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At the beginning of this review it is essential to clarify the
terminology that will be used to refer to the members of the
Burkholderia cepacia complex and their relatives. The name B.
cepacia will relate only to B. cepacia genomovar I. Strains
resembling B. cepacia may belong to the B. cepacia complex, to
other Burkholderia species (for instance, Burkholderia gladioli),
or to species from other genera (for instance, Ralstonia pick-
ettii) that share some phenotypic or genotypic similarities with
the B. cepacia complex. B. cepacia complex bacteria and or-
ganisms that may be confused with them will be altogether
referred to as B. cepacia-like organisms. Most previous reports
regarding these organisms were published before the recogni-
tion of the complicated taxonomic relationships between the
different members of the B. cepacia complex; it is therefore
unclear to what category the presumed B. cepacia isolates
described would belong. For that reason, when such literature
is cited, the name “B. cepacia” will be shown in double quotes.

Chronic microbial colonization of the major airways, leading
to exacerbations of pulmonary infection, is the major cause of
morbidity and mortality in patients with cystic fibrosis (CF).
Typical CF pathogens include Staphylococcus aureus, Pseudo-
monas aeruginosa, and Haemophilus influenzae (30). Other glu-
cose nonfermenters, like Stenotrophomonas maltophilia, Alcali-
genes xylosoxidans, R. pickettii, and Burkholderia gladioli, can
frequently be found as well, but their role in the decline of
pulmonary function is unclear (14, 19, 30). Several reports on
the recovery of “B. cepacia” from CF patients appeared in the
late 1970s and early 1980s (62, 63). The first detailed descrip-
tion of the clinical significance of “B. cepacia” colonization and
infection was published in 1984 (47). In that seminal paper,
Isles et al. documented the increasing prevalence of “B. cepa-
cia” colonization and infection in the Toronto, Canada, CF
treatment center and described the so-called “cepacia syn-
drome,” a severe progressive respiratory failure with bactere-
mia that occurs in about 20% of all infected CF patients.
Clustering of new cases in some centers and the decrease of
colonization of new patients following segregation of colonized
and noncolonized patients in other centers suggested that “B.
cepacia” could be transmitted between CF patients. This was
confirmed by several studies (34, 64, 67, 76, 84, 94) that showed

that “B. cepacia” strains can spread between CF patients via
simultaneous hospital admissions or social contact outside of
the hospital. As a result of these findings, new guidelines were
issued to reduce the risk of “B. cepacia” acquisition. These
included discontinuing sponsorship and support of CF summer
camps and segregation of colonized patients. Implementation
of these draconian infection control measures has a tremen-
dous impact on the lives of CF patients, and not all patients or
caregivers accept such measures (35, 36, 62, 63).

“B. cepacia” can also cause lung infections in chronic gran-
ulomatous disease patients, and infections in these patients are
associated with pneumonia and septicemia and are often lethal
(2, 58, 72, 96). “B. cepacia” infections in immunocompetent
patients occur only sporadically, but several cases of pseudo-
epidemics and nosocomial infections, often caused by contam-
inated disinfectants and anesthetic solutions, have been re-
ported (3, 43, 50, 107).

Despite the advances that have been made in the under-
standing of the epidemiology, “B. cepacia” infections still have
a considerable impact on morbidity and mortality in CF pa-
tients (18, 61, 62, 63). Since “B. cepacia” is resistant to most
antimicrobial agents, effective therapies are not straightfor-
ward and management efforts are therefore aimed at preven-
tion of infection (35, 63). Several recommendations regarding
infection control measures have been made, and these include
that CF patients should not share hospital rooms as inpatients
and should limit contact in outpatient clinics (63). However,
the efficiency of infection control measures are determined by
the accuracy with which “B. cepacia” is diagnosed, and poor
laboratory proficiency in identification of this organism still
prevails (17, 40, 75). Although several guidelines intended to
enhance accurate identification of bacterial species from spu-
tum culture have been proposed by national CF organizations
and by the International Burkholderia cepacia Working Group,
the degree to which these are followed varies greatly among
clinical microbiology laboratories (90).

