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Abstract

Structural plasticity and dynamic protein-protein interactions are critical determinants of protein 

function within living systems. Quantitative chemical crosslinking with mass spectrometry (qXL-

MS) is an emerging technology able to provide information on changes in protein conformations 

and interactions. Importantly, qXL-MS is applicable to complex biological systems, including 

living cells and tissues, thereby providing insights into proteins within their native environments. 

Here, we present an overview of recent technological developments and applications involving 

qXL-MS, including design and synthesis of isotope labeled crosslinkers, development of new 

LC-MS methodologies, and computational developments enabling interpretation of the data.
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1. Introduction

Chemical crosslinking of proteins with mass spectrometry (XL-MS), combined with other 

structural methods, has become a powerful technique of increasingly utility for study 

of protein conformations and interactomics. This approach is based on the reactivity 

of crosslinkers to specific protein sites – usually primary amines, including side chains 

of lysine residues and protein N-termini, identifying proximal residues and yielding 

information on protein structures and interactions. Quantitative crosslinking with mass 

spectrometry (qXL-MS) brings another and yet more complex level of information, 

providing insights into large-scale changes in protein interactomes with varying biological 

states, including system perturbations such as drug treatment, age, phenotype, or disease 

state[1–*3]. More importantly, qXL-MS can be applied directly to complex biological 

systems, such as living cells, tissues, or organelles, therefore providing information on 

changes in protein structural dynamics and interactions as they occur within a native 

environment[4,5].

A variety of strategies have been used for qXL-MS. Label-free qXL-MS[6] includes 

extracting MS1 chromatographic peak areas, as well as the MS2-based quantitation 

employing parallel reaction monitoring (PRM)[7]. Isotopic labeling methods include stable 

isotope labeling by amino acids in cell culture (SILAC)[8] with XL-MS, and the use of 

light and heavy isotope-labeled crosslinkers[9], which enables large-scale qXL-MS studies. 

Isobaric labeling methods apply (i) isobaric reagents (e.g., TMT[10]) to label crosslinked 

peptides[11], or alternatively (ii) the isobaric quantitative protein interaction reporter (iqPIR) 

strategy, which includes isotope-encoded isobaric crosslinkers**[12] (Figure 1). Recently, 

a multiplexed version of the iqPIR has been developed, allowing for crosslinking and 

multiplexing of up to 6 different samples (Chavez et al., submitted). Moreover, recent 

developments in the publicly available XLinkDB platform enable the visualization and 

interpretation of qXL-MS results[13]. Software suitable and applied for qXL-MS include 

the MS1-based MassChroQ[14], MaxQuant[15,16], pQuant[17], xTract[5], and Skyline[18]. 

Here we review recent developments in qXL-MS methodologies and applications described 

in the following sections: (2) isotopic labeling, (3) label-free, including (3.2) PRM, and (4) 

isobaric labeling (Figure 1).

2. Isotopic labeling

2.1 Isotopic labeling of cells with SILAC for qXL-MS

Isotopic qXL-MS strategies include the labeling of living cells with SILAC[8] followed 

by crosslinking. This approach uses the MS1 information from light and heavy crosslinked 

peptide pairs to provide relative quantitation of crosslink levels between two samples. One 

advantage of SILAC over isotope-coded crosslinkers is that SILAC generates wider mass 
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shifts in MS1 scans, that may provide higher quantitative accuracy. Optimized SILAC 

isotope combinations for quantitative crosslinking applications have not yet been explored, 

but could further improve quantitative capabilities.

