) for 48 h. The protein quantity of the cellular
fraction was measured by a Bradford protein assay using BSA protein as a standard [54].
The separation of proteins was carried out by 12.5% Sodium Dodecyl Sulfate polyacry-
lamide gel electrophoresis (SDS-PAGE 12.5%). The blot was then blocked using 5% of
non-fat dried milk in Tris-buffered saline with 0.05% Tween 20 (TBST) at room temperature
for 1 h. After this time, the incubation with primary antibody (rabbit anti-tumor necrosis
factor (TNF)-α polyclonal antibody (17H1L4, Thermo fisher Scientific, Waltham, MA, USA)
and mouse antihuman COX-2 (Cayman Chemicals, Ann Arbor, MI, USA) was carried out
on a shaker at 4 ◦C overnight. After this experimental step, the membrane was washed
and incubated with a horseradish peroxidase-conjugated secondary antibody for 2 h at
room temperature. Densitometry was used to measure the relative band intensities, that
were normalized on the untreated samples to Glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) signal.

2.9. NF-κB Signaling Imaging, Quantification Assay, and Morphometric Parameters

NF-κB signaling imaging was performed using a Confocal Laser Scanning Microscope
(CLSM, Leica SP8, Milton Keynes, UK). After THP-1 differentiation, the M0 macrophages
were exposed to 1 µM and 2 µM of conventional and green Ag NPs for 24 h and 48 h
in a humidified atmosphere, with 95% air and 5% CO2, at 37 ◦C. At the endpoint, cells
were washed with PBS (Sigma-Aldrich, Dorset, UK) and fixed using 3.7% formaldehyde
(Sigma-Aldrich, Dorset, UK) for 10 min at room temperature. Then, TritonX (0.2%) (Sigma-
Aldrich, Dorset, UK) was used to permeabilize the cells prior to performing the further
experimental immunostaining procedure using NF-κB p65 Antibody (F-6) and FITC (Santa
Cruz Biotechnology Inc., Heidelberg, Germany) diluted in 1% BSA (overnight, 4 ◦C). Then,
the fixed samples were washed with PBS and labeled with DAPI (Sigma-Aldrich, Dorset,
UK) for nuclei visualization.

The NF-κB nuclear translocation imaging study was carried out by co-localization
(Pierce’s coefficient values) of the NF-κB and nucleus fluorescence intensity signals using
the Fiji ImageJ software (version 2.0, National Institutes of Health, MD, USA).). The cell
membrane was marked using a CellMask™ Deep Red Plasma Membrane Stain (Thermo
Fisher Scientific, Waltham, MA, USA).

The morphometric quantifications (actin and nuclear density) were measured on
confocal acquisitions using ImageJ 1.47 software by means of Integral Density tools [55].
The value of morphometric parameters was expressed as the mean value and its relative
standard deviation calculated on 30 different cells for each treatment.

2.10. Statistical Analysis

Statistical analyses were performed using OriginPro (version 8.1). The differences
between two groups were calculated by a two-tailed Student’s-test. The comparison
between three and more groups was analyzed by one-way or two-way ANOVA multiple
comparisons, respectively. The differences were statistically significant when * p < 0.05,
** p < 0.01.

3. Results and Discussion

Morphological and structural characterization of Ag NPs obtained from conventional
and green Ag NPs were reported in Figure 1. In detail, Figure 1a,b showed typical bright-
field TEM images of two kinds of Ag NPs. The observation of these images revealed
the difference in the size of the NPs obtained from the two synthetic processes. The
conventional route permitted to achieve spherical Ag NPs with a slight variation in size
(12–30 nm in diameter); whereas the NPs obtained by green synthesis, were larger showing
an average diameter ranging from 6 to 50 nm.
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Figure 1. Typical bright field TEM images obtained from conventional Ag NPs (a), related size
distribution (c) and SAED pattern (e). Typical bright field TEM image recorded from green Ag NPs
(b), related size distribution (d) and SAED pattern (f).