The problem is given an extra dimension by the fact that
several “B. cepacia” strains have attracted attention as antag-
onists of soilborne plant pathogens (44, 66) and as plant-
growth-promoting agents that can colonize the rhizosphere of
several economic crops and thereby increase the crop yield (9,
39, 74, 83). The exceptional metabolic diversity of this organ-
ism (which allows it to use, e.g., constituents of crude oils and
herbicides as carbon sources) could be put to use in the biore-
mediation of recalcitrant xenobiotics (8, 28, 54, 57). However,
most strains used or under development for biocontrol or
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bioremediation purposes are taxonomically poorly character-
ized, and their potential hazard to the CF community is un-
clear (33, 37, 44, 110).

The taxonomic complexity of B. cepacia-like organisms and
the lack of widespread and generally accepted identification
schemes hinder sound studies that could establish the roles
played by and the pathogenic significance of the different B.
cepacia-like organisms. This information is crucial to propose
scientifically founded policies for each of the above-mentioned
problems. The purpose of this review is to present an overview
both of the taxonomy of the B. cepacia complex and of the
available phenotypic and genotypic methods aimed at the cor-
rect identification of these organisms.

TAXONOMY OF THE B. CEPACIA COMPLEX

Pseudomonas cepacia was originally described by Burk-
holder in 1950 as the causative agent of bacterial rot of onion
bulbs (13). Other names that were assigned included eugonic
oxidizers group 1, Pseudomonas kingii, and Pseudomonas mul-
tivorans (49, 77, 97), but several studies clearly showed that
these could be considered as synonymous names of P. cepacia
and that the name P. cepacia had priority (5, 86, 92, 95). The
name P. cepacia was not included in the Approved List of
Bacterial Names (93) and therefore lost standing in bacterial

nomenclature until 1981, when it was revived by Palleroni and
Holmes (81). In 1992, P. cepacia and six other species belong-
ing to rRNA group II of the genus Pseudomonas (Pseudomo-
nas solanacearum, Pseudomonas pickettii, Pseudomonas gladi-
oli, Pseudomonas mallei, Pseudomonas pseudomallei, and
Pseudomonas caryophylli) (82) were transferred to the new
genus Burkholderia (119). In contrast to the genus Pseudomo-
nas, the genus Burkholderia belongs to the �-subdivision of the
phylum Proteobacteria (53). Since the genus name was first
assigned, the taxonomy of the genus Burkholderia has under-
gone considerable changes (Table 1), and the genus now in-
cludes 22 validly described species: B. cepacia (the type species),
Burkholderia caryophylli, Burkholderia mallei, Burkholderia
pseudomallei, Burkholderia gladioli, Burkholderia plantarii, Burk-
holderia glumae, Burkholderia vietnamiensis, Burkholderia andro-
pogonis, Burkholderia multivorans, Burkholderia glathei, Burkhold-
eria pyrrocinia, Burkholderia thailandensis, Burkholderia graminis,
Burkholderia phenazinium, Burkholderia caribensis, Burkholderia
kururiensis, Burkholderia ubonensis, Burkholderia caledonica,
Burkholderia fungorum, Burkholderia stabilis, and Burkholderia
ambifaria (1, 10, 20, 22, 23, 24, 25, 32, 102, 104, 105, 109, 117,
118, 119, 120, 122, 123). A phylogenetic tree based on 16S
rRNA gene sequences, showing the positions of all the Burk-
holderia species and representatives of related genera, is shown
in Fig. 1.

TABLE 1. Overview of the genus Burkholderiaa

Species name originally
assignedb

Burkholderia species name or
taxon assigned

Yr of
assignment Reference Other name

subsequently assigned
Yr of

assignment Reference

Pseudomonas cepacia B. cepacia comb. nov. (B.
cepacia genomovar I)

