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Abstract: Improving the tribological characteristics of water-based drilling fluids by adding graphene-
based lubricants has garnered attention because of the potential for a range of inorganic-material-
based additives at high temperature. In this study, we constructed a green and simple adsorption
approach to prepare highly dispersed graphite using a cationic surfactant for graphite modification.
The findings demonstrated that the prepared graphite was highly dispersed in water and had a
low sedimentation rate and small contact angle in distilled water. The concentration dosage of
cetyltrimethylammonium chloride (CTAC) on graphite was 0.02 g/g. We evaluated the performance
of the modified graphite as a lubricated additive in water-based drilling through a rheological study
and viscosity coefficient measurement. The results showed that the viscosity coefficient of drilling
fluid with 0.05% modified graphite was reduced by 67% at 180 ◦C. We proved that the modified
graphite can significantly improve the lubrication performance of drilling fluid. Furthermore, we
revealed the lubrication mechanism by analyzing the chemical structural and crystalline and morpho-
logical features of graphite through a particle size test, zeta potential test, Fourier transform infrared
(FTIR) spectroscopy, X-ray powder diffraction (XRD), and scanning electron microscopy (SEM) mea-
surements. The results indicated that the modification of graphite by CTAC only occurs through
physical adsorption, without changing the crystal structure. These findings provide a reference for
the development of high-performance water-based drilling fluids.

Keywords: surfactant; lubricity; clay; drilling fluids; bentonite; graphite–cement composites

1. Introduction

Drilling fluids are complex chemical systems that play critical roles in the petroleum
industry [1,2]. Nowadays, polymers, especially eco-friendly biopolymers, are specifically
added to drilling fluid to maintain its rheological properties, viscosity, filtration, and other
characteristics [3,4]. Unfortunately, these polymer-based agents experience serious degra-
dation and fail to retain their properties under harsh conditions such as high pressure and
high temperature (HPHT) [5,6]. As such, drilling fluids need an additive with high stability.
In addition, our research group has conducted research in the field of drilling fluid treat-
ment agents [7,8], as a result of which we proposed some inorganic materials as desirable
additives under HPHT conditions [9,10]. Graphite is an atomic crystal with carbon atoms
connected by covalent single bonds to form a stable regular hexagonal network structure.
Covalent single bonds are chemical bonds with very high bond energy and thus can only
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be destroyed by extremely high energy. For instance, graphite is oxidized by oxygen in the
air when the temperature exceeds 600 ◦C. Therefore, graphite has strong resistance to high
temperatures [11,12]. Graphite can also be used in graphite–cement composites. The key
feature of this material is its conductive and porous microstructure that is created because
of a synergic effect between the cementitious matrix and graphite particles.

Another issue with water-based drilling fluids during drilling works is their relatively
high friction, causing drilling engineering problems in directional, horizontal, extended-
reach, cluster, and ultra-deep wells [13]. In these diverse wellbore structures, the torque
and friction force are higher during the drilling process. With the increasing difficulty
of oil and gas exploration, complex wells such as extended-reach, horizontal, and ultra-
deep wells are frequently used, where water-based drilling fluid is the main choice for
drilling. Compared to water-based drilling fluid, oil-based drilling fluid produces the least
friction and torque. However, with increasingly stringent environmental requirements,
the environmental performance of drilling fluid has attracted much attention [14]. The
main lubricants used in drilling fluid in this field are mineral oil and vegetable oil, which
cause environmental pollution, and have been gradually replaced. Lubricating additives
have high surface activity, and improve surface adhesion and lubricity [15,16]. Therefore,
a water-based drilling fluid mud with lubricating additives as designed. This lubricating
additive is environmentally friendly, cost-effective, and can provide similar lubricating
effects as oil- and synthetic-based drilling fluids [17,18]. Graphene-based lubricants are
considered water-based drilling fluid lubricant candidates [19]. Graphite has a hexagonal
crystal structure, and the atoms in the crystal lattice are evenly distributed on parallel
planes [20,21]. Since the bonding force between atoms in the same graphene layer is
stronger than the bonding force between planes, shear easily occurs between layers. The
friction between the layers is extremely low, and relative displacement between the layers
can easily occur [22,23]. Therefore, if the graphite particles are attached on the interface, the
tangential friction is small, which ensures that the graphite provides a suitable lubricating
effect [24,25].

