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Abstract

Chimeric antigen receptor (CAR) T-cell therapy is a dynamic therapy of engineered T-cells 

targeting neoplastic cells, which offers impressive long-term remissions for aggressive relapsed/

refractory hematologic malignancies. However, side effects including severe infections can 

be life-threatening. Multiple factors, including cytokine release syndrome, B-cell aplasia, and 

hypogammaglobulinemia, contribute to infection risk. B-cell aplasia is an expected on-target, off-

tumor effect of CD19+-targeted CAR T-cells and leads to hypogammaglobulinemia. We review 

hypogammaglobulinemia observed in the five currently FDA-approved CAR T-cell therapies 

and other CAR T-cell products evaluated in clinical trials, and discuss hypogammaglobulinemia 

onset, duration, and immune recovery. We review associations between hypogammaglobulinemia 

and infections, with a discussion informed by other known B-cell depleting contexts. 

Differences in hypogammaglobinemia between children and adults are identified. We integrate 

management strategies for evaluation and immunoglobulin replacement from clinical studies, 

expert recommendations, and organizational guidelines. Notably, our review also highlights 

newer CAR T-cell products targeting different B-cell antigens – including BCMA, SLAMF7, 

and κ light chains. Finally, we identify key areas for future study to mitigate and treat 

hypogammaglobulinemia resulting from this transformative therapy.
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Introduction

Chimeric antigen receptor (CAR) T-cell therapy has dramatically improved the outcomes 

for patients with relapsed or refractory hematopoietic malignancies that previously had poor 
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prognoses. CAR T-cells utilize an engineered receptor combining an antigen recognition 

domain with T-cell activation domains to stimulate T cell elimination of neoplastic cells 

(1,2). Serious adverse side effects including immune related adverse events and severe 

infections have been associated with CAR T-cell therapy and can be fatal. While infection 

risk is due to multiple factors, two of the direct side effects of CAR T-cell therapy, B-cell 

aplasia and hypogammaglobulinemia, can predispose to infections both in the immediate 

post-infusion period and even years later.

Although hypogammaglobulinemia can be a long-lasting side effect contributing to 

infection, standardized guidelines for managing hypogammaglobulinemia after CAR T-cell 

therapy have not been well established. We describe immunoglobulin replacement across 

studies and summarize an integrated management approach from expert recommendations, 

experiences from other immunodeficiencies, and organizational guidelines. We propose 

future directions to further our understanding of hypogammaglobulinemia and strategies 

to predict and reduce hypogammaglobulinemia utilizing new CAR T-cell approaches and 

technologies.

Mechanism of B-cell aplasia in CAR T-cell therapy and correlation with 

tumor responses

B-cell aplasia and hypogammaglobulinemia after CAR T-cell therapy are expected 

consequences – “on target, off tumor” effects – of CAR T-cell therapy targeting CD19, 

a transmembrane glycoprotein antigen on malignant B-cells in B-cell lymphomas and 

leukemias and also on normal B cells (3). B-cell aplasia results from the CAR T-cell attack 

on B cells, which affects both normal and malignant B-cells expressing CD19, and can be 

profound and persistent (4–9). The severity and duration of B-cell aplasia can serve as a 

pharmacodynamic measure of the persistence and functionality of infused CAR T-cells (8).

Temporally, B-cell aplasia occurs around the time of CAR T-cell expansion, within two 

weeks to one month of infusion (4,10). B-cell aplasia often persists for over 6 months, 

extending to years (2,6,8,11). However, B-cell recovery is variable across different studies 

(10,12,13).

Hypogammaglobulinemia: Timing, Variability, and Recovery

Hypogammaglobulinemia has been described following CAR T-cell therapy, with 

variable incidence. Within the first 90 days post-CAR T-cell infusion (CTI), 

hypogammaglobulinemia (defined as IgG < 400 mg/dL) was present in 35%, 27%, and 46% 

of adult patients between days 15–30, 31–60, and 61–90 post-CTI, respectively (10). At 90 

days or later after CAR T-cell infusion, 67% of adults had hypogammaglobulinemia at some 

point, either with IgG < 400 mg/dL or requiring at least one intravenous immunoglobulin 

(IVIG) infusion (14). Hypogammaglobulinemia has been reported to last up to four 

years (6,9). Similarly, 40% of adults treated with axicabtagene ciloleucel experienced 

hypogammaglobulinemia overall (13), whereas hypogammaglobulinemia occurred in only 

14% for lisocabtagene maraleucel (15). Table 1 presents the hypogammaglobulinemia and 
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infection incidence and management of hypogammaglobulinemia associated with the five 

currently U.S. Food and Drug Administration (FDA)-approved CAR T-cell treatments.