A SILAC-based qXL-MS illustrated that differences related to acquired chemoresistance 

to the active agent in the anticancer therapy Irinotecan were detectable at the interactome 

level, and these differences could in part, help explain activity differences in cells that 

contributed to the Irinotecan resistance phenotype[1]. A significant aspect of those results 

was that they revealed for the first time that in vivo crosslinking with mass spectrometry 

could provide quantitative insight on the interactome inside cells. Following this, Chavez et 
al. employed SILAC and PIR crosslinking of cancer cells to probe altered conformations 

and interactions resultant from treatment of cells with multiple Hsp90 inhibitors[2]. These 

results revealed interactome changes that were both drug concentration-dependent and drug 

mechanism-specific. These studies revealed drug-dependent changes in Hsp90, indicating 

compact conformation enrichment from the cellular ensemble which appears specific to N-

terminal ATP pocket-targeting Hsp90 inhibitors. Moreover, the study identified changes in 

Hsp90 interactome with co-chaperones STIP1, Hsp70, CHRD1, and CDC37. This approach 

has also been applied by the same group to investigate changes in protein conformations 

and interactions in cancer cells after treatment with the mitotic inhibitor paclitaxel (PTX), 

using different concentrations of the drug*[3]. The qXL-MS results provided insights into 

dose-dependent changes in cytoskeleton organization (Figure 2), which caused stabilization 

of microtubules and arrest of mitosis, consistent with the PTX mechanism of action [19,20].

Yu et al. combined the Quantitative analysis of Tandem Affinity-purified in vivo crosslinked 

(X) protein complexes (QTAX)[21] strategy with SILAC and disuccinimidyl sulfoxide 

(DSSO) crosslinker[22] for a qXL-MS study of the human 26S proteasome, assessing 

interactomic changes in response to H202-induced oxidative stress*[23]. Briefly, cells 

expressing histidine/biotin- (HB-) tagged proteasome were grown in SILAC media, 

crosslinked in vivo with formaldehyde, and on-bead purified proteasomes were crosslinked 

in vitro with DSSO. MS3 spectra were used for the identification of 746 crosslinks, and 

MS1 signal used for SILAC-based quantitation of 343 crosslinks (~46% of total links). 

While SILAC-based qXL-MS has enabled initial interactome dynamic measurements, in 

some cases even inside cells, the challenges associated with MS1 signal quantitation 

limit the efficiency of crosslink quantitation for complex systems. For instance, of the 

3,323 crosslinked peptides detected in Chavez et al., 2016[2], only 2,582 were quantified 

(77,7%) and even fewer (559 crosslinks, ~17%) were quantified across all 5 different drug 

concentrations. This results from issues of co-eluting species that congest MS1 signals 

and contaminate extracted ion signals used for quantitation. Filtering of all forward and 

reverse SILAC-qXL-MS quantitation data for 95% confidence limits eliminates these 

spurious results, significantly reducing the depth of quantitative data. One strategy that could 

potentially improve upon the issue of MS1 signal congestion would be to further separate 

crosslinked peptides using gas phase fractionation techniques such as high-field asymmetric 

waveform ion mobility spectrometry (FAIMS)[24].
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2.2 Isotopic crosslinkers

Isotope-labeled crosslinkers for qXL-MS include DSS-d0d12*[25], BDP-NHP-d0d8[26], 

CBDPS*[27], Leiker[28], DMDSSO-d0d10[29], BS3-d0d4[30] and BS3-d0d12[31,32], and 

DSBU*[33] (Table 1), which include variable numbers of deuterium atoms as the heavy 

labels. These isotope-encoded crosslinkers are useful for binary comparisons and most of 

them have been applied for in vitro studies, where extreme complexity in the MS1 signal is 

not likely to be such an issue [34–38]. The Rappsilber group applied BS3-d0d4 in solution 

to investigate conformational changes in the human complement protein C3 in comparison 

to its activated cleavage product C3b[34]. The same group developed a computational 

tool for analysis of isotope-coded crosslinking data, called XiQ[39]. BS3-d0d4 was also 

applied in vitro to study F1FO-ATPase isolated from chloroplasts[35], with conformational 

changes in the catalytic interface of the enzyme related to phosphorylation. Furthermore, 

