Skip to main content
. 2022 Feb 4;22(3):1184. doi: 10.3390/s22031184
Algorithm 1. AL experimental protocol.
Inputs: βmaximum number of iterations
snumber of sampling examples
θoracle for labelling unlabelled examples
γmulti-label AL strategy
ȹ multi-label classification algorithm
&Ts a test set of multi-label examples
&Tr a training set of multi-label examples
  • Begin

  • //Construct the labelled and unlabelled sets

  • LsResample⁡(s,Tr);

  • UsTr\LS;

  • //Train ȹ with LS

  • ȹ←Trai n(Ls,ȹ);

  • for i ter ←1 to β do

  •   //Select informative example from US

  •   i←SelectInformativeExample (γ,US);

  •   //label the selected example

  •   Label(θ,i);

  •   //Update the labelled and unlabelled sets

  •   LSLSi;

  •   USUS\i;

  •   //Train ← with LS

  •   ȹ←Train(Ls,ȹ);

  •   //Evaluate ȹ on TS

  •   Test (Ts,ȹ);

  • end

  • end