To study the size distribution for the conventional Ag NPs (Figure 1c) and the green
counterpart (Figure 1d), TEM images were analyzed using Gatan’s Digital Micrograph
software. The distribution obtained for the conventional Ag NPs (Figure 1c) presented a
clear bimodal distribution, then the data were fitted by two Gaussians: the two maximum
values were obtained in correspondence to (16 ± 2) nm and (22 ± 4) nm. Meanwhile,
the size distribution of the green Ag NPs reported in Figure 1d exhibited a clear trimodal
distribution; therefore, these data were fitted by three Gaussians in order to calculate the
three peak values, which resulted equal to (10 ± 4) nm, (20 ± 8) nm and (40 ± 10) nm.

Figure 1e,f showed the typical SAED patterns recorded by the two types of NPs
obtained. Distinctive features of the SAED patterns were diffraction maxima arranged
along concentric rings determined by the random arrangement of the nanocrystals. The
diffraction patterns displayed the superimposed intensity profile. The diffraction peaks
due to the lattice planes (111), (200), (220), (311) and (222) clearly indicated the presence of a
face-centered cubic phase (fcc) of metallic silver (JCPDS File No. 04-0783 from ASTM 1999).

The size of NPs was also measured using DLS whereas the surface charge was assessed
by ζ-potential (Table 1). In water, the two colloidal solutions were stable, and sizes were
(20 ± 3) nm and (32 ± 6) nm for conventional Ag NPs and green Ag NPs respectively. The
ζ-potential was negative for both types of NPs, i.e., (−30 ± 3) mV and (−35 ± 4) mV. In
the DMEM and RPMI, the presence of proteins and other nutrients made the size of NPs
larger and more negative. In general, a high value of ζ-potential confers greater stability to
colloidal systems, as electrostatic repulsions are generated which prevent the aggregation
of dispersed particles.
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Table 1. Characterization of conventional and green Ag NPs in water, DMEM, and RPMI by DLS and
ζ-potential measurements.

Samples in Water DLS (nm) Zeta Potential (mV)

Conventional Ag NPs 20 ± 3 −30 ± 3
Green Ag NPs 32 ± 6 −35 ± 4

Samples in DMEM DLS (nm) Zeta Potential (mV)

Conventional Ag NPs 29 ± 2 −38 ± 2
Green Ag NPs 36 ± 4 −41 ± 3

Samples in RPMI-1640 DLS (nm) Zeta Potential (mV)

Conventional Ag NPs 31 ± 5 −40 ± 5
Green Ag NPs 38 ± 3 −43 ± 2

Raman spectroscopy was applied to obtain information regarding the molecular
properties of Ag NPs obtained by the two synthetics routes. Figure 2a,b showed the
Raman spectra carried out on the aqueous solutions of conventional and green Ag NPs,
respectively. Regarding Ag NPs synthesized with citrate the peaks at 930 cm−1, 1300 cm−1,
1370 cm−1 and 1575 cm−1 (marked 1, 2, 3, and 4, respectively, in Figure 2a) corresponded
to the typical Raman spectrum of citrate adsorbed onto the surface of conventional Ag
NPs. The bands are related to n(C–COO), n s(COO), n s(COO) and n as(COO) of citrate,
respectively [56,57]. The green Ag NPs showed different results: the main feature of the
Raman spectrum obtained (Figure 2b) showed two broad bands at about 1350 cm−1 and
1565 cm−1 (marked I and II respectively) originating from the superposition of a series of
vibrational modes attributable to stretching vibrations of C=C and C=O bonds [58]. This
supported the presence of polyphenols involved as reducing and capping agents in Ag
NPs formation [59]. In Figure 2c,d we reported the typical absorbance spectra acquired on
conventional Ag NPs (Figure 2c) and green Ag NPs (Figure 2d). A well-defined peak and a
broad peak at about 410 nm were obtained from both types of Ag NPs. These peaks were
clearly due to localized plasmon resonance of Ag NPs dispersed in water. The absorption
spectra were analyzed according to the light scattering theory described by Mie and the free
electron Drude’s theory [60] to explain the characteristic absorption peak due to localized
plasmon resonance. In detail, the absorption coefficient (αj) due to particles dispersed in
the dielectric medium [61], is given by:

αj =
18π f jε

3
2
mε2j

λ(ε1j + 2εm)
2 + ε2

2j

(1)

where fj is the volume fraction of the metal particles (i.e., Ag NPs) with diameter dj, λ is the
photon wavelength, εm is the dielectric constant of medium (i.e., water), and εj = ε1j + iε2j is
the dielectric complex function of the Ag NPs.