Boelt et al. used BS3-d0d4 in solution to investigate conformational changes of calreticulin, 

a protein part of the endoplasmatic reticulum that regulates Ca2+ homeostasis[38]. More 

recently, BS3-d0d12 was applied to study the role of LEM2 in the reformation of 

nuclear envelope during cell division[40]. The crosslinking results indicated specific sites 

of interaction between CHMP7 and the WH domain of LEM2 that was proposed to 

form a macromolecular O-ring seal at the confluence between membranes, chromatin 

and the spindle. The qXL-MS results agreed with those from other experiments used in 

the study, thus providing insights on protein conformation and interactions of isolated 

complex samples. As with SILAC-based qXL-MS, quantitative measurements with isotopic-

labeled crosslinkers also rely on MS1 information for crosslink quantitation and are subject 

to similar peak assignment challenges, particularly with complex large scale qXL-MS 

applications. Additionally, peak assignment can be further complicated by retention time 

shift between light and heavy deuterium-labeled peptides during LC separation. To date, 

all applications of isotope-labeled crosslinkers have utilized a binary comparison between a 

light and heavy pair. Conceptually, it should be possible to expand beyond binary situations, 

allowing for a greater number of comparisons to be made with the limitation of increasing 

the MS1 signal complexity by N as well as diluting the signal of any crosslinked product by 

1/N (where N= number of isotopologue crosslinkers).

3. Label-free qXL-MS

As with traditional quantitative proteomics, another strategy for qXL-MS is to utilize 

label-free quantitation (LFQ). Benefits of LFQ include its compatibility with nearly any 

crosslinking reagent, avoiding costly heavy isotope labeled reagents, and allowing for higher 

level comparisons. A consequence of LFQ is that each sample needs to be prepared and 

analyzed separately, requiring increased and reproducible sample preparation and LC-MS 

instrument time and being subject to experimental variabilities introduced at each step along 

the process. Müller et al. evaluated the quantitative reproducibility of a MS1-based LFQ 

qXL-MS approach using BS3 crosslinked human serum albumin (HSA) samples and found 

more variability resulted from comparison across different crosslinking reactions than from 

LC-MS injections[6]. The qXL-MS strategies for label-free and isotope labeled BS3 from 

the Rappsilber laboratory were summarized in a recent protocol[42]. MS1-based LFQ of 

crosslinks and acetylated peptides revealed that acetylation disrupts dimer formation and 
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decreases the activity of the muscle isoform of creatine kinase [43]. MS1-based LFQ was 

used to reveal the conformational changes to the peroxisome proliferator-activated receptors 

gamma (PPARγ) upon binding the antagonist SR11023[44]. To group multiple protein 

conformations detected in different biological samples, Kurt et al. developed a software that 

clusters crosslink identifications according to their MS1-based quantitative profile across 

multiple samples, the QUIN-XL[45].

3.1 DIA-QCLMS

The majority of qXL-MS studies have used a DDA approach. However, data-independent 

acquisition (DIA) qXL-MS methods have also been explored. Müller et al. demonstrated 

a LFQ DIA qXL-MS approach at the MS1 and MS2 levels using samples consisting of 

a mixture of 7 proteins crosslinked with BS3*[46]. The authors discussed that, despite 

the ratio compression in MS1/MS2 spectra observed for complex mixtures, the Spectronaut-

based (Biognosis) quantitation of crosslinks showed increased accuracy and reproducibility. 

The Rappsilber laboratory further demonstrated use of the DIA qXL-MS protocol[47] to 

detect pH-dependent conformational changes in photo-crosslinked HSA and cytochrome 

c[48].

3.2 Targeted PRM

Targeted quantitation offers multiple benefits to qXL-MS including increased 

reproducibility, sensitivity, precision and accuracy. Furthermore, targeted analysis is 

applicable with both LFQ approaches or those using isotope labeling. A limitation of 

targeted analysis is that it often requires some a priori knowledge of the crosslinked analytes 

of interest, requiring development of special LC-MS methods devoted to a select number 

of analytes, making it a relatively low throughput strategy. The first application of parallel 

reaction monitoring (PRM) qXL-MS was applied in a cross-laboratory study which utilized 

