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Abstract

Ammonia is diffused and transported across all plasma membranes. This entails that 

hyperammonemia leads to an increase in ammonia in all organs and tissues. It is known that 

the toxic ramifications of ammonia primarily touch the brain and cause neurological impairment. 

However, the deleterious effects of ammonia are not specific to the brain, as the direct effect of 

increased ammonia (change in pH, membrane potential, metabolism) can occur in any type of cell. 

Therefore, in the setting of chronic liver disease where multi-organ dysfunction is common, the 

role of ammonia is challenged. This review provides insights and evidence that increased ammonia 

can disturb many organ and cell types and hence lead to dysfunction.

Effect of ammonia on cell function

Ammonia is used for a number of different metabolic reactions (including the synthesis of 

non-essential amino acids). However it is primarily a waste product of cellular metabolism 

and due to its harmful properties at higher concentrations, ammonia is quickly detoxified 
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and transformed into less toxic compounds (Cooper and Plum, 1987; Butterworth, 2002). 

Under physiological conditions, blood levels of ammonia (in systemic circulation) are 

carefully maintained at concentrations <50μM in adults, 50–75μM in term neonates and 

50–150μM in preterm neonates (Braissant et al., 2013). Here, the liver plays a vital role 

in regulating the levels of ammonia via the production of urea (a cycle of enzymes which 

together are solely found in the liver). Ammonia is also removed in extrahepatic organs, 

including the muscle and brain (astrocytes), through the amidation of glutamate to glutamine 

via the enzyme glutamine synthesis (GS) (Cooper and Plum, 1987).

The main source of ammonia generation occurs in the intestines; from lysis of blood-borne 

urea and also from protein digestion/deamination by urease-positive bacteria and microbial 

deaminase (Jones et al., 1969). A large amount of metabolically generated ammonia is 

absorbed into the blood and via the portal vein is detoxified through the liver (Cooper 

and Plum, 1987; Brusilow et al., 2010). The concentration of ammonia in portal vein can 

be 5–10x higher than in the systemic circulation (Abdo, 2006) and during conditions of 

liver disease or failure, ammonia is poorly removed (due to impaired ureagenesis from 

hepatocellular dysfunction and portosystemic shunting) and is liberated into the systemic 

circulation and exposed to all organs (Rovira et al., 2008). Glutaminase, an enzyme 

which generates glutamate and ammonia from glutamine and which is found in the 

intestine, kidney and brain (neurons), also plays a contributing role to the development 

of hyperammonemia. Diseases causing hyperammonemia include acute liver failure (ALF), 

chronic liver disease (CLD) and portal-systemic shunting (Felipo and Butterworth, 2002). 

Hyperammonemia also develops in children with inborn errors of the urea cycle and tend 

to present with higher blood ammonia concentrations (up to 5 mM) compared to acquired 

causes (such ALF and CLD) which usually result in hyperammonemia levels between 

0.2–1 mM (Ratnakumari et al., 1992; Matkowskyj et al., 1999; Butterworth, 2002; Lichter-

Konecki et al., 2008).

Ammonia in solution (i.e blood) is present as NH3 and NH4
+ with the ratio NH3/NH4

+ 

depending on the pH as defined by the Henderson-Hasselbach equation. Under physiological 

conditions with a blood pH of 7.4, more than 98% of ammonia is in NH4
+ form (Bromberg 

et al., 1960). Both forms affect pH, electrolytic, acid-base and ion equilibrium. NH3 is a 

weak base in gaseous form and uncharged, therefore lipid soluble and capable to cross 

cell membranes through diffusion. Conversely, NH4
+ is a weak acid, water soluble and 

because of its ionic properties crosses cell membranes at a less rapid rate through various 

transport channels (Bosoi and Rose, 2009). Due to almost identical hydration radius with 

K+ (Kikeri et al., 1989), NH4
+ can substitute K+ in its channels and transporters (ATPase 

transporters Na+/K+ and H+/K+ (Moser, 1987) and Na+/K+/Cl− cotransporters (Kelly et al., 

2009)). This NH4
+ substitution in K+ channels mediates membrane depolarization in vitro 