Rates of hypogammaglobulinemia may vary across studies due to differences in 

hypogammaglobulinemia definitions, timing of immunoglobulin measurements, and study 

protocols. Pre-treatment with chemotherapy including rituximab-based regimens, resulting 

in undetectable circulating B-cells and decreased immunoglobulin levels even prior to 

CAR T-cell infusion, serve as another confounder (16). However, a CAR T-cell specific 

effect on hypogammaglobulinemia was demonstrated in a study examining 46 patients 

with immunoglobulin levels both prior to and after CAR T-cell-infusion, which found 

significantly lower post therapy immunoglobulin levels compared to pre-therapy (692 mg/dL 

pre- vs. 392 mg/dL post-; p <0.0001) (17). In the trials, IVIG was given at clinician 

discretion or by institutional protocol. In four adult trials, IVIG supplementation ranged 

from 11% to 32% (13,16,18,19).

Long-term immunoglobulin recovery has been reported, even in complete responders. At 

five-year follow-up of 16 adult patients in complete remission after tisagenlecleucel, 11 

had normal Immunoglobulin (Ig) M, 9 had normal IgA, and 6 had normal IgG levels (12). 

Figure 1 displays temporally the B-cell aplasia, hypogammaglobulinemia, recovery, and 

immunoglobulin supplementation practices for CAR T-cell products.

Underlying Differences in Children and Adults

Hypogammaglobulinemia is more frequent in children compared to adults. In one study, 

100% of children and young adults receiving CAR T-cell therapy for B-cell Acute 

Lymphocytic Leukemia (ALL) experienced hypogammaglobulinemia (7). In another study, 

14% had hypogammaglobulinemia (IgG < 400 mg/dL) at day 21, and 29% were 

hypogammaglobulinemic at day 63 (with median IgG of 455 mg/dL regardless of IgG 

supplementation) (20). In children, IVIG supplementation was more frequent, with all 25 

pediatric and young adult patients in one trial receiving supplementation, which was given 

for IgG < 500 mg/dL (8).

Increased severity and duration of hypogammaglobulinemia in children may result from 

fundamental differences in immunoglobulin and plasma cell development between children 

and adults. For example, some immunoglobulin subclasses complete maturation only in 

late childhood or adulthood. Children also may have fewer plasma cells protective against 

pathogens. A subset of long-lived bone marrow plasma cells (CD38+CD19−), surviving after 

CAR T-cell infusion and protective against specific pathogens, such as tetanus, measles, 

and mumps, was detected only in subjects aged 17 and older, suggesting that this subset 

developed throughout childhood and adolescence and conferred protection starting only 

in late adolescence (11). Therefore, adults may possess a more robust plasma cell subset 

resistant to CD19+ CAR T-cell therapy compared to children, rendering children more 

susceptible to hypogammaglobulinemia and infections (21).
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Infection risk from CAR T-cell therapy and hypogammaglobulinemia

Infections remain a major risk factor for mortality after CAR T-cell infusion (6,9). Figure 1 

indicates infections after CAR T-cell therapy in clinical trials.

Generally, infections were greatest within the first month after CAR T-cell infusion and 

include bacterial, viral, and fungal infections, although bacterial were the most common 

type (10,20,22). Infections occurred in 23–42% of adult patients in the first month (10,22), 

with 80% of infections occurring within the first ten days in one study (10). At later time 

points, infections occurred in 21% of adults between days 29–90 (10) and 30% of adults 

at days 31–180 (22), consisting mainly of respiratory viral infections (10,22). In children, 

respiratory viral infections also predominated later but occurred in higher frequency than 

adults (20). Children were at higher risk for more severe infections than adults within the 

first 90 days, with 57% of infections being severe or life-threatening (20).

Between days 0 and 90, 50% of adult infections were mild or moderate and 41% were 

severe (10). Beyond 90 days post-CTI, infection density was 0.55 per 100 days-at-risk (14), 

and most infections were not severe, with 80% treated in the outpatient setting (14). Table 

1 presents infection rates and infection types for the currently FDA-approved CAR T-cell 

therapies.

Hypogammaglobulinemia has been directly linked to both early and late infections 

in children. Hypogammaglobulinemia post-CAR T-cell infusion has been significantly 

associated with infection risk within the first 28 days (20). In another study of 28 children 

receiving subcutaneous immunoglobulin replacement (scIg) after CAR T-cell therapy, 

increasing IgG levels were significantly associated with a lower rate of sinopulmonary 

infection (p = 0.0072) (23).