Dispersion stability is thought to be the key factor for graphene-based lubricants [26,27].
Graphene displays incompatibility with water owing to its intrinsic hydrophobicity [28],
thus improving the dispersion of graphene in water is challenging. Modification of
graphene by the self-assembly of a surfactant is a novel technological solution. In this study,
we modified the surface of natural flake graphite by using a cationic surfactant CTAC for
use as a lubricant in water-based drilling fluid, which can overcome the problem of natural
flake graphite not evenly dispersing in drilling fluid due to its hydrophobicity. We only
used the highly dispersed modified graphite described in this paper for a performance
evaluation in a simple water-based drilling fluid, and its application in complex wells has
certain limitations. Our findings provide some guidance for future research on the lubricity
of water-based drilling fluid.

2. Experimental Materials and Methods
2.1. Materials and Reagents

Calcium and sodium-based bentonite were purchased from Fengyun Chemical Co.,
Ltd. (Xi’an, China). Sodium carbonate was obtained from Shengao Chemical Reagent
Co., Ltd. (Tianjin, China). Graphite powder was purchased from Risheng Graphite Co.,
Ltd. (Qingdao, China) and cetyltrimethylammonium chloride (CTAC) was purchased from
Aipuno Co., Ltd. (Qingdao, China).

2.2. Drilling Fluid Evaluation

These components were mixed well according to the following procedure: 0.7 g of
sodium carbonate was added to tap water and stirred for 3 min. This step was repeated
to dissolve 14 g calcium bentonite, and the mixture stirred at high speed for 2 h, and then
aged for 24 h [29]. For the preparation of the treatment drilling fluid, the base drilling
fluid and modified graphite were aged for 6 h, stirred at high speed for 10 min, and then
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its performance was tested [30]. The formula of the modified graphite slurry is shown in
Table 1. The rheological, filtration, and lubrication properties of drilling fluid, including
apparent viscosity (AV), plastic viscosity (PV), yield point (YP), API filtration (FL), and
viscosity coefficient (VC) were obtained. We used a viscometer (ZNN-D6S, Hetongda Co.,
Ltd. Qingdao, China), a medium pressure filtration instrument (GJSS-B12K, Haitongda Co.,
Ltd. Qingdao, China), and a viscosity coefficient instrument (Qingdao Hetongda Co., Ltd.
Qingdao, China) according to the Chinese National Standard GB/T 16783.1-2006.

Table 1. Function of the modified graphite slurry.

Component Function Type Value

Tap water (mL) Fluid base - 350

Calcium bentonite (g) Drilling mud Industrial grade 14

Sodium carbonate (g) Hardness control Analytical purity 0.7

CTAC (g) Modification Analytical purity -

Graphite (g) Lubrication Industrial grade -

2.3. Screening the Amount of CTAC

Cetyltrimethylammonium chloride (CTAC) and graphite in ratios of 0.005, 0.007, 0.010,
0.020, 0.025, 0.033, 0.050, and 0.1 g/g were placed in a flask. Subsequently, distilled water
was added into the flask, and the mixture was stirred at 45 ◦C for 4 h. The mixture was
centrifuged, the supernatant was removed, and the modified graphite was separated and
dried at 60 ◦C over night. The absorbance and zeta potential of modified graphite were
measured [30,31]. The modified graphite was characterized using a laser particle size
measurement analyzer (SMA, Horiba, Japan), X-ray diffraction (JDX-3530, JEOL, Tokyo,
Japan), FTIR spectroscopy (Thermo Electron Co., West Palm Beach, FL, USA), contact angle
measurement (KRÜSS, Hamburg, Germany), and scanning electron microscopy (SEM,
JSM-6390A, JEOL, Tokyo, Japan).