Skyline[18] for method sharing and data analysis[7]. PRM qXL-MS was also used to help 

elucidate important conformational changes in heat shock protein 90 (Hsp90) that occur 

with nucleotide binding, interaction with co-chaperone Aha1, and with a phosphomimetic 

mutant Y313E [49]. Gutierrez et al. utilized PRM qXL-MS with three different MS-

cleavable crosslinkers to detect structural dynamics of the COP9 signalosome*[50]. Mehnert 

et al. used PRM qXL-MS as part of a multilayered proteomic workflow to detect topological 

changes associated with cancer mutations on kinase complexes[51]. As with traditional 

quantitative proteomics, when using DIA and PRM for quantitation of crosslinked peptides 

it is important to implement good practices to ensure accurate quantitation of the correct 

analyte[52,53]. These include use of proteotypic peptides, quantifying multiple high mass 

accuracy matching fragment ions, ideally originating from both peptides, and ensuring 

accurate retention time matching. Spectral library searching can also be useful to confirm 

identification of quantified species[54].

4. Isobaric labeling

4.1 TMT labeling for qXL-MS

A qXL-MS multiplexed method based on labeling of crosslinked peptides with isobaric 

mass tags, i.e., TMT, was developed by Yu et al., called Quantitation of Multiplexed 
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Isobaric-labeled cross (X)-linked peptides (QMIX)[11]. The authors used DSSO to crosslink 

cytochrome c, followed by proteolytic digestion of separate samples. Digested samples 

were then labeled with a binary set of TMT reagents (126 or 127 reporter) followed by 

multiplexing samples, and LC-MS analysis of crosslinked peptides. To eliminate the signal 

interference at the MS1 level and compression of measured TMT ratios due to co-isolation 

of precursor ions[55], the quantitation of crosslinks was done at the MS3 level. Hence, the 

QMIX approach benefits from advanced mass spectrometers with higher sensitivity MS3 

capabilities.

4.2 Isobaric quantitative PIR (iqPIR)

Recently, isobaric quantitative Protein Interaction Reporter (iqPIR) crosslinking technology 

was developed and demonstrated in our laboratory**[12]. iqPIR crosslinkers are synthesized 

using 13C and 15N isotope labels, enabling the quantitation of crosslinked peptide pairs 

using the relative abundance of multiple isotope fragment ions unique to each crosslink in 

the MS2 spectra. This strategy eliminates any retention time shifts – as it happens with 

deuterated crosslinkers (Section 2.2), and ratio compression of the reporter ion signal by 

quantifying fragment ions that retain an isotope encoded portion of the tag, analogous to 

the use of complement reporter ions with TMT[55] or the EASY-tag approach[56] used in 

traditional quantitative proteomics. Fragmentation of iqPIR crosslinked peptides generates 

a number of quantifiable ions, including the released intact peptides, as well as b-type and 

y-type backbone fragment ions containing the crosslinked residue. The iqPIR, as well as 

other PIR-based crosslinkers[57], contain MS-cleavable bonds, affinity tags, and membrane 

permeability for the crosslinking of live cells, tissues, and isolated organelles. These features 

enable isotope-encoded crosslinking of proteins in complex biological systems with one 

single labeling step, thus eliminating the need for additional chemical labeling reactions 

and cleanup steps. Moreover, the biotin affinity tag enables crosslink enrichment, which 

combined with the quantitative features, allows complex cellular applications.

iqPIR was pursued to enable multiplex interactome quantitation but was initially 

demonstrated with binary comparisons with 2 different isotope-coded crosslinkers**[12]. 

Recently, a multiplexed strategy was developed with 6 different iqPIR crosslinkers, called 6-

plex iqPIR (Chavez et al., submitted). Because the 6-plex iqPIR crosslinkers are isobaric, the 

precursor ion signal from a crosslinked peptide pair originating from 6 different multiplexed 

samples overlap in MS1 but generate unique fragments in MS2 (Figure 3), which are 

further used for crosslink quantitation (Chavez et al., submitted). The 6-plex iqPIR strategy 

was demonstrated in vivo on MCF-7 cells treated with five different Hsp90 inhibitors, 

revealing drug class specific interactome dynamics from qXL-MS analysis of a multiplexed 

sample (Wippel et al., submitted). From 1,756 crosslinks identified in this study, 1,650 were 

quantified (~94%), and a total of 1,257 crosslinks were quantified across all 6 channels 