1992 81, 104, 119

Pseudomonas solanacearum B. solanacearum comb. nov. 1992 119 Ralstonia solanacearum comb. nov. 1995 120
Pseudomonas pickettii B. picketti comb. nov. 1992 119 Ralstonia pickettii comb. nov. 1995 120
Pseudomonas gladioli B. gladioli comb. nov. 1992 119
Pseudomonas mallei B. mallei comb. nov. 1992 119
Pseudomonas pseudomallei B. pseudomallei comb. nov. 1992 119
Pseudomonas caryophylli B. caryophylli comb. nov. 1992 119
Pseudomonas plantarii B. plantarii comb. nov. 1994 102
Pseudomonas glumae B. glumae comb. nov. 1994 102

B. vandii sp. nov. 1994 102 Junior synonym of B. plantarii 1999 22
B. vietnamiensis sp. nov. (B.

cepacia genomovar V)
1995 32, 104

Pseudomonas cocovenenans B. cocovenenans comb. nov. 1995 123 Junior synonym of B. gladioli 1999 22
Pseudomonas andropogonis B. andropogonis comb. nov. 1995 32

B. multivorans sp. nov. (B.
cepacia genomovar II)

1997 104

Pseudomonas glathei B. glathei comb. nov. 1997 104
Pseudomonas pyrrocinia B. pyrrocinia comb. nov. 1997 4, 104

B. thailandensis sp. nov. 1998 10
B. graminis sp. nov. 1998 109

Pseudomonas phenazinium B. phenazinium comb. nov. 1998 109
B. norimbergensis sp. nov. 1998 117 Pandoraea norimbergensis comb. nov. 2000 20
B. caribensis sp. nov. 1999 1
B. stabilis sp. nov. (B.

cepacia genomovar IV)
2000 104, 105

B. kururiensis sp. nov. 2000 12
B. ubonensis sp. nov. 2000 118
B. fungorum sp. nov. 2001 23
B. caledonica sp. nov. 2001 23
B. ambifaria sp. nov. (B.

cepacia genomovar VII)
2001 25

B. cepacia genomovar III 1997 104
B. cepacia genomovar VI 2001 24

a Members of the B. cepacia complex are in boldface type.
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From the mid-1990s on, several researchers noted that there
was a marked heterogeneity among “B. cepacia” strains iso-
lated from different ecological niches. These strains were ten-
tatively classified as “B. cepacia” using a wide range of tech-
niques (7, 15, 32, 91, 100, 101, 121). The heterogeneity among
“B. cepacia” isolates made correct identification problematic,
and evaluation of the techniques used showed that they were
either not very sensitive, not very specific, or neither sensitive
nor specific (55, 59, 60, 69, 91, 98). The remarkable diversity
among presumed “B. cepacia” strains and the lack of reliable
identification schemes led Vandamme et al. (104) to a polypha-
sic taxonomic study that demonstrated that presumed “B. ce-
pacia” strains isolated from CF patients and other sources
belonged to at least five distinct genomic species or genomo-

vars (the term genomovar was introduced to denote phenotyp-
ically similar genomic species [103]). B. cepacia genomovar V
was identified as the previously described species B. vietnam-
iensis (32), and the name B. multivorans was proposed for the
genomic species formerly known as B. cepacia genomovar II.
The remaining groups were referred to as B. cepacia genomo-
vars I, III, and IV. This group of five genomic species was
collectively referred to as the B. cepacia complex. Since B.
cepacia genomovar I contains the type strain, it retains the
formal binomial name B. cepacia. Following a thorough inves-
tigation of the phenotypic and genotypic characteristics of B.
cepacia genomovar IV strains (105), it became obvious that this
organism could be differentiated from all other members of the
B. cepacia complex, and it was formally classified as B. stabilis.

FIG. 1. Phylogenetic tree based on 16S rRNA gene sequences, showing the positions of all the Burkholderia species and of representatives of
related genera. Bar, 10% sequence dissimilarity.
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Subsequent polyphasic taxonomic studies identified two more
members of the B. cepacia complex (24, 25). B. cepacia geno-
movar VI contains strains isolated from CF patients in the
United States and the United Kingdom. This organism can
phenotypically be differentiated from all members of the B.
cepacia complex except B. multivorans. The name B. ambifaria
(B. cepacia genomovar VII) was proposed for isolates from
human clinical and environmental specimens, including CF
patients. B. ambifaria also contains several well-characterized
biocontrol strains. In addition, it was recently shown that the
species B. pyrrocinia also belongs to the B. cepacia complex (4).