2.4. Infrared Spectroscopy

The dried modified graphite samples were ground. During the test, the ground
sample was mixed with KBr in a ratio of 1:200, placed into a tablet press, and pressed into
transparent flakes. FTIR measurements were performed in the range 4000–400 cm−1, and
64 scans at a resolution of 4 cm−1 were used for analysis. [32].

2.5. Contact Angle Measurement

The modified graphite powder was pressed into graphite flakes under a four-column
press at a pressure of 20 MPa, and then the pressed flakes were placed in contact angles.
The contact angle between the flakes and distilled water was measured on a contact angle
measuring instrument to optimize the optimal dosage of CTAC on graphite [33].

2.6. Laser Particle Size Measurement

Dried modified graphite samples were used for particle size measurements in the
laser particle size experiment to obtain the median and average particle sizes of bentonite
particles in different drilling fluid treated with treatment agent. The change in bentonite
particle size was analyzed according to these mesurements [34].

2.7. Zeta Potential Measurement

The zeta potential of the supernatant of the solution was measured on an omni multi-
angle particle size and high-sensitivity zeta potential analyzer. The changes in the zeta
potential of graphite with different dosages of adsorbent were analyzed [35].
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2.8. X-ray Diffraction

The dried modified graphite sample was analyzed using a D8ADVAHCL X-ray diffrac-
tometer (Bruker, Berlin, Germany) with the following parameters: Cu target, ceramic X-ray
tube, a tube current of 40 mA, a tube voltage of 40 kV, a step size of 0.02◦, and a scanning
range of 5–90◦(2θ). The sample was found to be modified graphite, and the change in
layer spacing of bentonite under different conditions was calculated by the Bragg equation
(nλ = 2sinθ), and the change in graphite crystal structure was analyzed [36].

3. Results and Discussion
3.1. Graphite Sedimentation Experiment

We first investigated the effect of CTAC dosage on the dispersibility of graphite,
and the experiments were designed as shown in Table 2. The dispersion of graphite in
distilled water was observed and recorded within a certain time, as shown in Figure 1.
As shown in Figure 1, the unmodified graphite floated on the surface of distilled water,
which showed obvious hydrophobic characteristics. The suspension also produced foam
after shaking because of the foaming effect of the excess CTAC modifier. With the increase
in the CTAC dosage, the foam increased gradually, and almost no foam was found in
samples 1–4. The modified graphite of samples 3–8 homogeneously dispersed in water
in this experiment, whereas the small dosage of graphite in samples 1 and 2 floated on
the surface of the water. This showed that CTAC changed the surface of graphite from
hydrophobic to hydrophilic; however, CTAC alone was not enough for samples 1 and 2,
which still exhibited hydrophobicity.

Within 5 to 12 h, an amount of graphite still floated on the water surface of samples
1 and 2. In samples 3–8, with the increase in CTAC dosage, the degree of sedimentation
gradually decreased. The modified graphite samples 3 and 4 showed excellent dispersion,
and the modified graphite in samples 1 and 2 precipitated to the bottom of the bottle.
Therefore, the dosage of CTAC was controlled at about 0.0200 g/g, which not only improved
the hydrophilicity of graphite but also ensured the dispersion sustainability of graphite
in solution.

Table 2. Graphite sedimentation experiment.