In adults, few studies have examined infection risk factors specifically related to CAR T-cell 

therapy. While two studies found a significant association between infection and cytokine 

release syndrome severity, a statistical association with hypogammaglobulinemia was not 

found (10,24). These studies may have been underpowered to detect a difference, and 

variability in timing, degree, and duration of B-cell aplasia and hypogammaglobulinemia 

may have prevented detecting a direct causal relationship. An analysis of 101 patients 

revealed that infectious complications significantly increased in number after CAR T-cell 

therapy (p=0.0001), and that the number of infectious complications after CAR T-cell 

therapy were significantly greater in patients with moderate-severe compared to mild 

hypogammaglobulinemia (p=0.03) (17). Additional studies may lead to greater insight into 

the infectious consequences of post-CAR T-cell hypogammaglobulinemia and represent an 

area for future investigations.

Evidence for hypogammaglobulinemia and infections in other B-cell 

depleting contexts

Evidence from B-cell specific depletion in other contexts support hypogammaglobulinemia 

predisposing to infection. In chronic lymphocytic leukemia, a malignancy of dysfunctional 
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B-cells that can suppress normal IgG production, regular immunoglobulin supplementation 

led to decreased bacterial infections (25). Specific agents targeting B-cells are also 

associated with infections and hypogammaglobulinemia. In a study of 4479 patients 

receiving rituximab, worsening hypogammaglobulinemia as well as a significant increase in 

severe infections was identified in patients following rituximab (26). In another study, 23.7% 

of 114 patients receiving rituximab for any reason developed hypogammaglobulinemia with 

IgG < 580 mg/dL (27).

The pharmacokinetics of B-cell depletion due to CAR T-cell therapy differ greatly compared 

to passively transferred B-cell-depleting antibodies, resulting in a more robust B-cell aplasia 

(11). Thus, data and experience in other B-cell targeted therapies may help to inform the 

establishment of guidelines to manage long-term hypogammaglobulinemia post CAR T-cell 

infusion given the lack of data for CAR T-cell therapy specifically.

Management Recommendations

Due to lack of randomized, controlled clinical trials on treatment of 

hypogammaglobulinemia and infection risk, recommendations are based on expert opinion, 

center specific experience, and infection-prevention approaches and strategies from other 

contexts, such as the use of high-dose corticosteroids, B-cell targeting therapies including 

rituximab, primary immunodeficiencies, and post-hematopoietic cell transplantation (HSCT) 

(21).

Recently, guideline recommendations on infections and CAR T-cell treatment have 

been proposed. A multidisciplinary team designated by the Spanish Ministry of Health 

recommends a baseline assessment of lymphocyte subsets and immunoglobulin levels in all 

adult patients prior to lymphodepleting chemotherapy and subsequent monthly monitoring 

until the sixth month after infusion (28). The Society for Immunotherapy for Cancer (SITC) 

provides similar guidance, but without a specified end date (29). After the first six months, 

clinical criteria should dictate monitoring; patients without hypogammaglobulinemia at that 

time may undergo twice yearly measurements of immunoglobulin and annual measurements 

of immunoglobulin subsets (28).

A specific immunoglobulin level at which to begin replacement was not proposed in these 

guidelines; rather, the ideal immunoglobulin level to prevent infections is individualized 

and determined over time, and replacement should be considered for those with high 

infection risk or experiencing recurrent infections (28–30). If substitution is required, 

a starting dose of 400–600 mg/kg every 3–4 weeks (28,29) with a goal IgG trough 

> 400 mg/dL is recommended in adults (28). If a patient continues to have recurrent 

infections despite monthly supplementation, the dose or frequency can be increased or 

subcutaneous administration can considered (28). ScIg (at 100–200 mg/kg/week) may also 

be recommended for patients with long-term B-cell aplasia (29). Replacement in specific 

situations – such as absence of seroconversion after vaccination or subclass deficiency – may 

also be warranted (28).

Wat and Barmettler Page 5

J Allergy Clin Immunol Pract. Author manuscript; available in PMC 2023 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Hill et al. (31) and Hill and Seo (21) propose an algorithm based on expert opinion, 

other contexts, and primary immunodeficiency. This includes monthly monitoring of serum 

total IgG for at least the first three months after CAR T-cell infusion. Patients with IgG 

≤ 400 mg/dl within the first three months should be considered for supplementation, 

especially if they experience severe or recurrent bacterial infections (31). After the first 

3 months, patients with IgG ≤ 400 mg/dl who are not experiencing infections may be 

trialed off immunoglobulin replacement with close monitoring (31). Supplementation can 

be considered for patients with IgG between 400 and 600 mg/dL who are experiencing 

recurrent or severe bacterial infections (31). Patients with total IgG >600 mg/dL, but 

with recurrent or serious infections, may undergo additional immunologic evaluation 

including CD19+ or CD20+ B cell flow cytometry, antibody titers for certain pathogens 

and immunoglobulin subclasses (21). If specific antibody levels are low or nonprotective, 

IgG replacement or determination of responses to vaccine challenge can be considered (21).