Within the B. cepacia complex, representatives of different
species generally have DNA-DNA hybridization values be-
tween 30 and 60%, while values obtained from strains belong-
ing to the same species are generally higher than 70%. DNA-
DNA binding values obtained with other Burkholderia species
are generally below 30% (22, 24, 25, 26, 32, 104). These values
correspond to the three categories described in reference 106:
high DNA relatedness (70% or higher) between strains of a
single species, low but significant DNA relatedness below the
species level, and nonsignificant DNA relatedness (30% or
less). In addition, the similarities between 16S ribosomal DNA
(rDNA) sequences obtained from different members of the B.
cepacia complex are higher (�97.7%) than similarities be-
tween such sequences and those of other Burkholderia species
(�97.0%) (Fig. 1).

IDENTIFICATION OF B. CEPACIA COMPLEX
ORGANISMS

Introduction. The identification of organisms cultured from
respiratory specimens obtained from CF patients is not
straightforward. Using commercial systems, members of the B.
cepacia complex have been misidentified as (among others) B.
gladioli, R. pickettii, Alcaligenes spp., Pseudomonas spp., S. mal-
tophilia, Flavobacterium spp., and Chryseobacterium spp., and
strains of these various species have likewise been misidenti-
fied as belonging to the B. cepacia complex (55, 75). Methods
for the identification of B. cepacia-like organisms must be
capable of accurately identifying such a diverse variety of
gram-negative nonfermenters, both distinguishing them from
the B. cepacia complex and identifying the individual members
of the B. cepacia complex. In addition, these methods should
be relatively quick and easy to perform, given the clinical
relevance of these organisms and the relatively large number of
isolates involved (for example, the Cystic Fibrosis Foundation
[CFF] Burkholderia cepacia Research Laboratory and Repos-
itory receives on average 750 B. cepacia-like isolates per year
[J. J. LiPuma, Int. Burkholderia cepacia Working Group Abstr.
6th Annu. Meet., 2001 {Online}]).

Phenotypical tests. In routine clinical laboratories, the iden-
tification of putative B. cepacia complex isolates is generally
performed using a combination of selective media, conven-
tional biochemical analysis, and/or commercial systems (89,
108). Several different media have been developed for the
selective isolation of B. cepacia complex isolates from sputum
of CF patients. These media include P. cepacia medium (PC
agar) (containing 300 U of polymyxin B per ml and 100 �g of
ticarcilline per ml) (31); oxidation-fermentation agar supple-
mented with lactose, 300 U of polymyxin B per ml, and 0.2 U

of bacitracin per ml (OFPBL agar) (113); and B. cepacia se-
lective agar (BCSA) (containing 1% lactose and 1% sucrose in
an enriched base of casein and yeast extract with 600 U of
polymyxin B per ml, 10 �g of gentamicin per ml, and 2.5 �g of
vancomycin per ml) (40). BCSA was reported to be superior to
OFPBL and PCA in terms of rapidity (100% recovery follow-
ing 72 h of incubation) and quality (70% of isolates showed
good growth following 72 h of incubation) of recovery of B.
cepacia complex organisms from CF respiratory specimens and
inhibition of other organisms (41). Organisms not belonging to
the B. cepacia complex that are capable of growth on BCSA
include B. gladioli and Ralstonia spp. (41). The sensitivity and
specificity of some or all of the above-mentioned media for the
isolation of environmental “B. cepacia” isolates may be much
lower (17), and therefore the use of other media, like PCAT
medium (containing azelaic acid and tryptamine) (12) or TB-T
medium (containing glucose, asparagine, trypan blue, and tet-
racycline) (38) may be recommended (4, 109).

