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Abstract
Fibroblast growth factor 23 (FGF23) is an important bone hormone that regulates phosphate homeostasis in the kidney 
along with active vitamin D (1,25(OH)2D3) and parathyroid hormone (PTH). Endocrine effects of FGF23 depend, at least 
in part, on αKlotho functioning as a co-receptor whereas further paracrine effects in other tissues are αKlotho-independent. 
Regulation of FGF23 production is complex under both, physiological and pathophysiological conditions. Physiological 
regulators of FGF23 include, but are not limited to, 1,25(OH)2D3, PTH, dietary phosphorus intake, and further intracellular 
and extracellular factors, kinases, cytokines, and hormones. Moreover, several acute and chronic diseases including chronic 
kidney disease (CKD) or further cardiovascular disorders are characterized by early rises in the plasma FGF23 level point-
ing to further mechanisms effective in the regulation of FGF23 under pathophysiological conditions. Therefore, FGF23 also 
serves as a prognostic marker in several diseases. Our review aims to comprehensively summarize the regulation of FGF23 
in health and disease.
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Introduction

Fibroblast growth factor 23 (FGF23) was discovered as an 
endocrine factor produced in bone that may be considered 
as the missing link of the kidney-parathyroid gland-bone 
axis [9]. It helps maintain phosphate homeostasis not only 
by regulating parathyroid hormone (PTH) and 1,25(OH)2D3 
(calcitriol), active vitamin D, secretion, but also by directly 
targeting renal phosphate transport [9]. Phosphate is essen-
tial for a bunch of cellular processes including nucleic acid 
production, energy metabolism, or signal transduction 
(phosphorylation/dephosphorylation of signaling molecules) 
[14]. Moreover, it is part of hydroxyapatite that makes up the 
essential inorganic compound of bone [14].

FGF family

FGF23 is a relatively new protein in evolution [82]. The 
mammalian family comprises two types of FGFs: intracellu-
lar FGFs and extracellular FGFs [82]. FGFs 11–14 function 
in the cell as signaling molecules and play a role in neuronal 
excitability [82]. Extracellular FGFs can be subdivided into 
endocrine and canonical (also named paracrine) members 
depending on heparin or heparan sulfate as a cofactor [82]. 
Endocrine FGF15/19, 21, and 23 exhibit low affinity for 
heparin cofactors and therefore require Klotho proteins as 
co-receptors [82].

FGF23

FGF23 (251 amino acids) displays the highest expression in 
bone (osteoblasts and osteocytes) but can also be detected 
in other organs including the liver, brain, heart, thyroid, 
intestine, and skeletal muscle [70, 87, 109]. As a prerequi-
site for its endocrine properties, it is devoid of the heparan-
sulfate binding motif which would result in high extracel-
lular matrix binding, allowing its secretion into blood [82]. 
FGF23 secretion is strongly influenced by posttranslational 

 *	 Michael Föller 
	 michael.foeller@uni-hohenheim.de

1	 Department of Physiology, University of Hohenheim, 
Garbenstraße 30, 70599 Stuttgart, Germany

Received: 23 December 2021 / Revised: 18 January 2022 / Accepted: 19 January 2022 / Published online: 27 January 2022 

http://orcid.org/0000-0001-7621-5807
http://orcid.org/0000-0003-2074-4827
http://crossmark.crossref.org/dialog/?doi=10.1007/s00424-022-02668-w&domain=pdf