Management in Children

Generally, most pediatric patients in clinical trials have been supplemented monthly with 

IVIG (according to institutional protocol or physician discretion). One such protocol begins 

replacement at 400 mg/kg monthly within 30 days of CAR T-cell infusion (23).

For all children, Los-Arcos et al. (28) recommends a monthly IVIG replacement dose of 

0.5 g/kg, aiming for an IgG level within the normal range for the child’s age, starting one 

month after CAR T-cell infusion. The SITC recommends supplementation for children with 

serum IgG <400 mg/dL (29), and Doan and Pulsipher (32) recommend beginning IVIG 

supplementation when IgG levels fall between 400–600 mg/dL (typically 1–3 months after 

CAR T-cell infusion) and replacement every 3–4 weeks to maintain appropriate trough 

levels.

For children, replacement therapy should begin even at a trough IgG levels higher than 400 

mg/dL in order to minimize infection (32). Los-Arcos et al. (28) recommends a higher IgG 

trough level (800 mg/dL) in some cases, especially for children younger than ten years or 

with baseline pulmonary pathology or added immunosuppression, such as in graft-vs-host 

disease. Arnold et al. (23) suggest immunoglobulin replacement to a higher trough level 

(IgG > 1000 mg/dL) for all children, given that fewer infections occurred at this higher level 

in their cohort receiving scIg replacement post-CAR T-cell infusion.

Los-Arcos et al. (28) recommends continuing replacement as long as B-cell aplasia or low 

IgA or IgM levels persist, with the decision to stop made on a case-by-case basis once 

B-cells recover. However, B-cells can rise in number while remaining dysfunctional, and 

IgG levels can be absent even with detectable B-cells, so B-cell number should not serve as a 

sole surrogate for immunoglobulin levels (23,32).

Future directions

Further studies on the clinical consequences of prolonged B-cell aplasia, such as the 

relationship to infections and mortality, and optimal monitoring and management are greatly 

needed as the number of CAR T-cell products and their uses expand. Standardization 
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of definitions of hypogammaglobulinemia, and classification into mild, moderate, and 

severe categories, can facilitate easier comparison across clinical trials and studies. 

Moreover, standardizing the timepoints for B-cell assessment and immunoglobulin level 

measurements would enable a better understanding of the temporality of B-cell aplasia and 

hypogammaglobulinemia and subsequent recovery. Additional studies that systematically 

examine the effects of hypogammaglobulinemia, while controlling for other factors, 

or prospective studies on hypogammaglobulinemia – measuring pre- and post-CAR 

T-cell infusion immunoglobulin levels and implementing consistent classifications for 

hypogammaglobulinemia severity– can provide more definitive insights into the nature 

of hypogammaglobulinemia and its consequences. Given the increasing use of CAR 

T-cell therapy for relapsed/refractory malignancy, consultation and input from Allergy/

Immunology specialists with experience and training in immune evaluation and the use 

of immunoglobulin replacement may be helpful in managing these complicated patients.

In addition, factors predisposing to persistent B-cell aplasia and hypogammaglobulinemia 

require further exploration. Construct type, such as use of CD28 or 41-BB co-stimulation 

domains, distribution of persistent CAR T-cells, and ratio of CD4:CD8 T cells re-infused 

into the patient could all affect the persistence of CAR T-cells and resulting B-cell aplasia. 

Ideally, biomarkers to allow for a risk prediction model could be identified to allow 

for maintaining the cancer in remission while also allowing B-cell and immunoglobulin 

recovery.

With newer CAR T-cell constructs that target additional antigens – including the κ 
immunoglobulin light chain, B cell maturation antigen (BCMA), and signaling lymphocytic 

activation molecule (SLAMF7) – and other diseases such as multiple myeloma, the risks for 

hypogammaglobulinemia and infection remain to be elucidated and compared with those of 

CD19+ CAR T-cells. It is plausible that specifically targeting plasma cells may pose a higher 

infection and hypogammaglobulinemia risk.