The Mie scattering theory demands the sphericity of materials, which need to have a
constant diameter. To consider the polydispersion of our Ag NPs, it is convenient to define
the total absorption coefficient (α):

α = ∑
j

αj (2)

Considering the volume fraction of the Ag NPs with dj diameter:

f wj = f j (3)

where wj is the weight factor for particles with diameter dj and is given by:

wj =
d3

j nj

∑j d3
j nj

(4)
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nj being the number of NPs with diameter dj. Hence, it can be easily to obtain the
size-dependent dielectric function as:

ε j(ω) = εbulk(ω)−
(ωP

ω

)2

1 +
(

2vF
ωdj

)2 + i
2vFω2

P
ω3dj

(5)

Here, ω, vF and εbulk indicate the photon frequency, the Fermi velocity and the dielectric
constant relative to interbond transitions, respectively.
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Figure 2. Raman (a) and UV-V is absorbance spectra (c) obtained from conventional Ag NPs synthe-
sized using citrate: 1, 2, 3, and 4 in (a) marked the peaks related to n(C–COO), n s(COO), n s(COO)
and n as(COO) of citrate; Raman (b) and UV-VIS absorbance spectra (d) obtained from green Ag NPs.
(I), (II) in (b) marked the peaks related to C=C and C=O bonds. In (c,d), the black lines represented
the experimental optical absorption and the dashed red curve the experimental fit.

To confirm the size distribution data obtained by TEM image analysis, the experimental
absorption data were fitted, imposing dj and fj as fit parameters. The constant values
relative to plasma frequency and Fermi velocity were fixed at ωP0 = 3.7 × 1015 rad/s and
vF = 1.38 × 108 cm/s, respectively [62].

The theoretical fittings, reported in Figure 1c (full line) were obtained both for a volume
fraction of 30% of NPs having a mean size of (10 ± 4) nm, and a volume fraction of 70% of
NPs with a mean size of (25 ± 8) nm. Similarly, as regards Figure 1d, the theoretical fitting
was obtained for a volume fraction of 20% of NPs having a mean diameter of (10 ± 2) nm, a
volume fraction of 20% of NPs having a mean size of (20 ± 4) nm and a volume fraction of
60% of NPs with (50 ± 10) nm. The NPs size dispersion derived from the absorption fit data
was in good agreement with the NPs size distribution obtained from analysis performed
on TEM acquisitions.

The FTIR spectra of conventional Ag NPs and green Ag NPs were observed in
Figure 3a,b that complete the characterization obtained by RAMAN spectroscopy. In
Figure 3a, the presence of citrate on the conventional Ag NPs surface was proven by the
peaks corresponding to R–CO2 and C–O stretching in the range between 1560 cm−1 and
1300 cm−1. The peaks of 3200 cm−1 were ascribed to the stretching vibrations of O–H. The
FTIR spectra of the Ag NPs synthetized from Laurus Nobilis, showed the broad band peak
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at ca. 3200 cm−1 and the peaks at ca. 2927 cm−1, 2854 cm−1, 1651 cm−1 and 1023 cm−1

corresponded to O-H and C-H vibration of alcohols and polyphenols. We observed other
representative peaks in the low wavenumber region in the range of 1600–1400 cm−1 asso-
ciated with COO- stretching of aldehydes and ketones surrounding the Ag NPs surface.
These vibrations clearly showed the presence of polyphenols compounds as capping agents
of green Ag NPs.
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Following the accurate characterization of Ag NPs obtained through the two synthetic
approaches, we went to evaluate the viability of THP-1 cells incubated with two different
concentrations of Ag NPs (1 µM and 2 µM) at 24 h and 48 h (Figure 4).
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Figure 4. (a,b) Viability assay performed on THP-1 cell lines exposed to 1 µM and 2 µM of conven-
tional Ag NPs (a) and green Ag NPs (b) after 24 h and 48 h. The viability of cells exposed to NPs was
normalized to control cells (untreated). As a positive control (P), 5% of DMSO was used (data not
shown). Data reported as the mean ± SD from three independent experiments are considered statisti-
cally significant, compared with the control (n = 8) for p-value < 0.01 (<0.01 **) and < 0.05 (<0.05 *).
(c,d) Uptake of conventional Ag NPs (c) and green Ag NPs (d) in THP-1 cell lines at concentrations
of 1 µM and 2 µM for 24 h and 48 h. Untreated cells represented the controls (values = 0, data not
shown). The data were reported as the mean ± SD from three independent experiments. Data were
statistically significant in comparison to exposed cells vs. control cells (ag content is equal to 0) for
p-value < 0.01 (<0.01 **).