There are several reports that describe the failure of most
commercial test systems to identify B. cepacia complex isolates
with sufficient sensitivity and specificity, with isolates com-
monly misidentified as B. gladioli, S. maltophilia, or Ralstonia
spp. (55, 75, 89). Commercial test systems with relatively high
positive predictive values (including the Vitek GNI Plus and
Remel Uni-N/F Tek Plate and N/F Screen [89]) are available,
but there is nevertheless a general consensus that bacterial
isolates presumptively identified as belonging to the B. cepacia
complex on the basis of commercial test system results should
be tested for growth on BCSA, presence of lysine and ornithine
decarboxylase activity, oxidation of sucrose and adonitol, pres-
ence of oxidase activity, hemolysis, pigment production, and
growth at 42°C (42, 55, 75, 89, 108).

There are several phenotypic tests that allow the separation
of B. gladioli, Pandoraea species, R. pickettii, A. xylosoxidans,
and S. maltophilia from the B. cepacia complex (Table 2), and
some of the members of the B. cepacia complex can be iden-
tified to the species or genomovar level based on phenotype.
However, given the phenotypic variation that can occur within
species and the frequent discrepancies between results ob-
tained with different methodologies, the identification of B.
cepacia complex based on phenotypic analysis alone should be
confirmed by a reference laboratory equipped to provide more
complete analyses (42). Consideration should also be given to
the use of reference labs for any gram-negative nonfermenter
for which species identification remains equivocal after phe-
notypic analysis.

Whole-cell protein analysis. Data presented by Vandamme
et al. (104) indicated that sodium dodecyl sulfate-polyacrylam-
ide gel electrophoresis (SDS-PAGE) of whole-cell proteins
was a suitable technique for the identification of members of
the B. cepacia complex. However, the comparison of the iden-
tification results obtained by this method with those obtained
by other identification approaches revealed several discrepan-
cies and a poor discrimination between B. cepacia genomovars
I and III, B. stabilis, and B. ambifaria was noted. The advan-
tages of this technique are its applicability to a wide range of
organisms, the fact that little prior knowledge regarding the
isolate is required, and its relative simplicity. A drawback of
this method for the identification of B. cepacia-like isolates is
that the whole-cell protein patterns are often characterized by
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a distortion of part of the banding pattern. These distortions
significantly influence the correlation level between the protein
patterns. Therefore, it is essential to compare the result of the
numerical analysis of the protein patterns with the profiles
themselves in order to delineate the clusters (21, 24, 25, 104).
SDS-PAGE of whole-cell proteins remains a valuable tool for
the identification of B. cepacia complex and B. cepacia-like
isolates in the research setting, where experienced personnel
are present for the interpretation of the protein profiles; the
above-mentioned shortcomings, however, render it unsuitable
for use in the clinical setting.

AFLP fingerprinting. In the past decade, various nucleic
acid sequence-based methods have been developed for the
identification and typing of bacterial pathogens (73, 79). One
of these methods is amplified fragment length polymorphism
(AFLP) fingerprinting, a fingerprinting technique based on the
selective PCR amplification of genomic restriction fragments.
This method combines broad applicability with high reproduc-
ibility and discriminatory power (45, 48, 85, 87). Other data
(20, 24, 25, 26) indicate that AFLP fingerprinting is a technique
that can be used for the identification of members of the B.
cepacia complex and other B. cepacia-like bacteria. However,
the method is technically demanding and labor-intensive and
radioactive formats are impractical for clinical use (79). Sig-
nificant progress has been made with the fluorescent format
(26, 29, 56), but the high setup costs associated with the pur-
chase of a DNA sequencer may be prohibitive for most labo-
ratories. The high reproducibility of the banding patterns for a
given strain facilitates database construction and use of such a
database for identifying new bacterial strains. However, the
presence of high-intensity bands in the patterns of some strains
and the intermediate taxonomic position of several strains (as
revealed by DNA-DNA hybridization) may ultimately require
additional testing before some strains can be conclusively iden-
tified, again making this method unsuitable for application in
routine diagnostic microbiology laboratories. It is, however, a
valuable tool in taxonomic studies and a welcome addition to
SDS-PAGE of whole-cell proteins for the identification of
organisms easily misidentified by the latter method.