(~71%). These results represent an improvement in crosslinking quantitation if compared 

with the values discussed above from Chavez et al.[2], where 77,7% of crosslinked peptide 

pairs were quantified, and 17% quantified across all drug concentrations.
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CONCLUSIONS

A challenge of systems-level biology is to better understand how molecules act and interact 

to confer function within a crowded cellular environment. XL-MS is an emerging tool 

that can probe protein conformations and interactions to gain unique insight on molecular 

mechanisms and biological pathways. Just as seeing how the components of complex 

machines or instruments work together to function can improve fundamental understanding, 

visualizing how protein conformations and interactions change within a system can 

help better understand large-scale protein biological function. Thus, perturbations in the 

system are frequently necessary to allow comparative analysis among different conditions, 

where qXL-MS can uniquely reveal protein and interactome dynamics in response to 

environmental changes. While many successful qXL-MS studies have used MS1 signal 

levels for crosslink quantitation or from targeted MS2 spectra, isobaric approaches based 

on MS2 spectral quantitation offer increased quantitation efficiency as well as multiplexed 

quantitation. Recent developments have allowed for the crosslinking, multiplexing, and 

quantitation of up to 6 different biological samples, with mixing at the protein level. In 

parallel, computational improvements are needed to allow the visualization of qXL-MS data. 

Although far from comprehensive, quantitative XL-MS studies and the advancements made 

so far are providing unique insight on protein, complex and interactome dynamics.
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ABBREVIATIONS

BS3 bis(sulfosuccinimidyl)suberate

CBDPS CyanurBiotinDimercaptoPropionylSuccinimide

DSBU disuccinimidyl dibutryic urea

DSS disuccinimidyl suberate

iqPIR isobaric quantitative protein interaction reporter

LC-MS liquid chromatography – mass spectrometry

MS mass spectrometry

NHP N-hyrdoxyphthalimide

PIR protein interaction reporter

PRM parallel reaction monitoring
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PTX paclitaxel

SILAC stable isotope labeling by amino acids in cell culture

TMT tandem mass tags

qXL-MS quantitative chemical crosslinking with mass spectrometry
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HIGHLIGHTS

• Quantitative chemical crosslinking provides information on changes in 

protein interactomics;

• Overview of recent technological developments involving qXL-MS;

• Applications of qXL-MS in biological systems with varying conditions.

Wippel et al. Page 12

Curr Opin Chem Biol. Author manuscript; available in PMC 2023 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Quantitative crosslinking with mass spectrometry (qXL-MS).
Isotope-labeled, label-free, PRM-based, and isobaric-labeled qXL-MS strategies are 

discussed in sections 2, 3, 3.2, and 4, respectively. iqPIR: isobaric quantitative protein 

interaction reporter.
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Figure 2. Quantitative crosslinking reveals PTX stabilized microtubules (MT).
(A) MT structure (PDB 3EDL) displayed as a molecular surface with a ribbon structure 

inset, illustrating the a-tubulin (maroon) and b-tubulin (gold) subunits. Crosslinked Lys 

residues are shown as green space-filled residues, with crosslinks displayed as colored 

lines connecting them (TBA1A K60-K370, orange; TBA4A K60-K370, purple; TBB5/

TBB4B K216-TBA1A K326, blue; TBB4B K58-TBA1A K370, green; TBB5 K58-TBA1A 

K370, magenta). The non-exchangeable GTP binding site (N-site) is indicated by a yellow-

highlighted region on a-tubulin. The exchangeable GTP binding site (E-site) is indicated 

by a cyan-colored region on b-tubulin. The PTX binding site on b-tubulin is red. (B) 

Protein and crosslink levels measured by SILAC for four tubulin isoforms (TBA1A, dark 

red dashed line; TBA4A, red dashed line; TBB4B, gray dashed line; TBB5, black dashed 

line). Crosslinks are colored the same as in (a). (C) Quantified levels of TBB5/TBB4B 