For this purpose, THP-1 was differentiated into the primary non-activated macrophage
(M0) phenotype by PMA incubation. As expected, the conventional Ag NPs induced a
significant viability reduction; such effect was strictly dependent both on time and on
the dose. In particular, the highest dose (2 µM) triggered the vitality decrease of about
60% after 24 h and 44% after 48 h of Ag NPs exposure (Figure 4a). The results concerning
the impact of green Ag NPs on macrophages were completely different; in this case, we
observed slight cell death (the viability was reduced by about 20%) only after 48 h using
2 µM of concentration (Figure 4b). To understand whether the different toxic response was
correlated to different macrophages’ uptake, the cellular internalization of conventional
Ag NPs and green Ag NPs was assessed by ICP-OES. The amount of internalized Ag NPs
was evaluated in terms of Ag concentrations measured after exposure to 1 µM and 2 µM of
conventional and green NPs at two time points. As reported in Figure 4c,d, no substantial
differences in the internalization process were noted using the two different types of NPs.
As a matter of fact, when cells were exposed to the highest concentration for 48 h, we
observed an Ag amount of about 8 ng both in the case of conventional Ag NPs (Figure 4c)
and green Ag NPs (Figure 4d). Therefore, we concluded that the different toxicity was not
due to a different uptake rate. Sure enough, the two types of NPs appeared to be similar in
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diameter when dispersed in the cell culture medium RPMI-1640. Therefore, the endocytosis
mechanism was comparable.

Subsequently, the regulation of inflammatory response was assessed by observing the
NF-κB nuclear translocation, which plays a key role in the activation and differentiation
of inflammatory cells [63,64]. NF-κB family represents a class of inducible transcription
factors [65], which are physiologically localized in the cytoplasm by inhibitory proteins.
When an inflammation phenomenon is induced, NF-κB is activated by translocation to
the nucleus where it binds specific DNA sequences involved in the activation of cytokines
and other pro-inflammatory elements [66]. In Figures 5 and 6 were reported the confocal
acquisition of THP-1 cells exposed to 1 µM and 2 µM of conventional and green Ag NPs
for 24 h and 48 h. The actin network, nuclei and NF-κB were labeled with specific markers.
In control cells, we observed the green fluorescence related to NF-κB in the cytoplasm
already after 24 h (Figure 5) and 48 h (Figure 6). In the merged images it was possible
to clearly see the different compartments. The treatment with green Ag NPs caused only
moderate nuclear translocation of NF-κB, compared to the untreated cells, indicating that
the cells did not undergo severe inflammation processes. This result was similar using the
two concentrations of green Ag NPs. In contrast, when the macrophages were exposed to
conventional Ag NPs, NF-κB translocated into the nuclei causing a merged fluorescence
between DAPI (blue) and NF-κB p65 Ab-FITC in a dose-dependent manner.
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Figure 6. Representative confocal images of untreated macrophages (M0, control) and M0 exposed to
the 1 µM and 2 µM of green Ag NPs and conventional Ag NPs for 48 h. The cells were fixed and then
labeled as described in Figure 5. Scale bar is 50 µm.

In addition to qualitative analysis, we also carried out the quantification of co-localization
within the nucleus by the Pearson coefficient on confocal images (Figure 7a,b).

After 24 h of incubation with the two types of NPs, green Ag NPs did not induce an
evident translocation, showing an average percentage of around 25% for both concentra-
tions. On the other hand, the co-localization data relative to conventional NPs exposure,
revealed a drastic increase in percentage: with the co-localization rate becoming equal to
43% using the highest concentration, which was almost double the value recorded for green
NPs (Figure 7a). After 48 h, the translocation of NF-κB becomes more evident, reaching
values of about 50%, whereas in cells exposed to green NPs, no considerable changes were
observed (Figure 7b).