(Allert et al., 1998; Norenberg, 1998), but putatively not in situ (Rangroo Thrane et al., 

2013). Ammonia can also enter cells through aquaporin-8 channel (Liu et al., 2006; Saparov 

et al., 2007) and ammonia specific transporters (human non-erythroid Rhesus glycoprotein 

B and C (Bakouh et al., 2006)). There is also growing evidence that ammonia can cross 

blood-brain barrier (BBB) preferentially by active transport through ion transporters rather 

than diffusion (Sørensen, 2013) and it has been shown that ammonia invade paracellular and 

transcellular passage of different molecules across the BBB (Braissant, 2012; Skowronska 
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and Albrecht, 2012), as well as to a lesser extent by direct diffusion of NH3. Furthermore, 

ammonia primarily enters astrocytes lining the BBB as these cells have the highest affinity 

for potassium (Marcaggi et al., 2004; Bosoi and Rose, 2009; Rangroo Thrane et al., 2013).

Ammonia alters both intracellular and extracellular pH and can cause intracellular 

acidification as well as alkalisation, all depending on ammonium concentration, pH and 

rate of NH3 vs. NH4
+ transport through the cell membrane (Norenberg, 1998; Bosoi and 

Rose, 2009; Rangroo Thrane et al., 2013). Ammonia has also be shown to cause a rise in 

intracellular Ca2+ primarily due to cytosolic alkalinisation in vitro (Rose et al., 2005) and 

through less well characterized mechanisms lead to increased intracellular Ca2+ signalling 

in vivo (Rangroo Thrane et al., 2013). Ammonia-induced changes in pH, membrane 

potential as well as alterations in cellular metabolism negatively impacts cell function 

by influencing signalling transduction pathways, activities of many enzymes, alternation 

in protein phosphorylation and the state of various other ion channels and transporters 

(Busa and Nuccitelli, 1984; Norenberg, 1998; Cudalbu, 2013). Furthermore, increased 

ammonia metabolism will lead to metabolic disturbances. NH4
+ detoxification by converting 

α-ketoglutarate to glutamate and glutamate to glutamine leads to α-ketoglutarate depletion 

consequently stressing the tricarboxylic acid cycle (Braissant et al., 2013).

Elevated concentrations of ammonia have been shown to generate free radicals (Kosenko 

et al., 1997; Murthy et al., 2001; Sinke et al., 2008; Norenberg et al., 2009) and leads to 

excessive production of nitric oxide (NO) by stimulating the citrulline-NO cycle (Braissant 

et al., 1999; Bachmann et al., 2004; Zielinska et al., 2011). Alteration of NO synthesis and 

oxidative stress can result in the induction of mitochondrial permeability transition (MPT) 

(Halestrap et al., 1997; Kowaltowski et al., 2001), alterations of BBB permeability (in some 

disease models) (Rangroo Thrane et al., 2012; Skowronska and Albrecht, 2012; Braissant et 

al., 2013) and activation of MAPKs (Cagnon and Braissant, 2009). Ammonia also activates 

the transcription factor NF-κB, involved in immune and inflammatory reactions, (Sinke et 

al., 2008) probably as a result of increased oxidative stress, activated MAPKs and induced 

MPT (Marchetti et al., 1996; Bowie and O’Neill, 2000; Kyriakis and Avruch, 2001).

In addition, liver function impairment independently provokes deviation from physiological 

values of over 20 different compounds in the circulation (Zieve, 1987) as well as many other 

factors including inflammation and oxidative stress. In some cases it can be very difficult 

to distinguish the independent effect of ammonia and therefore other factors (synergistic 

effects) should be considered (Butterworth, 2008; Bosoi et al., 2012; DeMorrow, 2013; 

Aldridge et al., 2015).