Pflügers Archiv - European Journal of Physiology (2022) 474:281–292	

1 3

modification, i.e., O-glycosylation and phosphorylation 
[14]. The polypeptide N-acetylgalactosaminyltransferase 
3 (GALNT3) O-glycosylates FGF23, resulting in its secre-
tion and preventing its phosphorylation by family with 
sequence similarity 20 member C (FAM20C) which would 
lead to FGF23 breakdown [14]. Subtilisin-like proprotein 
convertases (SPC) cleave FGF23 at a certain motif leading 
to inactive C-terminal (25–179) and N-terminal (180–251) 
FGF23 residues [9]. Commercial ELISAs detecting C-termi-
nal FGF23 (cFGF23) or uncleaved intact FGF23 (iFGF23) 
are commonly used for plasma samples. Possibly, cFGF23 
is not only inactive, but may suppress FGF23 signaling [48]. 
FGF23 effects can be exerted in an αKlotho-independent or 
αKlotho-dependent fashion [48]. FGF23 receptors include 
fibroblast growth factor receptor (FGFR)1c, FGFR3c, and 
FGFR4 [82]. αKlotho binds to FGF23 thereby enhancing its 
receptor affinity [82].

αKlotho

The relevance of αKlotho was discovered in 1997: Mice with 
markedly reduced αKlotho expression exhibit accelerated 
aging with multiple aging-associated diseases and die early 
[66]. In its transmembrane form, αKlotho is a co-receptor 
for FGF23 while soluble αKlotho has FGF23-independent 

paracrine and endocrine effects [9]. Soluble αKlotho is gen-
erated by cleavage of its extracellular domain or alternative 
splicing [29]. It regulates membrane proteins including ion 
channels and controls intracellular pathways such as insulin-
like growth factor I or Wnt signaling [65].

Effects of FGF23

The effects of FGF23 in different organs, tissues, and cells 
are displayed in Fig. 1.

Kidney

FGF23 is a major regulator of phosphate homeostasis that is 
dependent on the interplay of different organs: Alimentary 
phosphate is absorbed in the intestine; most extracellular 
phosphate is deposited in bone; and the kidney is responsi-
ble for urinary excretion of phosphate that is filtered in the 
glomeruli [57] (Fig. 2). Moreover, PTH and 1,25(OH)2D3 
are further regulators of phosphate homeostasis and FGF23 
[9]. FGF23 induces renal phosphate excretion by decreas-
ing surface expression of NaPiIIa and NaPiIIc, the major 
Na+-dependent phosphate transporters of the proximal 
tubule [57]. FGF23 downregulates renal cytochrome P450 
(Cyp)27b1 expression, the key enzyme for 1,25(OH)2D3 

Fig. 1   Effect of FGF23 in 
different organs and cells. 
C-reactive protein (CRP), 
fibroblast growth factor 23 
(FGF23), inorganic Phosphate 
(Pi), interleukin-6 (IL-6), left 
ventricular hypertrophy (LVH), 
parathyroid hormone (PTH), 
reactive oxygen species (ROS), 
tumor necrosis factor α (TNFα). 
Sources: Heart: Injurymap, CC 
BY 4.0, Leukocytes: Blausen.
com staff (2014). “Medical 
gallery of Blausen Medical 
2014.” WikiJournal of Medicine 
1 (2). DOI:https://​doi.​org/​10.​
15347/​wjm/​2014.​010. ISSN 
2002–4436., CC BY 3.0
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production, and enhances Cyp24a1 production catalyz-
ing the inactivation of 1,25(OH)2D3 [57]. These effects of 
FGF23 are αKlotho-mediated [29].

Parathyroid glands

FGF23 inhibits Pth expression and lowers PTH plasma 
levels through mitogen-activated protein kinase (MAPK) 
signaling and, in an αKlotho-independent manner, through 
calcineurin/nuclear factor of activated T-cells (NFAT) sign-
aling [14, 75]. The interdependence of FGF23, PTH, and 
1,25(OH)2D3 is summarized in Fig. 3.

Bone

FGF23 controls bone mineralization [78].

Brain

FGF23 increases synaptic density and changes morphology 
of hippocampal cells [53].

Heart

FGF23 induces left ventricular hypertrophy (LVH) through 
FGFR4 [49]. In isolated cardiac myocytes, FGF23 favors 
pro-fibrotic signaling [68]. FGF23 stimulates NO synthe-
sis and reactive oxygen species (ROS) generation in human 
coronary endothelial cells [89].