It was demonstrated that the activation of NF-κB induces a series of cascade events.
Among the countless biochemical pathways, the alteration of actin [67,68] and the nu-
clear chromatin amount were demonstrated [69,70]. Then, analysis on actin and nuclei
fluorescence density was carried out using ImageJ software. In particular, the integrated
fluorescence density, evaluated on blue and red channels of fluorescence images, was
a direct indicator of the local concentration of cytoskeletal actin and nuclear chromatin
amount, respectively. In Figure 7c,d we reported the values obtained for this parameter
as a percentage with respect to the control, indicated as 100%. The actin fluorescence inte-
grated density measured on macrophages incubated for 48 h with the conventional Ag NPs
underwent a drastic reduction, reaching average values of 63% (Figure 7c). Contrary, the
exposure to green NPs did not induce evident effects; the fluorescence integrated density
value was reduced by only 10% compared to the control. A similar outcome was evident
regarding the nuclear density. In this case, the reduction of fluorescence was particularly
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evident using conventional NPs (Figure 7d). In close agreement with results obtained by
previous experiments, the internalization of conventional NPs by cells induced actin and
nuclei damage underlining the greater predisposition of these kinds of NPs to induce an
inflammatory response compared with their green counterpart.
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Figure 7. Co-localization analysis of the merged fluorescence signals on confocal images due to the
NF-κB translocation from the cytoplasm to the nucleus (merged blue/green fluorescence intensity
signal) after 24 h (a) and 48 h (b). The data are expressed as the mean SD (5 images for n = 2) and
they were considered statistically significant for a * p < 0.01 (<0.01 **) and p < 0.05 (<0.05 *). Mean
values and their respective standard deviation of actin density fluorescence (c) and nuclear density
fluorescence (d) calculated on confocal acquisitions of THP-1-NPs treated for 48 h.

NF-κB triggers the secretion of different types of cytokines, in particular IL-6 and
IL-8, which are small proteins that regulate the inflammation pathways [71]. Each cytokine
has a specific role. IL-6 acts as a multifunctional cytokine, both pro-inflammatory and
anti-inflammatory [72]; it is secreted by T-lymphocytes and macrophages to stimulate the
immune response, for example during an infection or following trauma and tissue dam-
age [73]. Therefore, the persistent and dysregulated production of IL-6 plays a pathological
role in various autoimmune and chronic inflammatory diseases [74]. IL-8 is a chemokine
produced by macrophages and other types of cells, such as epithelial cells [75]. It is a
chemotactic factor for neutrophils inducing chemotaxis of target cells (neutrophils and
granulocytes), which migrate to the infection site [76]. In addition, it is a strong angio-
genesis promoter [77]. In the light of this, we verified the possible secretion of these two
classes of cytokines by THP-1 cells by ELISA assay to confirm the data obtained by confocal
analysis. As observed in Figure 8, a different trend was noticed using the two types of Ag
NPs. In particular, the exposure to the conventional Ag NPs for 24 h and 48 h strongly
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increased the secretion of IL-6 and IL-8 (Figure 8a,c). In detail, values of about 270 pg/mL
and 380 pg/mL of IL-6 were secreted after incubation with 1 µM and 2 µM of conventional
Ag NPs respectively after 48 h (Figure 8a). At the same time point, similar data were
achieved measuring the amount of IL-8 at the same concentration of NPs: 330 pg/mL and
350 pg/mL. Considering that the untreated cells showed values of about 25 pg/mL, it was
quite intuitive to conclude that this type of NPs promoted a strong activation of cytokines.
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(<0.01 **) compared to the control of each time point.

Similar results were obtained in recent works where conventional Ag NPs were used
on THP-1 cells. In particular, polyvinylpyrrolidone (PVP)-coated Ag NPs with a size less
than 100 nm triggered the up-regulation of pro-inflammatory cytokines gene expression
in macrophages and also in primary blood monocytes [78]. In murine macrophage cell
lines (RAW) biomarkers associated with inflammation were stimulated using ca. 25 µg/mL
of Ag NPs coated with PVP [79]. In addition, our results showed that the toxic behavior
was evident at low doses of conventional Ag NPs. This evidence was demonstrated in
our previous work in which the same plant extract was used to achieve Au NPs tested
on THP-1 cells [80]. In addition, a lot of studies reported the employment of similar low
doses of Ag NPs in vitro [81] and in vivo [82–84]. showing high toxicity and inflammation
activation in different cell lines.