The effects of ammonia toxicity on the brain

In the brain, ammonia homeostasis is tightly regulated and linked to recycling of the major 

excitatory and inhibitory neurotransmitters glutamate and γ-aminobutyric acid (GABA) 

(Paulsen et al., 1987; Bak et al., 2006; Hertz and Kala, 2007). Interestingly, GS in astrocytes 

has a higher affinity for ammonia than glutamate, indicating that the removal of ammonia 

may be more important than that of the principle excitatory neurotransmitter (Waniewski, 

1992). Ammonia neurotoxicity is a phenomenon that affects all cerebrate species, from 
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fish to humans (Ip and Chew, 2010). Gross neurological dysfunction occurs in conditions 

that lead to excess blood and therefore brain ammonia, including encephalopathy, seizures, 

ataxia and coma (Butterworth, 2002).

Toxic levels of ammonia and alterations in pH, electrolyte disturbances, membrane potential 

depolarization, are thought to lead to neurological dysfunction primarily by causing cellular 

swelling accompanied by brain edema and metabolic dysfunction (Bosoi and Rose, 2009). 

Ammonia is likely to be particularly toxic to astrocytes as they are the only cells that possess 

the enzyme GS responsible for detoxifying ammonia in the brain through condensation with 

glutamate (Martinez-Hernandez et al., 1977; Hertz and Zielke, 2004). In fact, astrocytes 

are likely to take up four times more ammonia than any other cell type in the brain 

(Cooper et al., 1979). Moreover, one of the early pathophysiological findings in hepatic 

encephalopathy (HE) was the presence of brain edema, and specifically astrocyte swelling 

in histological specimens and in vitro. Astrocyte swelling is also found in the later stages of 

HE in most animal models of liver failure and hyperammonemia (Gregorios et al., 1985a, 

1985b; Ganz et al., 1989; Willard-Mack et al., 1996; Tanigami et al., 2005; Cagnon and 

Braissant, 2007; Jayakumar et al., 2008; Butterworth et al., 2009; Rangroo Thrane et al., 

2012; Rao et al., 2014). These findings correlated with increased ammonia and glutamine 

levels and it was therefore hypothesized that ammonia exerted its neurotoxic effects by 

accumulation of glutamine causing astrocyte swelling (termed osmotic gliopathy). However, 

astrocyte swelling in the context of ammonia neurotoxicity had until recently not been 

directly visualized in living tissue. In a hyperacute model of isolated hyperammonemia 

(urea cycle deficiency), doses of ammonia sufficient to cause stupor, seizures and ataxia did 

not induce astrocyte swelling in vivo (Rangroo Thrane et al., 2013). Additionally, deleting 

the main astrocyte water channel, aquaporin 4 (AQP4), did not affect disease outcome. 

However, lethal doses of parenteral ammonia did cause brain swelling in vivo and astrocyte 

swelling in situ (Rangroo Thrane et al., 2013), and AQP4 deletion does appear to protect 

against brain edema in the context of HE (Rao et al., 2014). Therefore, although brain 

edema is a prominent and widely acknowledged clinical feature of the later stages of HE and 

contributes to mortality, it does not explain all the neurotoxic effects of ammonia (Joshi et 

al., 2014).

Several alternate and/or synergistic neurotoxic effects of ammonia on astrocytes have 

previously been studied. These include impairment of oxidative metabolism; with a 

consequent increase glycolysis (mainly in astrocytes) and dangerously elevated brain lactate 

levels (Ott et al., 2005; Dam et al., 2013; Bosoi et al., 2014). Ammonia itself is also widely 

known to cause pH changes that might affect cellular function due to its ability to act both 

as a weak acid and base. However, in vivo studies using liver failure models, pH electrodes 

and NMR show either an overall increase of intracellular pH ranging from 0.1 to 0.4 or 

no change (Fitzpatrick et al., 1989; Swain et al., 1991; Kanamori and Ross, 1997; Rangroo 

Thrane et al., 2013). The main limitations of these studies are the indirect measures of pH 

and the inability to accurately distinguish intra- from extracellular pH. Ammonia has also 

recently been shown to impair astrocytic calcium signaling in vivo, which is closely linked 

to many astrocytic housekeeping functions, such as K+ homeostasis (Rose et al., 2005; 