K216-TBA1A K326 and TBA1A K60-K370 with PTX (50, 100, and 500 nM), CA4 (5 

nM), and STLC (5 mM). Error bars represent 95% confidence intervals for n = 6 replicate 

injections of 2 biological samples. Reproduced with permission from Chavez et al., 2019[3].
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Figure 3. 6-plex iqPIR for multiplexed qXL-MS.
Representation of the 6-plex iqPIR qXL-MS LC-MS pipeline. 1) Crosslinked peptide pairs 

are separated by liquid chromatography and analyzed with high resolution MS/MS; 2) MS1 

spectrum highlighting the isotope envelope of the precursor ion, embedding all 6 crosslinked 

peptides; 3) MS2 spectrum with highlighted fragment ions from peptides A (b/y ions in 

green) and B (b/y ions in purple), and isotope envelopes from released reporter ions and 

backbone peptides A and B, with the peaks colored according to the corresponding channel/

Hsp90 inhibitor (shown as an example of environmental conditions here); 4) Relationship 

check between reporter ion and peptides A and B, comparing the monoisotopic neutral 

masses with the experimental masses observed (with maximum 10 ppm error allowed)[58]. 

After Mango, in silico analysis continues with Comet[59] for peptide search of 6-plexed 

fragment ions, followed by validation of identified crosslinks, and quantitation of 6-plex 

crosslinks (Chavez et al., in preparation). Reproduced with permission from Wippel et al., 
submitted.
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Table 1.

Isotope-coded crosslinkers for qXL-MS. Dashed line indicates the cleavage site.

Crosslinker Structure Feature Reference

DSS

X indicates H or D isotope for d0-DSS (X = H) or d12-DSS (X = D)

Vendor: Creative 
Molecules

Khakzad et al.1

Formula (X = H): 
C16H20N2O6

MW (X = H): 368.34

BS3

X indicates H or D isotope for d0-BS3 (X = H) or d4-BS3/d12-BS3 (X 
= D)

Vendor: ThermoFisher 
Creative Molecules

Schmidt et al.2

Linden et al.3

Appen et al.4Formula: 
C16H18N2Na2O14S2

MW: 572.43

DMDSSO

X indicates H or D isotope for d0-DMDSSO (X = H) or d10-DMDSSO 
(X = D)

MS cleavable Yu et al.5

Formula: C14H16N2O9S

MW: 388.35

DSBU

X indicates H or D isotope for d0-DSBU (X = H) or d12-DSBU (X = 
D)

MS cleavable Ihling et al.6

Formula: C17H22N4O9

MW: 426.38

CBDPS

X indicates H or D isotope for d0-CBDPS (X = H) or d8-CBDPS (X = 
D)

MS cleavable Makepeace et al.7

Biotin tagged

Formula: 
C27H33N9O10S3

MW: 739.80

Leiker (bAL2)

X indicates H or D isotope for d0-bAL2 (X = H) or d6-bAL2 (X = D)

Photo cleavable Tan et al.8

Biotin tagged

Formula: 
C43H52N8O13S

MW: 920.98

PIR BDP-NHP

X indicates H or D isotope for d0-PIR (X = H) or d8-PIR (X = D)

MS cleavable Zhong et al.9

Biotin tagged

Peptide synthesis

Formula: 
C64H79N13O22S

MW: 1414.45

2-plex iqPIR 
BDP-NHP

* indicates the position can be isotope-coded with C13

MS cleavable Chavez et al.10

Biotin tagged

Peptide synthesis

Formula: 
C68H85N15O24S

MW: 1532.55

Curr Opin Chem Biol. Author manuscript; available in PMC 2023 February 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wippel et al. Page 17

Crosslinker Structure Feature Reference

6-plex iqPIR 
BDP-NHP

* indicates the position can be isotope-coded with C13 or N15

MS cleavable Chavez et al. 
(submitted)

Biotin tagged

Peptide synthesis

Formula: 
C68H85N15O24S

MW: 1546.42
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