To minimize the risk of B-cell aplasia, research on CAR T-cells targeting antigens that 

are less ubiquitously expressed in B-cell lineages is ongoing. One such approach includes 

CAR T-cells that target the κ light chain, with the purpose of sparing normal B cells that 

express the λ light chain and therefore limiting B-cell aplasia and hypogammaglobulinemia 

(33). Another strategy is to target BCMA, an antigen expressed by malignant cells from 

almost all multiple myeloma patients, but unlike CD19, expressed in normal B cells only 

late in differentiation (34). BCMA−/− mice retained intact early humoral responses, short-

term immunoglobulin production, and germinal center responses (34), which may make 

targeting BCMA less likely to cause hypogammaglobulinemia than targeting CD19+. A 

third molecule includes the SLAMF7 antigen, which may be a promising target for multiple 

myeloma as it is uniformly and highly expressed in multiple myeloma and present on a 

subset of normal leukocytes (plasma cells, natural killer (NK), T cell subsets, NK-T, and 

dendritic cells) (35,36).

In addition to targeting more restricted antigens along the B-cell differentiation course, 

other strategies to limit CAR T-cell toxicity include incorporation of a ‘suicide gene’ 

into the construct or utilizing a switchable system. In developing a CAR T-cell construct 
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targeting SLAMF7, Amatya et al. (37) incorporated a dimerization domain fused to a 

caspase-9 domain, such that administration of a dimerization agent activates caspase-9 and 

induces elimination of the CAR T-cells, thus limiting possible toxicities of persistent CAR 

T-cells on leukocyte subsets. Viaud et al. (38) described a murine switchable CAR T-cell 

system to limit persistence of CAR T-cell action during tumor relapse. Both of these recent 

technological developments will need to be further evaluated in clinical trials but may reduce 

extent and duration of B-cell aplasia.

Furthermore, alternative means of immunoglobulin replacement may mitigate the impact 

of hypogammaglobulinemia resulting from CAR T-cell administration. Dosing on a regular 

schedule (every 3–4 weeks for IVIG, and weekly for scIg) may be more beneficial than 

an as needed approach. Additionally, scIg replacement has been used in patients requiring 

long-term immunoglobulin replacement, with the advantages of home administration, more 

stable IgG levels, decreased systemic side effects, and cost-effectiveness compared to IVIG 

(23).

Finally, identifying biomarkers for hypogammaglobulinemia and predisposing genetic or 

environmental factors may permit prospective management of hypogammaglobulinemia and 

its complications. Studies have demonstrated that the expression profile of higher fitness 

CAR T-cells differs than that of CAR T-cells that did not expand well (4). Certain cytokine 

profiles after lymphodepletion (in particular, elevated MCP-1 and IL-7) were associated with 

superior progression-free survival (39), and further studies can elucidate whether certain 

cytokines correlate with CAR T-cell persistence or profound hypogammaglobulinemia. As 

such, cytokine profiling may lead to a better understanding of the causes of variation in 

hypogammaglobulinemia across individuals.

The future remains bright for understanding, evaluating, and managing the toxicities 

and risks of hypogammaglobulinemia from CAR T-cell therapy, which is a potentially 

life-saving option for patients with refractory/relapsed hematopoietic malignancies who 

have exhausted previous treatments. Increased understanding of the factors predisposing 

to persistent hypogammaglobulinemia and infectious complications will allow for better 

management and risk reduction. In the meantime, adoption of new management approaches, 

such as the use of scIg, may lead to better control of immunoglobulin levels in a cost-

effective manner, improve quality of life, and minimize infection risk with more stable 

immunoglobulin levels. Much exciting work remains to be done in this area to optimize the 

outcomes for current and future patients on CAR T-cell therapy.
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Abbreviations:

CAR Chimeric antigen receptor

CTI CAR T-cell infusion
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IVIG intravenous immunoglobulin

Ig Immunoglobulin

ALL Acute Lymphocytic Leukemia

FDA U.S. Food and Drug Administration

scIg subcutaneous immunoglobulin replacement

HSCT hematopoietic cell transplantation

BCMA B cell maturation antigen

SLAMF7 signaling lymphocytic activation molecule
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Figure 1. Temporal Events of Hypogammaglobulinemia, Treatments, and Infections from CAR-
T therapy
Rates of hypogammaglobulinemia, supplementation, and infection associated with each 

CAR-T product, as reported in clinical trials, are arranged temporally from pre-CAR-T 

infusion onward. Product names are listed to the left, with corresponding events for each 

product depicted to the right along the timeline. Each event is listed with its corresponding 

citation. (Events with an unspecified time frame are also noted.)

(Hypogammaglobulinemia after CAR-T cell therapy: characteristics, management, and 

future directions; Wat and Barmettler)
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