Wang et al., 2012; Rangroo Thrane et al., 2013). Additionally, ammonia appears to directly 

disrupt astrocyte potassium buffering in vivo by competing for transport via either the Na+-
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K+-ATPase, K+ channels or Na+-K+-Cl− cotransporters (Alger and Nicoll, 1983; Brookes 

and Turner, 1993; Marcaggi et al., 2004; Rangroo Thrane et al., 2013). An acute increase 

in both extracellular ammonia and potassium has been shown to cause a depolarizing shift 

in the GABA equilibrium potential (EGABA), thus leading to decreased neuronal inhibition 

in vivo (Lux, 1971; Benjamin et al., 1978; Rangroo Thrane et al., 2013). This effect likely 

explains the seizure phenotype seen in models of urea cycle deficiencies (Cagnon and 

Braissant, 2007). Additionally, ammonia has been found to contribute to seizure generation 

in epileptic children with normal liver function (Yamamoto et al., 2013), and reactive gliosis 

seen in temporal lobe epilepsy may induce seizures via an almost identical mechanism 

(Robel et al., 2015).

More recently, a contribution of other cell types than astrocytes to the pathophysiology of 

HE and hyperammonemia has gained greater recognition (Butterworth, 2011). Microglia are 

the resident immune cells in the brain, and known to survey the brain microenvironment 

for signs of pathogens and inflammation with their fine processes (Nimmerjahn, 2005). 

When activated, they become more amoeboid in structure, facilitating phagocytosis and 

release multiple pro-inflammatory mediators (Ransohoff and Cardona, 2010). In the late 

stages of HE, histological studies have shown that microglia are activated in animal models 

of CLD, ALF, portocaval shunting and in post mortem tissue from patients (Jiang et al., 

2009a, 2009b; Rodrigo et al., 2010; Agusti et al., 2011; Zemtsova et al., 2011). Several 

studies indicate that this microglial activation is correlated with with BBB opening and 

brain edema (Jiang et al., 2009a, 2009b; Rangroo Thrane et al., 2012). However, microglia 

were not found to be activated in a model of portal vein ligation (Brück et al., 2011) and 

acute isolated hyperammonemic mice (Rangroo Thrane et al., 2012). It is therefore possible 

that the microglial activation is not a response to ammonia per se, but rather relates to 

other secondary features of ammonia neurotoxicity such as oxidative stress, cellar distress 

signals or BBB opening. Finally, ammonia likely has a range of direct and indirect effects on 

neurons, pericytes and endothelial cells, which have been more extensively reviewed in other 

publications (Szerb and Butterworth, 1992; Rodrigo and Felipo, 2006; Leke et al., 2011; 

Thumburu et al., 2012; Shaik et al., 2013).

In summary, the best described deleterious effects of ammonia are associated with the 

brain as the brain is exquisitely sensitive to even minor increases in the blood ammonia 

levels. Within the brain, although elevated levels of ammonia are noxious for astrocytes, it 

also has deleterious effects on all cells of the central nervous system (Figure 1). However, 

can ammonia be considered solely as a neurotoxin? The toxic effects of ammonia are not 

specific to the brain and there is evidence depicting ammonia toxicity is diffused to organs/

tissues and cells in the body.

The effects of ammonia toxicity on muscle

Sarcopenia or loss of skeletal muscle mass is the most frequent and potentially reversible 

complication in cirrhosis (Dasarathy, 2012). Despite the universally recognized adverse 

consequences on survival, development of other complications in cirrhosis, quality of life, 

and post liver transplant outcomes, there are no effective therapies primarily because the 

mechanisms of sarcopenia are incompletely understood (Dasarathy, 2012). In addition to 
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the lower muscle mass, muscle strength is also reduced in cirrhosis and contributes to 

adverse clinical outcomes (Jones et al., 2012). Recent evidence strongly suggests that 

hyperammonemia is a mediator of the liver muscle axis (Qiu et al., 2013). It is also 

important to emphasize that identifying ammonia as a mediator of the liver-muscle axis 

is especially relevant because effective therapeutic strategies to reverse hyperammonemia are 

available (Phongsamran et al., 2010).