Sample No. Graphite (g) CTAC (g) Dosage of CTAC on
Graphite (g/g)

1 4.00 0.020 0.005

2 4.00 0.027 0.007

3 4.00 0.040 0.010

4 4.00 0.080 0.020

5 4.00 0.100 0.025

6 4.00 0.130 0.033

7 4.00 0.200 0.050

8 4.00 0.400 0.100
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3.2. Infrared Spectroscopy

The infrared spectra of the blank and samples 1–8 were measured by Fourier transform
infrared spectroscopy (FTIR). Figure 2 shows that the characteristic peaks in the infrared
spectrum of the graphite modified with CTAC in samples 1–8 did not obviously change.
This means that no chemical reaction occurred between the CTAC and graphite. However,
the hydrophobicity/hydrophilicity of the measured samples changed. It is possible that
the graphite changed from hydrophobic to hydrophilic due to physical adsorption on the
graphite surface [37].
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3.3. Contact Angle Measurement

The contact angle between the graphite and distilled water before and after the mod-
ification was measured using a contact angle measuring instrument. The contact angle
was calculated by applying the angle measurement method. We used the average value
of the contact angles on the left and right sides as the average contact angle. The results
of the measurements are shown in Figure 3. The specific values are shown in Table 3.
Figure 3 and Table 3 show that with the increase in the amount of CTAC, the contact angle
between graphite flakes and distilled water roughly decreased first and then increased. The
average contact angle between graphite flake and distilled water was 80.25◦. Compared to
untreated graphite, the average contact angles between graphite flakes of samples 1–8 and
distilled water decreased by: 8.00◦, 14.5◦, 24.25◦, 43.25◦, 20.50◦, 24.00◦, 19.50◦, and 21.75◦,
respectively. The average contact angle between the sample 4 graphite flakes and distilled
water was the smallest when the dosage of CTAC on graphite was 0.020 g/g, which is
consistent with the experimental results of graphite sedimentation described above.
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modification with CTAC.

Table 3. Measured contact angles between distilled water on the graphite surface before and after
modification with CTAC.

Sample No. Left Contact Angle
Value (◦)

Right Contact Angle
Value (◦)

Mean Contact Angle
(◦)

1 80.50 80.00 80.25

2 72.50 72.00 72.25

3 66.00 65.50 65.75

4 55.00 57.00 56.00

5 36.50 37.50 37.00

6 50.00 59.50 59.75

7 56.50 56.00 56.25

8 62.50 59.00 60.75
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3.4. Particle Size Measurement

The particle sizes of the blank and samples 1–8 were measured using a laser diffraction
particle size analyzer. Table 4 shows that the average particle size of modified graphite
reduced from 102.80 µm to 25.11, 17.10, 15.45, 10.03, 11.89, 15.85, 17.77, and 22.04 µm
for samples 1–8, respectively. The median particle size reduced from 90.25 µm to 18.98,
13.71, 12.54, 7.93, 9.53, 12.57, 14.60, and 19.68 µm, respectively, compared to unmodified
graphite. With the increase in the amount of CTAC, the average and median particle sizes
of graphite decreased first and then increased, which showed that an excessive amount
of CTAC leads to coagulation of graphite, resulting in a poor dispersion effect between
graphite particles. Too little CTAC will cause incomplete adsorption on the surface of
graphite. The experimental results showed that when the dosage of CTAC on graphite
was 0.0200 g/g, the average and median particle sizes of graphite were the smallest, which
is consistent with the best dispersion. Therefore, the best dosage of CTAC on graphite as
found to be 0.0200 g/g.

Table 4. Average and median particle sizes of graphite before and after modification with CTAC.

Sample No. The Average Particle Size (µm) Median Particle Size (µm)

Blank 102.80 90.25
1 25.11 18.98
2 17.10 13.71
3 15.45 12.54
4 10.03 7.93
5 11.89 9.53
6 15.85 12.57
7 17.77 14.60
8 22.04 19.68

3.5. Zeta Potential Measurement

The suspension of the blank and samples 1–8 was measured using an omni multi-angle
particle size and high-sensitivity zeta potential analyzer to analyze the zeta potential of
graphite before and after modification with different dosages of CTAC. Table 5 shows
that zeta potential of the modified graphite increased from 8.65 mV to 30.77, 35.05, 35.49,
40.86, 50.25, 50.19, 59.71, and 65.30 mV for samples 1–8, respectively. We found that the
adsorption of CTAC increased the zeta potential of graphite. This change in potential
indicated that the stability of the formed suspension was enhanced.

