Skip to main content
. 2022 Feb 2;22(3):1129. doi: 10.3390/s22031129
Algorithm 4 Power Allocation Scheme for MIMO-NOMA
  • 1:

    p¯i˜n(l)=PtotSgi˜n(l)γj=1mngi˜n(j)γ,n,l.

  • 2:

    Initialize η.

  • 3:

    r0n=1Sl=1mnlog(1+p¯i˜n(l)gi˜n(l)1+b=1l1p¯i˜n(b)gi˜n(l)).

  • 4:

    i = 0.

  • 5:

    repeat

  • 6:

       i = i + 1.

  • 7:

       Produce an equivalence problem of (29) as (34)–(37) based on the Taylor expansion at {p¯k,k}.

  • 8:

       Solve the obtained convex problem to get {p˜k,k}.

  • 9:

       rin=1Sl=1mnlog(1+p˜i˜n(l)gi˜n(l)1+b=1l1p˜i˜n(b)gi˜n(l)).

  • 10:

       p¯kp˜k,k.

  • 11:

    untilriri1ri1<η

  • 12:

    pk=p¯k,k.