Using green Ag NPs, the data were different because the stimulation of IL-6 and IL-8
secretion was very low. The maximum value was about 150 pg/mL both for IL-6 and IL-8
after the incubation with green Ag NPs (2 µM) for 48 h. These results confirmed the low
toxic effects of green Ag NPs on macrophages. Although a minimal activation of cytokines
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production was recorded, it was not comparable with NPs obtained with the conventional
approach. These results were in line with those obtained by a recent work in which Ag
NPs obtained by Salvia coccinea leaf extracts were anti-inflammatory agents, that efficiently
inhibited inflammation in THP-1 cells [85].

Besides the IL-6 and IL-8, we analyzed the Cyclooxygenase-2 (COX-2) production due
to its critical role in the pathogenesis of several inflammatory diseases [86] and cancer [87].
COX-1, COX-2 and COX-3 are three iso-enzymatic forms of prostaglandin-endoperoxide
synthase [88]; COX-2 is usually expressed at low levels in several tissues and cells; therefore,
it can be strongly induced by some kinds of cytokines, such as TNF-α [89]. On the other
hand, TNF-α is involved in systemic inflammation stimulating the acute phase reaction [90].
It is mainly produced by macrophages, CD4+ T lymphocytes, NK cells, neutrophils, mast
cells, eosinophils, and neurons showing a critical contribution to rheumatoid arthritis
pathogenesis and other diseases [91]. Then, the expression of COX-2 and TNF-α levels
in THP-1 cells were studied using immunoblot analysis (Figure 9a) followed by the in-
cubation with conventional and green Ag NPs for 48 h at 1 and 2 µM of concentration.
The densitometric analysis clearly showed an up-expression of both COX-2 and TNF-α in
THP-1 cells exposed to conventional Ag NPs, in close agreement with the results obtained
in the previous experiments. Using 2 µM of Ag NPs the percentage of expression of TNF-α
reached 70% using conventional NPs versus 50% of green NPs compared to the control cells
(values of about 20%). The same trend was clearly observed for COX-2. Additionally, in
this case, the percentage of expression upon conventional Ag NPs was about 65% whereas
the green counterpart value was 48% with respect to the untread cells (ca. 22%) (Figure 9b).

All the experiments were consistent with each other, leading to the conclusion that
conventional Ag NPs were more able to induce an inflammatory response in macrophages.
The green Ag NPs, on the contrary, induced an inflammation showdown maintaining the
macrophages’ health: this is probably due to the presence of polyphenol capping. These
results were promising starting points to apply green Ag NPs in vivo as anticancer agents
without activating the immune system response. Then, their anticancer outcomes on breast
cancer cell lines (MCF-7) were evaluated analyzing the cell death. Since toxicity on healthy
cells could be a problem in view of possible in vivo treatments, we assessed the viability
also on the breast cells (MCF-10A), which were the non-tumorigenic counterpart. The
data were compared with those obtained with the conventional Ag NPs; in the histograms
reported in Figure 10, the general trend was immediately evident. We also tested the effect
of Ag NPs at higher concentrations (2.5 µM and 3 µM) in order to measure the IC50 values
(Table 2).
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toid arthritis pathogenesis and other diseases [91]. Then, the expression of COX-2 and 
TNF-α levels in THP-1 cells were studied using immunoblot analysis (Figure 9a) followed 
by the incubation with conventional and green Ag NPs for 48 h at 1 and 2 µM of concen-
tration. The densitometric analysis clearly showed an up-expression of both COX-2 and 
TNF-α in THP-1 cells exposed to conventional Ag NPs, in close agreement with the results 
obtained in the previous experiments. Using 2 µM of Ag NPs the percentage of expression 
of TNF-α reached 70% using conventional NPs versus 50% of green NPs compared to the 
control cells (values of about 20%). The same trend was clearly observed for COX-2. Ad-
ditionally, in this case, the percentage of expression upon conventional Ag NPs was about 
65% whereas the green counterpart value was 48% with respect to the untread cells (ca. 
22%) (Figure 9b). 
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Figure 9. Western blot (a) and densitometric analysis (b) of TNF-α and COX-2 expression on THP-1,
after 48 h of exposure to 2 µM of conventional and green Ag NPs. The reported data are estimated as
an average of five independent experiments ± SD and they are considered statistically significant
with p-value < 0.01 (<0.01 **).