Previous studies have reported an increased muscle uptake of ammonia in cirrhosis results 

in glutamine synthesis that is released into the circulation (Ganda and Ruderman, 1976; 

Lockwood et al., 1979; Holecek, 2013). Muscle uptake and metabolism of ammonia is 

however not a benign process since a number of molecular and metabolic perturbations have 

been reported during muscle hyperammonemia (Qiu et al., 2012, 2013). The consequences 

of increased muscle uptake of ammonia include both a reduction in muscle mass and 

muscle strength (Shanely and Coast, 2002; Qiu et al., 2012). Both metabolic and molecular 

responses to muscle hyperammonemia contribute to muscle loss and weakness.

Metabolic perturbations during hyperammonemia

Since ureagenesis in the liver is impaired and muscle cannot generate urea, ammonia 

removal by the muscle utilizes a cataplerotic conversion of α-ketoglutarate, a critical 

tricarboxylic acid cycle intermediate to generate glutamate and glutamine thereby 

removing 2 moles of ammonia for each mole of α-ketoglutarate. However, the 

conversion of α-ketoglutarate to glutamate, the first step in this reaction is catalyzed by 

glutamate dehydrogenase that has a low affinity for ammonia promoting the anaplerotic 

direction generating α-ketoglutarate from glutamate rather than glutamate from α-

ketoglutarate (Wootton, 1983). Under most physiological conditions, since muscle ammonia 

concentrations do not reach the Km of this enzyme (~1mM), there is not net cataplerosis 

of α-ketoglutarate. In cirrhosis, we have consistently reported tissue concentrations of 

ammonia ~4mM that favors cataplerosis of α-ketoglutarate to glutamate. This is consistent 

with our observations of lower TCA cycle intermediates in the skeletal muscle during 

hyperammonemia. Impaired muscle mitochondrial function and ATP generation accompany 

lower TCA cycle intermediates. These observations provide a mechanistic basis for 

the previously reported impaired skeletal muscle mitochondrial electron chain complex 

function in cirrhosis. Reduction in muscle ATP also contributes to lower protein synthesis 

since peptide chain elongation is a high energy-requiring step. Increased autophagy is 

a homeostatic response and provides amino acids for anaplerotic reactions. Additionally, 

reduction in ATP generation also contributes to skeletal muscle contractile dysfunction in 

cirrhosis.

Skeletal muscle molecular abnormalities during hyperammonemia

In addition to skeletal muscle metabolic derangements, ammonia also results in impaired 

skeletal muscle protein synthesis and increased autophagy. The principal pathway of 

impaired protein synthesis involves the canonical Akt/mTOR mediated regulation of cap 

dependent protein synthesis. Myostatin, a TGF-β superfamily member is a potent inhibitor 

of muscle protein synthesis and inhibits mTOR activation either via an Akt dependent 
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or independent mechanism. Consistently, blocking myostatin increases muscle mass and 

protein synthesis (Dasarathy et al., 2011).

Hyperammonemia also increases muscle autophagy that in combination with impaired 

protein synthesis results in loss of muscle mass (Qiu et al., 2012). Both impaired mTOR 

signaling and activation of AMPK contribute to the increased autophagy. Ammonia also 

increases protein nitration either directly or by increased generation of reactive oxygen 

and nitrogen species and autophagy has been shown to contribute to clearance of post 

translationally modified muscle proteins (unpublished data). Posttranslational modification 

of proteins can potentially impair the actomyosin interaction during muscle contraction and 

result in impaired muscle contractile function.

Therapeutic relevance of muscle hyperammonemia.—The metabolic and 

molecular data support our belief that hyperammonemia induces a state of anabolic 

resistance because previous strategies to increase muscle mass by nutritional and hormonal 

strategies have not been consistently been effective (Tsien et al., 2012). Our studies 

using an integrated molecular-metabolic approach have shown the interaction between 

signaling abnormalities and metabolic demands during muscle hyperammonemia lay the 

foundation for novel mechanistic therapeutic strategies. Our model supports the use of 

long term ammonia lowering, myostatin antagonism, stimulating muscle mTOR, and 

providing anaplerotic substrates to reverse the adverse consequences of hyperammonemia. 

Mitochondrial dysfunction and generation of mitochondrial reactive oxygen species and 

resultant oxidative stress responses are also potential targets to reverse the adverse skeletal 

muscle responses of hyperammonemia (unpublished data).