Immune system

Lipopolysaccharide (LPS) and interferon γ (IFNγ) enhance 
Fgf23 expression while FGF23 stimulates tumor necro-
sis factor α (TNFα) production in pro-inflammatory mac-
rophages [50]. FGF23 suppresses 1,25(OH)2D3 production 
in monocytes [3] and interferes with neutrophil recruitment 
[91].

Liver

FGF23 upregulates interleukin (IL)-6 and C-reactive protein 
(CRP) expression in the liver, thereby promoting inflamma-
tion in chronic kidney disease [96].

Lung

In bronchial epithelial cells, FGF23 also stimulates inflam-
mation [63].

Muscle

Physical exercise enhances FGF23 production, and FGF23 
increases mitochondrial function and helps cope with ROS 
production [70].

Regulation of FGF23

In the following, we in an alphabetical order summarize 
intracellular and extracellular factors regulating gene expres-
sion, production, and secretion of FGF23 (Table 1).

Actin cytoskeleton

Reorganization of the actin cytoskeleton controlled by 
Rac1/PAK1 signaling is a prerequisite for Fgf23 expression 
in vitro [36].

Autonomic nerve system

The circadian rhythm governs sympathetic activity which 
enhances FGF23 production [61]. During the dark phase, 
Fgf23 expression goes up in bone [61]. This regulation is 
dependent on cryptochrome 1 [61]. In mice with a GSK3 
mutation rendering it insensitive to PKB/Akt/SGK signal-
ing, enhanced sympathetic activity is associated with ele-
vated FGF23 serum levels [35]. The latter are lowered by 
β-adrenergic receptor blocker propranolol [35].

Calcineurin inhibitors

Ca2+-dependent phosphatase calcineurin inhibi-
tors tacrolimus and ciclosporin A are widely used as 

Fig. 2   FGF23 is upregulated 
upon alimentary phosphate 
intake and regulates renal phos-
phate and vitamin D handling
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immunosuppressants and inhibit Fgf23 gene expression 
in vitro [5].

Calcium

Hypocalcemia is associated with low FGF23 levels as a 
study of Gcm2−/− mice characterized by hypocalcemia, 
hyperphosphatemia, and low calcitriol and PTH levels and 
Cyp27b1−/− mice with hypocalcemia, hypophosphatemia, 
and low 1,25(OH)2D3 but high PTH levels has revealed 
[19]. Conversely, a high-calcium diet increases FGF23 
serum concentration in the transgenic mice without affect-
ing 1,25(OH)2D3 or PTH, pointing to an independent role of 
extracellular Ca2+ in regulating FGF23 [19]. Store-operated 
Ca2+ entry (SOCE) through Ca2+ release-activated calcium 
channel protein 1 (Orai1) in conjunction with Ca2+-sensing 
protein STIM1 is part of the cellular machinery enhancing 
Fgf23 transcription in vitro [115]. Calciprotein particles 
composed of calcium, phosphate, and fetuin-A also stimu-
late Fgf23 expression [1].

C‑Term FGF23

C-terminal FGF23 inhibits FGF23 signaling by impeding 
formation of the αKlotho FGFR1c complex in vivo and 
in vitro [48].

Endothelins

Endothelin-1 (ET-1) reduces FGF23 production through 
endothelin B receptor (ETB) in vitro and in vivo [39].