Table 5. Zeta potential of graphite before and after modification with CTAC.

Sample No. Zeta Potential Value (mV)

Blank 8.65
1 30.77
2 35.05
3 35.49
4 40.86
5 50.25
6 50.19
7 59.71
8 65.30

3.6. X-ray Diffraction Analysis

X-ray diffraction experiments were conducted on the blank and samples 1–8 with an
X-ray polycrystalline diffractometer to analyze the change in their crystal structure. The
XRD pattern in Figure 4 shows that the characteristic peak of modified graphite did not
significantly change. This means that the adsorption of CTAC does not change the crystal
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structure of graphite; in other words, the modification does not affect the interlayer friction
coefficient of graphite.
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3.7. Scanning Electron Microscopy

SEM was used to study the morphology of modified graphite; the sample 4 graphite
was selected as an example. Figure 5 shows that the size of the modified graphite parti-
cles significantly reduced, which means the modification increased the dispersion of the
graphite flakes and reduced the aggregation. The smaller the graphite particles, the better
the dispersion of graphite in aqueous solutions [38–40]. This result is completely consistent
with the results in the previous experiments.

Materials 2022, 15, x FOR PEER REVIEW 8 of 13 
 

 

 
Figure 4. X-ray diffraction patterns of modified graphite. 

3.7. Scanning Electron Microscopy 
SEM was used to study the morphology of modified graphite; the sample 4 graphite 

was selected as an example. Figure 5 shows that the size of the modified graphite particles 
significantly reduced, which means the modification increased the dispersion of the 
graphite flakes and reduced the aggregation. The smaller the graphite particles, the better 
the dispersion of graphite in aqueous solutions [38–40]. This result is completely con-
sistent with the results in the previous experiments. 

 
Figure 5. SEM image of the graphite surface before (above) and after (below) modification with 
CTAC. 

3.8. Performance in Drilling Fluid 
Through the experiments above, we selected sample 4 as the best sample for use as a 

lubricant in an experiment with a water-based drilling fluid under different temperatures. 

10 20 30 40 50 60 70 80

In
te

ns
it

y 
(a

.u
)

26.0 26.2 26.4 26.6 26.8 27.0

 

 

 

 

 Blank  8#  7#

 6#  5#  4#

 3#  2#  1#

2θ(°)

002 magnification

Figure 5. SEM image of the graphite surface before (above) and after (below) modification with CTAC.

3.8. Performance in Drilling Fluid

Through the experiments above, we selected sample 4 as the best sample for use as a
lubricant in an experiment with a water-based drilling fluid under different temperatures.
Table 6 shows that the modified graphite had a certain lubricating effect at 180 ◦C, but it
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lost its lubricating effect at 190 ◦C. At almost every temperature, the lubricity increased
with the increase in dosage. However, increasing the dosage worsens the lubricity, so an
appropriate dosage must be applied.

Table 6. Performance of drilling fluid with the addition of different dosages of CTAC-
modified graphite.

Temperature
(◦C)

Dosage of
Modified

Graphite (%)