Whole-cell fatty acid analysis. The high degree of automa-
tion, the relative simplicity, and the fairly low costs associated
with whole-cell fatty acid analysis make it a valuable technique
for rapid identification of isolates in clinical laboratories (112).
However, Vandamme et al. (104) reported the failure of
whole-cell fatty acid analysis to distinguish between the first
five known species of the B. cepacia complex, and more-recent
data (105) confirmed this conclusion. It was also shown that
fatty acid analysis cannot differentiate members of the B. ce-
pacia complex from B. gladioli (116; Clode, F. E., A. Louise, L.
Metherel, and T. L. Pitt, Letter, Am. J. Respir. Crit. Care Med.
160:374–375, 1999; M. Wilsher, J. Kolbe, A. J. Morris, D. F.
Welch, and P. A. R. Vandamme, Authors’ Reply to Letter,
Am. J. Resp. Crit. Care Med. 160:374–375, 1999). From the
comparison of published data, it is obvious that there are
qualitative and quantitative differences in the fatty acid com-
position of members of the B. cepacia complex and other B.
cepacia-like species, like Pandoraea spp. (20) and Ralstonia
spp. (21), but considering standard deviations, it seems ques-
tionable whether these differences will suffice to identify all
new isolates to the species level. Therefore, all organisms iden-

tified by whole-cell fatty acid analysis as belonging to the B.
cepacia complex, B. gladioli, the genus Pandoraea, or the genus
Ralstonia should be further investigated with methods more
suitable for identification of B. cepacia-like isolates to the spe-
cies level. A main advantage of this technique is the existence
of a commercial database (Microbial ID) for identification of
isolates that allows the rapid separation of B. cepacia complex
organisms and related organisms both from other gram-nega-
tive nonfermenters (like P. aeruginosa and S. maltophilia) and
from Enterobacteriaceae. The technique can also be used to
assign isolates that cannot be classified with other screening
methods to a major phylogenetic lineage.

PCR-based identification. Several candidate PCR assays
aimed at the identification of “B. cepacia” have been described
previously (16, 51, 78, 101) but most of these assays were
developed before the recognition that the B. cepacia complex
consists of several species. In addition, most relied on pub-
lished DNA sequence data derived from analyses of culture
collection strains that, in retrospect, are poorly representative
of the total diversity within the B. cepacia complex. Most of the
studies regarding PCR-based identification of members of the
B. cepacia complex that have been carried out so far have been
based on the diversity within the nucleotide sequences of the
16S and/or 23S rDNAs and were either aimed at the develop-
ment of species- and/or genomovar-specific primers or RFLP
analysis of the PCR-amplified 16S rRNA gene (6, 11, 24, 25,
65, 70, 88, 114, 115). The results from these studies clearly
indicate that B. multivorans, B. vietnamiensis, and B. cepacia
genomovar VI each can be separated from all other members
of the B. cepacia complex. B. cepacia genomovars I and III, B.
stabilis, B. ambifaria, and B. pyrrocinia can be identified as a
group, but the variation within the rRNA operon is obviously
too small to separate all members of the B. cepacia complex,
and because of this discriminatory limitation, Mahenthiral-
ingam et al. (70) developed a novel PCR-based identification
assay based on the recA gene. The recA gene shows 94 to 95%
similarity between the different genomovars, and typically 98 to
99% similarity can be found within the genomovars. However,
B. cepacia genomovar I and III each contain two subpopula-
tions with a different recA allele. At the moment of this writing,
recA gene-derived primer pairs are available for the identifi-
cation of B. cepacia genomovar I, B. cepacia genomovar III, B.
multivorans, B. stabilis, B. vietnamiensis, and B. ambifaria (no
primers are available yet for B. pyrrocinia or B. cepacia geno-
movar VI) (25, 70). In addition to recA gene-derived species-
specific primers, a recA gene-based RFLP approach, enabling
the recognition of multiple types within each genomovar, was
developed (70).

The development of these novel molecular tools has pro-
vided the scientific community with quick, easy, and scientifi-
cally sound ways of identifying individual strains belonging to
this taxonomically complex group of organisms. The disadvan-
tages of the PCR-based methods include the need for appro-
priate measures to avoid cross-contamination (including the
use of negative controls and the use of different areas for PCR
manipulations) and the fact that PCR primers are not available
for all B. cepacia-like organisms (e.g., no published primers are
available yet for the identification of Pandoraea or Ralstonia
species). In addition, care should be taken in the interpretation
of negative PCR results (i.e., in distinguishing between true-
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and false-negative results), and in general it can be stated that
laboratories engaging in PCR-based identification of B. cepa-
cia complex organisms should be appropriately equipped at the
technical level and should comply with stringent quality control
requirements to exclude misidentifications (46).