Energy metabolism

Insulin and insulin-like growth factor 1 suppress FGF23 pro-
duction in vitro and in vivo [4]. This effect is mediated by 
induction of PI3K/PKB/Akt activity inhibiting transcription 
factor FOXO1 [4]. Consequently, insulin-deficient mice are 
characterized by elevated FGF23 serum concentrations that 
is decreased by insulin administration [4]. In a human study, 
a negative correlation of plasma insulin and FGF23 was 
found [4]. Cellular energy sensor 5′-adenosine monophos-
phate (AMP)-activated kinase (AMPK) is activated in 
energy deficiency and inhibits FGF23 production in vivo 
and in vitro through suppression of Orai1-mediated SOCE 
[47]. Fibrates, agonists of lipid metabolism-associated tran-
scription factor PPARα, downregulate FGF23 in vitro, an 
effect at least partly mediated by AMPK-dependent regula-
tion of SOCE [34]. Adipokine leptin induces Fgf23 expres-
sion in vivo [102]. Acidosis is associated with enhanced 
FGF23 production [64]. Moreover, lactic acid concentra-
tions encountered in severe lactic acidosis upregulate Fgf23 
expression in vitro, an effect at least in part dependent on 

Table 1   Regulators of FGF23

Factor Influence on FGF23

1,25(OH)2D3 ↑ [9]
Acidosis ↑ [64]
Actin cytoskeleton ↑ [36]
Advanced glycation endproducts ↑ [7]
Aldosterone ↑ [84, 113]
AMPK ↓ [47]
Cadmium ↑ [62]
Calcineurin inhibitors ↓ [5]
Calciprotein ↑ [1]
Calcium ↑ [19]
cFGF23 Inhibits signaling [48]
DMP1 ↓ [25, 73]
Endothelin-1 ↓ [39]
ENPP1 ↓ [54]
ERR-γ ↑ [87]
Erythropoietin ↑ [44]
FGFR1 signaling ↑ [107]
Glucocorticoids ↓ [40]
HIF1α ↑ [104, 116]
High-fat diet ↑ [46]
IL-1β ↑ [59, 81, 110]
IL-6β ↑ [24]
Insulin ↓ [4]
Insulin-like growth factor ↓ [4]
Iron ↓ [52]
Lactic acid ↑ [2]
Leptin ↑ [102]
Lipocalin 2 ↑ [17]
Lithium ↑ [37, 114]
LPS ↑ [81]
Lysophosphatidic acid ↑ [95]
Myostatin ↑ [32]
NF-κB ↑ [2, 7, 33, 114, 115]
Nurr1 ↑ [75]
p38MAPK ↑ [33]
PHEX ↓ [8, 111]
Phosphate ↑ [9, 55]
PKC ↑ [6]
Plasminogen activation ↓ [30]
PPARα ↓ [34]
Propranolol ↓ [35]
PTH ↑ [75, 81]
SOCE ↑ [34, 41, 47, 114, 115]
Sympathetic activity ↑ [35, 61]
TGF-β2 ↑ [41]
TNFα ↑ [46, 81]
Vitamin A ↓ [88]
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nuclear factor kappa-light-chain-enhancer of activated B 
cells (NF-κB) signaling [2]. Advanced glycation endprod-
ucts induce Fgf23 gene expression in an NF-κB-dependent 
manner [7].

ENPP1

In autosomal recessive hypophosphatemic rickets type 2 
(ARHR2), ectonucleotide pyrophosphatase/phosphodiester-
ase family member 1 (ENPP1) fails to keep FGF23 levels 
low due to inactivating mutations in the ENPP1 gene result-
ing in hypophosphatemia [54].

ERR‑γ

Orphan nuclear estrogen-related receptor-γ (ERR-γ) 
increases hepatic FGF23 synthesis in acute kidney injury 
(AKI) [87].

DMP1

Dentin matrix acidic phosphoprotein 1 (DMP1) is a protein 
produced by osteoblasts and osteocytes and regulates the 
mineralization of extracellular matrix [25]. In vivo, DMP1 
deficiency is associated with enhanced Fgf23 expression 
with hypophosphatemia [73], and in vitro DMP1 downregu-
lates FGF23 through NFAT signaling [25].

G‑3‑P

Glycerol-3-phosphate (G-3-P) released in AKI is posi-
tively correlated with FGF23 levels in humans and 
enhances Fgf23 transcription in bone [95]. This effect is 
dependent on G-3-P acyltransferases converting G-3-P 
to lysophosphatidic acid that activates LPA receptor 1 
in vitro [95].