PV
(mPa·s) YP (Pa) AV

(mPa·s)
FL

(mL) VC

25

0 3.00 0.20 3.00 16.5 0.1584

0.03 3.00 0.20 3.00 16.2 0.0787

0.05 2.50 0.50 3.00 16.4 0.0349

0.10 2.50 0.50 3.00 15.8 0.0349

0.20 3.00 0.25 3.25 15.5 0.0437

0.30 2.50 0.50 3.00 16.0 0.0524

0.40 2.50 0.50 3.00 15.0 0.1051

0.50 1.50 1.25 2.75 16.0 0.0875

150

0 3.00 0.25 3.25 18.4 0.0875

0.03 3.00 0.20 3.00 23.4 0.0963

0.05 3.00 0.20 3.00 21.9 0.0524

0.10 4.00 0.25 4.25 26.5 0.1317

0.20 3.00 0.25 3.50 22.5 0.1051

0.30 3.50 0.50 4.00 24.5 0.0875

0.40 3.50 0.25 3.75 25.0 0.0787

0.50 2.50 0.50 3.00 18.0 0.0699

180

0 3.00 0.20 3.00 20.1 0.1051

0.03 2.50 0.25 2.75 25.6 0.0787

0.05 2.50 0.25 2.75 24.4 0.0349

0.10 3.50 0.50 4.00 32.0 0.0787

0.20 3.00 0.25 3.25 32.5 0.1139

0.30 4.00 0.25 4.25 41.5 0.1317

0.40 3.00 0.25 3.25 30.5 0.1228

0.50 3.50 0.50 4.00 28.5 0.1584

190

0 3.25 0.25 3.50 22.3 0.1139

0.03 3.00 0.25 3.00 28.2 0.1228

0.05 2.50 0.50 3.00 27.5 0.0524

0.10 3.50 0.50 3.50 31.5 0.1317

0.20 3.50 0.25 3.75 29.6 0.1228

0.30 3.00 0.75 3.75 32.5 0.1228

0.40 3.00 0.25 3.00 27.0 0.1584

0.50 3.00 0.50 3.50 29.5 0.1763

Figure 6 shows that when the dosage of modified graphite was 0.05%, the viscosity
coefficient of drilling fluid decreased from 0.1051 to 0.0349 at 180 ◦C, which is a decrease
of 67%.
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Figure 7 shows that the dosage of modified graphite of 0.05% had good lubricity to
the drilling fluid, and at this dosage, the minimum viscosity coefficient was achieved at
180 ◦C. Table 5 shows that with 0.05% modified graphite, the viscosity coefficient (VC) of
drilling fluid reduced from 0.1584 to 0.0349. At 150 ◦C, the VC of drilling fluid decreased
from 0.0875 to 0.0524. The VC is decreased from 0.1051 to 0.0349 at 180 ◦C. Notably, the
addition of modified graphite had no obvious effect on the other parameters.
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3.9. Mechanism

From the results above, we found that the original hydrophobicity of graphite can be
changed to hydrophilicity by the adsorption of CTAC on its surface. The group on CTAC is
hydrophobic, so can adsorb on the surface of graphite. As a result, the graphite surface
was covered by a layer of amino groups with positive charges and a diffusion layer of
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chloride, as shown in Figure 8. Due to the formation of diffusion electric double layers, this
modified graphite shows repulsion with the same charge, which can reduce the particle
size of graphite particles. This change can enhance the dispersion of graphite in aqueous
solution or drilling fluid, and then enhance the lubrication performance of graphite. In
addition, the method of adsorption of CTAC on graphite is physical adsorption, which is
strongly affected by temperature. Therefore, CTAC may desorb under high temperatures,
resulting in re-aggregation of modified graphite and the reduction in lubrication.
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4. Conclusions

In this study, we modified graphite with CTAC using a simple method. Based on the
FTIR, XRD, and SEM characterization, we found that the modification of graphite was
achieved by physical adsorption, and its crystal structure did not change; only its dispersion
was enhanced. The modified graphite was evaluated in a water-based drilling fluid, and
the results showed that, when the amount of modified graphite was 0.05%, the viscosity
coefficient at 180 ◦C decreased from 0.1051 to 0.0349, and the modified graphite showed
a certain lubricating effect at this temperature. However, this effect was lost at 190 ◦C.
At almost every temperature, the lubricity increased with the increase in dosage. The
absorption of CTAC can form diffusion electric double layers and enhance the repulsion
between particles. This change enhances the dispersion of graphite in an aqueous solution
or drilling fluid and enhances the lubrication performance of graphite.
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