B. cepacia experimental strain panel. Recently, a panel of 30
well-characterized strains representative of B. cepacia genomo-
vars I and III, B. stabilis, B. multivorans, and B. vietnamiensis
was assembled (71). The main reason for the assembly of this
panel was that identification, epidemiological, and virulence
studies all would benefit from the use of a defined set of
representative strains. Since the assembly of the panel, several
new taxa belonging to the B. cepacia complex have been de-
scribed, and representative strains of these new taxa will have
to be included in an updated version of the experimental strain
panel.

CONCLUSIONS

It can be concluded that most of the methods necessary to
identify B. cepacia-like organisms are available. The choice of
what identification tools to use depends on their availability
and the mission of the laboratory involved. In the research
laboratory, a polyphasic approach (aimed at the integration of
different kinds of data and information) (106) seems appropri-
ate. Firstly, isolates should be assigned to a major phylogenetic
group (such as the B. cepacia complex or the genus Pandoraea)
using SDS-PAGE, whole-cell fatty acid analysis, or 16S rDNA
sequence analysis. In addition, members of the B. cepacia com-
plex that cannot unequivocally be identified to the genomovar
level should be included in complementary screening methods
like RFLP fingerprinting of the recA gene and/or AFLP fin-
gerprinting. The identity of strains can then be confirmed using
recA gene-based PCR assays or 16S rDNA RFLP fingerprint-
ing. The mission and therefore the challenge posed by the
identification of B. cepacia-like organisms for routine clinical
microbiology laboratories is different. Strains isolated on se-
lective media and tentatively identified as belonging to the B.
cepacia complex using commercial systems should be con-
firmed with the classical biochemical tests described. The
present state of the art indicates that isolates that are consid-
ered to be putative members of the B. cepacia complex after
additional testing should be further examined by the genotypic
methods discussed above. Laboratories equipped to augment
routine evaluation with genotypic analyses have been estab-
lished (e.g., the CFF Burkholderia cepacia Research Labora-
tory and Repository, as well as the Canadian Burkholderia
cepacia Research and Referral Repository [for more informa-
tion, please see the website http://go.to/cepacia]). The devel-
opment of additional PCR-based identification systems and
their wider use will have an important impact on studies that
seek to elucidate the epidemiology and natural history of hu-
man infections due to B. cepacia-like organisms.

The early detection of B. cepacia complex and B. cepacia-
like bacteria is extremely important both for the CF patient as
well as for the CF community. However, a recent study (90)
indicated that less than half of U.S. centers surveyed employ
“B. cepacia”-specific selective media or incubate cultures for
extended periods, both of which improve the yield of this
organism. The use of these up-to-date culture techniques is

technically not demanding and should be the expected stan-
dard of care in every CF center worldwide. Continuing educa-
tion with regard to this issue is crucial. Apart from detection,
correct identification of B. cepacia-like bacteria is extremely
important. Therefore, priority should be given to the continu-
ous evaluation of existing PCR-based methods (and other
methods used for identification) with a view to keeping them
up-to-date with respect to the increasing biodiversity found
within the B. cepacia complex. It will also be useful to develop
alternative PCR-based identification assays and expand the
existing assays to related taxa like R. pickettii and Pandoraea
spp. The use of up-to-date laboratory techniques for the
proper detection and identification of B. cepacia complex or-
ganisms in respiratory cultures of CF patients will be beneficial
to patients and CF centers, enhance the accuracy of national
CF registries, and provide the basis for further studies. The
improved diagnosis of infections caused by members of the B.
cepacia complex and other B. cepacia-like organisms will help
with the interpretation of the results from clinical outcome
studies, and by doing so, will provide crucial information re-
garding the pathogenicity and/or transmissibility of specific
strains involved.
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