Inflammation

As a mediator of inflammation-dependent upregula-
tion of FGF23, pro-inflammatory IL-1β elevates FGF23 
serum levels through bone resorption [110] and through 
enhanced gene expression in vitro [59]. Also, pro-inflam-
matory IL-6 directly stimulates Fgf23 expression through 
STAT3 signaling [24]. TNFα enhances FGF23 production 
in chronic inflammation [26] and in mice upon high-fat 
diet feeding [46]. An enhancer element 16 kb upstream 
of the start site of Fgf23 gene transcription accounts for 
LPS-, IL-1β-, TNF-α-, and PTH-induced Fgf23 expression 
[81]. NF-κB is a prominent transcription factor complex 
involved in pro-inflammatory responses [115]. In vitro, 
NF-κB induces Orai1 expression, facilitating SOCE which 
enables Fgf23 transcription [115]. Lipocalin 2 (LCN2) is 
an iron chelator and part of innate immune responses [17]. 
In CKD, it stimulates FGF23 production, at least in part 
through cAMP signaling [17].

Fig. 3   The interdependence of 
FGF23, PTH, and 1,25(OH)2D3. 
Source: Skin: DBCLS 統合TV, 
CC BY 4.0
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Iron, EPO, and HIF1α

In mice, iron deficiency results in upregulated Fgf23 
expression and iFGF23 as well as cFGF23 serum lev-
els [52], an effect involving hypoxia inducible factor 1 
α (HIF1α) [104] which is a transcriptional regulator of 
FGF23 [116]. HIF1α target erythropoietin (EPO) also 
stimulates FGF23 production [44].

Kinases

P38 mitogen-activated protein kinase (p38MAPK) is acti-
vated upon exposure of cells to stress and stimulates Fgf23 
expression in vitro, an effect at least in part depending on 
NF-κB [33].

Metal ions

Cadmium impacts on post-translational modification of 
FGF23, stimulating its secretion in vitro and in vivo [62]. 
This effect requires p38MAPK-dependent activation of 
aryl hydrocarbon receptor leading to enhanced GALNT3 
production [62]. Lithium stimulates FGF23 production 
in vitro and in vivo through NF-κB-dependent Orai1 and 
SOCE regulation [37, 114].

Nurr1

Nuclear receptor-associated protein1 (Nurr1) mediates 
PTH-dependent upregulation of Fgf23 expression in vitro 
and in vivo [75].

Paracrine/autocrine FGFR1 signaling

Regulation of FGFR1 signaling through autocrine and 
paracrine FGFs influences Fgf23 transcription, an effect 
involving PLCγ, MAPK, and PI3K/Akt signaling [107].

PHEX

Loss of PHEX activity elevates plasma FGF23 levels, as 
typical of X-linked hypophosphatemia (XLH) [8]. This 
effect is dependent on PHEX enhancing FGF23 degra-
dation through SPC or PHEX-DMP1-integrin complexes 
[111].

Phosphate

Phosphate induces Fgf23 transcription through ROS 
in vitro [55].

PKC

In vitro, protein kinase C (PKC) activation through phorbol 
ester enhances whereas PKC inhibition downregulates Fgf23 
gene expression [6].

Plasminogen activation

Overexpression of plasminogen activator inhibitor-1 (PAI-
1) elevates FGF23 levels in mice whereas tissue-type and 
urokinase-type plasminogen activators cleave FGF23 
in vitro [30].

Steroid hormones

Anti-inflammatory glucocorticoids suppress Fgf23 expres-
sion in vitro and FGF23 serum levels in mice, at least in the 
short term [40]. Mineralocorticoid aldosterone upregulates 
Fgf23 transcription in vitro and in vivo [84, 113]. In Klotho 
deficiency, enhanced 1,25(OH)2D3 leads to extracellular vol-
ume depletion which further worsens outcome [43].