Table 2. IC50 values calculated on data measured by viability assays reported in Figure 10.

Conventional Ag NPs MCF-7 (24 h) MCF-7 (48 h) MCF-10A (24 h) MCF-10A (48 h)

IC50 2 µM 2.9 µM 2.05 µM 2.4 µM

Green Ag NPs MCF-7 (24 h) MCF-7 (48 h) MCF-10A (24 h) MCF-10A (48 h)

IC50 1.6 µM 2 µM 1.3 µM 1.4 µM

The conventional Ag NPs induced toxicity both in MCF-7 (Figure 10a) and MCF-10A
(Figure 10c). In detail, in MCF-10A, the exposure to 2 µM of conventional NPs for 48 h
triggered a reduction in cell viability of about 50%. The increase of the doses (2.5 µM and
3 µM) showed that this effect was dose and time dependent. Meanwhile, the green Ag NPs
exhibited different trends in MCF-7 and MCF-10A. In the tumoral cell lines, they promoted
cell death in a dose dependent manner, reducing the viability of about 40% after 48 h of
2 µM treatment (Figure 10b). This impact was more notable using higher concentration.
Contrary, the same concentrations and time exposure in MCF-10A did not trigger evident
toxicity and the living cells were recorded to be 85%, 83% and 81% using 2 µM, 2.5 µM and
3 µM of green Ag NPs respectively (Figure 10d). The concentration of 1 µM both at 24 h
and 48 h did not cause noticeable alterations in cell viability. The IC50 values, calculated as
described in the section Materials, were reported in Table 2, confirming the different toxicity
behavior of the two types of Ag NPs in MCF-7 and MCF-10A. In particular, the green Ag
NPs presented more effectively than conventional Ag NPs in cancer cell lines reported
lower values both at 24 h and 48 h (1.6 µM and 2 µM) compared to the conventional Ag
NPs (2 µM and 2.9 µM).
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Figure 10. Viability assay performed on MCF-7 and MCF-10A cell lines exposed to 1 µM, 2 µM,
2.5 µM and 3 µM of conventional Ag NPs (a,c) and green Ag NPs (b,d) after 24 h and 48 h. The
viability of cells exposed to NPs was normalized to untreated cells (control). The positive control was
represented by cells incubated with 5% DMSO (data not shown). Data reported were the mean ± SD
from three independent experiments compared with the control (n = 8) for p-value < 0.01 (<0.01 **).

Therefore, the data showed that plant extracts not only were responsible for the reduc-
tion and stabilization of cells but also acting as therapeutic agents [92]. The combined action
between the green compounds (polyphenols, proteins, and others) and Ag NPs showed
a synergistic effect against cancer cell lines [80]. On the other hand, the biomolecules
protected the healthy and immune cells from the toxicity and inflammatory properties
correlated to the Ag NPs [93].

These results were very significant for future applications of green NPs in animal models.

4. Conclusions

In this work, we synthesized Ag NPs using two different techniques, one conventional
and one using plant extracts. After the evaluation of their physicochemical properties, we
tested their ability to induce an eventual inflammatory response in macrophages. This
is particularly important since the inflammation process appears to be highly limiting in
terms of using these nanostructures in vivo. Surprisingly, the Ag NPs obtained by green
chemistry were well tolerated by macrophages, which do not appear to be activated. This
was demonstrated by evaluating the NF-κB translocation, the activation of the cytokines
IL-6, IL-8 and TNF-α, the expression of COX-2 and the morphological alterations. On the
contrary, the NPs obtained by the conventional technique induced a strong inflammatory
state in the cells. At this point, we evaluated the ability of green Ag NPs to act as anticancer
agents using MCF-7 cells, demonstrating a reduction in viability of about 55% using
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2 µM. We also analyzed the possible toxicity on MCF-10A, which represents the healthy
counterpart of MCF-7. In these cells, green Ag NPs did not cause cytotoxicity, contrary to
the data obtained using conventional NPs. These results demonstrated the advisability of
using green NPs in the biomedical field as they did not stimulate an anti-inflammatory
response in vitro. Finally, they were toxic exclusively for tumor lines.
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