Consistently, myostatin blocking using either follistatin or myostatin knockout in mice 

have been reported to be effective in reversing hyperammonemia mediated impaired muscle 

protein synthesis and contractile function (Dasarathy et al., 2011; Qiu et al., 2012, 2013). 

Even though ammonia lowering strategies have been effective in reversing encephalopathy 

(Phongsamran et al., 2010), there is little data on the impact on the skeletal muscle. One 

potential reason is that skeletal muscle contractile proteins are long lived and long-term 

ammonia lowering strategies may be necessary to result in clinically relevant responses.

Interestingly, recent studies have reported that leucine is an anaplerotic substrate generating 

of α-ketoglutarate (Schachter and Sang, 1997). Additionally, leucine stimulates mTOR 

directly providing a compelling therapeutic rationale for the use of leucine to reverse 

muscle hyperammonemia and its consequences. Consistently, human and animal studies 

in cirrhosis have shown that high doses of leucine have a beneficial effect in reversing 

impaired skeletal muscle protein synthesis (Tsien et al., 2015). The use of cell permeable 

esters of α-ketoglutarate also holds promise as a strategy to increase muscle ammonia 

disposal. Other potential interventions include enhanced non-hepatic ammonia disposal via 

non-toxic pathways, antioxidants and mitochondrial stabilizers need to be evaluated. On 

final note, even though hyperammonemia is a mediator of the liver muscle axis, plasma 

ammonia is elevated in patients with chronic pulmonary disease, severe heart failure and 

cancers all of which are accompanied by significant skeletal muscle loss (Bessman and 
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Evans, 1955; Chance et al., 1988; Calvert et al., 2010). Therefore, the current approach has 

broad therapeutic potential across multiple organ dysfunctions.

In conclusion, hyperammonemia occurs in a number of chronic diseases and potentially 

contributes to sarcopenia and adverse clinical outcomes. Recent advances in our 

understanding of the molecular and metabolic responses to hyperammonemia in the skeletal 

muscle provide a mechanistic basis for developing effective therapies (Figure 2).

The effect of ammonia on other organs

Kidney

It has been shown in healthy volunteers that following exposure to hyperammonemia, the 

kidneys take up net ammonia from the systemic circulation (Owen et al., 1961). However, 

it has been demonstrated in both cirrhotic patients and hyperammonemic rodents, that the 

kidney becomes a primary source of ammonia (Owen et al., 1961; Olde Damink et al., 

2003; Ytrebø et al., 2006). Elevated systemic ammonia concentrations following CLD may 

directly interact with glomerular cells and contribute to glomerular injury (Ling et al., 1998). 

Hyperammonemia also plays a crucial role in tubulointestinal fibrosis (Ling et al., 1998). 

Gordon et al. displayed evidence ammonia has the capacity to promote tubulointestinal 

injury due to the interaction of ammonia with the third component of complement, a potent 

stimulus to the production of reactive oxygen species by polymorphonuclear leukocytes 

and monocytes (Gordon et al., 1985). In this context, Nath et al. demonstrated that 

hyperammonemia induces the progression of renal injury, not only through complement 

cascade, but also through the stimulatory effects of ammonia on renal growth (Nath et al., 

1991). In fact, oxidative stress can also cause renal ammoniagenesis which may contribute 

to progression of renal injury (Dan et al., 2008). By contrast, a very recent study by Satpute 

et al. observed that subacute exposure to ammonium acetate in rats induces renal necrosis 

and tubular degeneration, which were not correlated with either oxidative or biochemical 

changes (Satpute et al., 2014). Indeed, it is apparent that exposure of neutrophils to ammonia 

impair phagocytosis and promotes increased reactive oxygen species generation that results 

in oxidative stress at infection sites and collateral damage to host tissue (Shawcross et al., 

2008).