TGF‑β

Transforming growth factor-β2 (TGF-β2) upregulates Fgf23 
transcription and secretion through SOCE in vitro [41]. 
Myokine myostatin also stimulates Fgf23 expression and 
secretion in vitro [32].

Vitamin A

Retinoic acid receptor (RAR) signaling induced by vitamin 
A compounds inhibits Fgf23 expression and protein secre-
tion in vitro [88].

Pathophysiological roles of FGF23

The pathophysiological role of FGF23 is not limited to dis-
eases with hypophosphatemia or hyperphosphatemia. Also, 
further acute and chronic disorders not associated with 
altered phosphate metabolism are characterized by changes 
in the plasma FGF23 concentration.

Acute kidney injury

Acute kidney injury leads to increased FGF23 levels [87, 
95].
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Airway inflammation

In chronic obstructive pulmonary disease, FGF23 is elevated 
[63].

Autosomal dominant polycystic kidney disease

Patients with autosomal dominant polycystic kidney disease 
are mainly characterized by high cFGF23 and, in part also, 
high iFGF23 levels [85]. In rodent models of this disease, 
iFGF23 levels are elevated [97].

Cancer

Rare forms of colon adenocarcinoma are characterized by 
FGF23 secretion with hypophosphatemia [67] whereas in 
other forms, plasma FGF23 is increased [60]. In urothelial 
cancer, FGF23 is also elevated [71]. Further malignancies 
found to exhibit, at least in part, higher FGF23 levels are 
ovarian cancer [101], prostate cancer [42], and multiple 
myeloma [99]. For further review, see [31].

Cardiovascular disease

FGF23 induces  LVH  without αKlotho in mice [38]. 
However, Klotho deficiency also induces LVH without 
involvement of FGF23 [108]. Interestingly, cardiac 
Fgf23 overexpression in healthy mice does not cause 
LVH, supporting a role of αKlotho or phosphate status 
in the progression of LVH [69]. Due to these results, the 
exact role of FGF23 in heart disease remains somewhat 
controversial (Fig. 4) [98]. In human cohorts, FGF23 is 
positively associated with left ventricular heart mass 
in CKD patients [38]. In patients with coronary artery 
disease, higher FGF23 levels are associated with increased 
risk of death [83]. In CKD patients and in the elderly, 
increased levels of iFGF23 are positively correlated with 
aortic calcification [20, 76, 79]. Higher FGF23 levels are 
associated with atrial fibrillation in CKD [74]. High FGF23 
is also a risk factor for myocardial infarction, hemorrhagic 
stroke [22], and heart failure [21].

CKD

CKD is often characterized by hyperphosphatemia due 
to failure of the kidney to excrete phosphate [56]. As 
hyperphosphatemia is a major trigger of enhanced FGF23 
secretion, high FGF23 plasma levels are typical of CKD 
[103]. However, since FGF23 goes up early in CKD prior 
to the onset of hyperphosphatemia or hyperparathyroidism 
[58], other factors including inf lammation are also 
effective [26]. FGF23 is a reliable prognostic marker 
in CKD correlating with outcome [45]. Upon kidney 

transplantation, cFGF23 is correlated with graft loss 
[16]. In CKD patients, higher abundance of oxidized 
PTH is observed [112]. In contrast to non-oxidized PTH, 
oxidized PTH is not correlated with plasma FGF23, and 
in vitro, oxidized PTH is less capable of inducing Fgf23 
gene expression [112]. Moreover, in CKD, the positive 
association of plasma Klotho with GFR is absent in 
patients with high FGF23 levels [93].

Diabetes and obesity

FGF23 levels are positively associated with increased insulin 
resistance and obesity [51].

Hyperphosphatemic disorders

Hyperphosphatemic familial tumoral calcinosis type 1–3 
(HFTC) is characterized by hyperphosphatemia, normal or 
high calcitriol levels, and phosphate retention [11]. It is due 
to loss of function mutation in the gene encoding GALNT3 
(type I), FGF23 (type II), and αKlotho (type III) ultimately 
causing FGF23 deficiency or resistance to FGF23 [11].

