Table 4.
VAD frame-level cross-validation performance vs. model type–RLDD and RODeCAR.
| Metric | Model | |||||||
|---|---|---|---|---|---|---|---|---|
| Original CNN 127-pt. DFT, 8 kHz s.r. No Retraining (Baseline)  | 
Original CNN 127-pt. DFT, 8 kHz s.r. Retrained (10%)  | 
Original CNN 255-pt. DFT, 16 kHz s.r. Retrained (10%)  | 
CNN-MLP 255-pt. DFT, 16 kHz s.r. Retrained (10%)  | 
|||||
| RLDD | RODeCAR | RLDD | RODeCAR | RLDD | RODeCAR | RLDD | RODeCAR | |
| Accuracy [%] | 83.22 | 80.55 | 86.18 | 85.92 | 91.53 | 86.37 | 94.92 | 89.92 | 
| Precision [%] | 89.55 | 87.34 | – | – | – | – | 96.79 | 90.89 | 
| FAR [%] | 35.73 | 18.25 | – | – | – | – | 11.05 | 14.69 | 
| FRR [%] | 11.31 | 20.21 | – | – | – | – | 3.35 | 7.15 |