During ALF, kidneys are capable of continuous ammonia release into the systemic 

circulation (Ytrebø et al., 2006). A recent study by Cauli et al. demonstrated in rats 

with (ALF) that activation of N-methyl D aspartate (NMDA) receptors contribute to 

hyperammonemia-induced encephalopathy and kidney damage. Moreover, blocking NMDA 

receptors with MK-801 improved ammonia elimination and glomerular filtration rate and 

delayed kidney damage (Cauli et al., 2014), confirming the deleterious effects of high 

ammonia concentration in kidneys. Furthermore, ammonia administered to rats lead to 

disturbances in renal sodium handling that was preceded by activation of kidney mitogen 

activated protein kinases/extracellular signal regulated kinases (MAPK/ERKs) signaling 

pathways, and consequently renal injury (Bento et al., 2005). It has been shown that 

kidneys perfused with ammonium salts results in cortical and tubular necrosis, with necrotic 

kidneys demonstrating depressed creatinine clearance (Orvell and Wesson, 1976). Ammonia 

exposure also inhibits tubular cell proliferation in primary rabbit proximal tubular epithelial 
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cells, therefore affecting cell replication (Rabkin et al., 1993). Collectively, these findings 

suggest that hyperammonemia does lead to impaired kidney function and sustaining kidney 

injury.

Liver—As indicated above, whilst astrocytes are major effectors of brain injury in liver 

failure, it is of interest that they share many similar markers of activation with hepatic 

stellate cells (HSC), which are implicated in the development of liver fibrosis and also 

the increase in intra-hepatic resistance with evolving liver injury (Rockey, 1997). Indeed, 

HSC contraction is one of the mechanisms that is central to the development of portal 

hypertension, a serious haemodynamic consequence of cirrhosis. HSC have been shown to 

possess GS (Bode et al., 1998) and recent data shows that in rodent models of cirrhosis, high 

ammonia concentrations are associated with increased HSC contraction and raised portal 

pressure and conversely, lowering ammonia decreases HSC activation and ameliorates portal 

hypertension (Jalan et al., 2016).

In addition to the impact on HSC contraction, elevated ammonia has been shown to promote 

liver injury through up-regulation of toll-like receptor genes, generation of oxidative stress 

through activation of resident macrophages and neutrophils and activation of NFκB and 

iNOS. In addition, ammonia promotes increased hepatocyte apoptosis and changes in cell 

cycle with higher cyclin D1, thereby further promoting liver injury as liver disease evolves 

(Jia et al., 2014). It is possible that impaired urea cycle metabolism and reduced liver 

clearance of ammonia primes the liver and other organs to the impact of acute inflammation 

and further oxidative stress, as occurs in conditions such as acute-on-chronic liver failure, 

though this assertion requires mechanistic evaluation.

Lung

Several studies have discussed the detrimental effects of ammonia on lungs following 

exposure to ammonia gas. Ammonia inhalation also can damage respiratory tract leading 

to acute lung injury and pulmonary edema, which can ultimately lead to death (Ortiz-Pujols 

et al., 2014). Furthermore, ammonia inhalation to rats causes increased oxidative stress, 

decreased antioxidant enzymes and acute lung injury which was attenuated following α-

ketoglutarate treatment (Ali et al., 2012). Ammonia induced acute lung injury have also 

been shown in rabbits associated with an elevated airway pressure and a decrease in PaO2 

(Sjöblom et al., 1999) and has been shown to induce lung fibrosis (Ohnuma-Koyama 

et al., 2013). Ammonia and enzymatically active urease released from parasitic cells of 

Coccidioides posadasii contribute to host tissue damage and exacerbate the severity of 

coccidioidal lung infections (Mirbod et al., 2002; Mirbod-Donovan et al., 2005; Wise et 

al., 2013). In this context, it has been concluded that enzymatically active urease is partly 

responsible for increased extracellular ammonia concentrations at sites of lung infection, 

contributing to both localized host tissue damage and exacerbation of the respiratory disease 

(Lichtenstein et al., 1997).