PTH-dependent hyperphosphatemic disorders include 
pseudohypoparathyroidism, where PTH resistance causes a 
decrease of 1,25(OH)2D3 and an increase in serum FGF23 
concentration [117].

Fig. 4   Effect of FGF23 and αKlotho in the heart. Heart: Injurymap, 
CC BY 4.0
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Hypophosphatemic disorders

Autosomal dominant hypophosphatemic rickets (ADHR) is 
due to mutations rendering FGF23 resistant to cleavage [94]. 
In tumor-induced osteomalacia, tumor cells — often but not 
exclusively benign mesenchymal tumors — secrete FGF23 
[15], resulting in hypophosphatemia as a hallmark. XLH is also 
caused by an abnormally high FGF23 plasma concentration 
that is due to loss-of-function mutations of the PHEX gene 
[100]. Inactivating mutations in the DMP1/ENPP1/FAM20C 
genes are responsible for ARHR1/2/3 with elevated FGF23 
levels [57]. Fibrous dysplasia/McCune-Albright syndrome 
is caused by an activating mutation of GNAS resulting in 
high cAMP and FGF23 levels [10]. Activating mutations of 
PTH/PTHrP receptor gene account for Jansen’s metaphyseal 
chondrodysplasia characterized by high FGF23 plasma 
concentration [12]. Activating mutations of FGFR1 gene 
are the reason for osteoglophonic dysplasia characterized by 
high FGF23 levels and hypophosphatemia [105]. Increased 
αKlotho levels also result in hypophosphatemic rickets and 
increased iFGF23 plasma concentration [13].

Inflammatory diseases

In inflammatory diseases, a correlation of inflammatory 
activity and plasma FGF23 is observed (e.g., rheumatoid 
arthritis [92], inflammatory bowel disease [28], sepsis in CKD 
patients [23]). In CKD, a higher FGF23 plasma concentration 
is correlated with higher inflammatory activity [77]. Since 
inflammation also contributes to CKD, it may contribute to 
the rise in plasma FGF23 typical of this disease [18].

Iron deficiency

In the absence of CKD, iron deficiency is associated with 
an elevation of cFGF23 [106]. In general, treatment of 
iron deficiency with intravenous iron lowers cFGF23 on a 
transcriptional level while ferric carboxymaltose increases 
iFGF23 due to an inhibitory effect on its degradation 
[106]. In patients on dialysis, ferric carboxymaltose, 
however, decreases iFGF23 while elevating cFGF23 [90]. 
Upon renal transplantation, iron deficiency also drives an 
increase in cFGF23 and contributes to the poorer outcome 
of iron deficiency in CKD [27].

Liver disease

In patients with end stage liver disease, FGF23 is increased 
owing to hepatic FGF23 production [86].

Anti‑FGF23 therapy

Burosumab is an antibody against FGF23 that is approved 
and therapeutically used in the treatment of X-linked 
hypophosphatemia [72]. Further FGF23-associated dis-
eases for which anti-FGF23 therapy is tested include tumor-
induced osteomalacia [80].

Conclusions

FGF23 is part of a complex network with a very high 
degree of interdependence of the constituting regulating 
factors. Better understanding of the regulation of FGF23 is 
of high interest in view of the many pathologies impacting 
on the plasma FGF23 concentration. The endocrine effects 
of FGF23 are nowadays well established. However, the 
multiple paracrine effects in different tissues are less well 
studied. Moreover, the regulation of FGF23 under both, 
physiological and pathophysiological conditions is ill-
defined including transcriptional and post-transcriptional 
mechanisms. In particular, it is not yet clear in many cases 
whether the increase in plasma FGF23 concentration 
observed in many diseases only indicates disease or 
whether FGF23 actively contributes to disease progression 
as observed in the heart. Also the role of anti-FGF23 
therapy needs to be investigated. Definitely, further 
research is warranted.
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