The effect of ammonia on vascular function

Chronic hyperammonemia is believed to decrease cGMP formation and thereby secondary 

signaling for NO, one of the main regulators of tonic vasodilatation (Cauli et al., 2007). 
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Moreover, as previously mentioned, the promotion of reactive oxygen species generation 

by ammonia gives rise to further endothelial dysfunction by decreasing expression of 

dimethylarginine dimethylamino hydrolase (DDAH1), a cytosolic enzyme that metabolizes 

asymmetric dimethylarginine (ADMA), a key endogenous inhibitor of NO. High ADMA 

levels have previously been shown to be associated with impaired cerebral perfusion 

during hyperammonemia (Balasubramaniyan et al., 2012) and also with high intrahepatic 

resistance in advanced liver disease (Mookerjee et al., 2007). Similarly, under high oxidative 

stress conditions, there is increased un-coupling of nitric oxide synthase with less NO 

bioavailability (Xia et al., 1998) and greater nitration of proteins with the generation of 

peroxynitrite and nitrotyrosine, further promoting organ injury. Furthermore, important 

cationic transporters such as the y+ LAT2 system are also stimulated by high ammonia 

levels, resulting in arginine efflux from endothelial cells in exchange for glutamine uptake 

(Zielinska et al., 2011), and thus loss of substrate for nitric oxide synthase to generate NO. 

Thus at multiple levels, ammonia appears to control endothelial function and resistance 

to vascular flow, whilst also promoting further organ injury. It is perhaps, therefore, not 

surprising that with progression to advanced cirrhosis and ascites formation and greater 

ammonia generation, resistive indices for the middle cerebral artery and renal vasculature 

have been shown to increase, and correlate with severity of hyperdynamic circulatory 

dysfunction as noted through high renin levels (Guevara et al., 1998).

Conclusion

Increases in ammonia can lead to changes in pH, membrane potential (due to similar 

properties of NH4
+ and K+) and cell metabolism. While ammonia (hyperammonemia) is 

unequivocally key in the development of neurological impairment, including HE, the toxic 

effects of ammonia are not specific to the brain and therefore the deleterious consequences 

of hyperammonemia can impinge on other organs. To date, there is accumulated evidence 

indicating ammonia is clearly much more than a neuro-toxin and as CLD and ALF are 

often associated with multi-organ dysfunction, the role of ammonia has been questioned. 

Evidently, the brain is more sensitive to ammonia toxicity and recognizing ammonia 

tolerance/intolerance in other organs remains undefined. The severity of ammonia toxicity 

on all organs and tissues most likely depends on the degree and acuteness of the onset 

of hyperammonemia, therefore a better understanding on the consequences of inherited 

and acquired, as well as acute and chronic hyperammonemia merits to be thoroughly 

investigated. In turn, improved therapeutic strategies for the management of patients with 

hyperammonemia can be realized.
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Figure 1. Effects of ammonia toxicity in brain.
Left, physiological ammonia handling in the brain. Right, some of the proposed neurotoxic 

effects of excess brain ammonia. Glutamate (Glu), glutamine synthetase (GS), glutamine 

(Gln), adenosine triphosphate (ATP), sodium-coupled neutral amino acid transporters 

(SNAT1/2 and 5), glutamate transporter 1 (GLT1), glutaminase (Glnase), glutamate and γ-

aminobutyric acid (GABA), glutamate receptor (GluR), GABA receptor (GABAR), cerebral 

blood flow (CBF), cerebral metabolic rate of oxygen (CMRO2), cerebral metabolic rate of 

glucose (CMRGlc), GABA reversal potential (EGABA), cytokines (CK).
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Figure 2. Skeletal muscle molecular perturbations induced by hyperammonemia.
Ammonia transcriptionally up-regulates TGFB superfamily member, myostatin, that inhibits 

critical regulatory signaling molecule, mTORC1 via AMPK with resultant impaired 

downstream signaling responses that in turn results in decreased protein synthesis and 

increased autophagy, both of which contribute to sarcopenia in liver disease. 4EBP1 4E 

binding protein; ActIIBr activin II b receptor (TGF beta receptor type 2); Akt/PKB protein 

kinase B;ALK4 activin like kinase 4 (TGFbeta receptor type 1); ALK5 activin like kinase 5 

(TGF beta receptor type 1); IGF-1 insulin like growth factor 1, mTORC1 mammalian target 

of rapamycin 1; PI3K phosphoinositide 3kinase; RiboS6 ribosomal S6 protein, ROS reactive 

oxygen species, TSC tuberous sclerosis complex.
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