Skip to main content
. 2022 Feb 12;143:105284. doi: 10.1016/j.compbiomed.2022.105284

Table 4.

Comparison of the average performance metrics from five-fold cross-validation for different classifiers and the stacking classifier.


Overall
Weighted with 95% CI
Classifier Accuracy Precision Recall F1-score Specificity
Linear Discriminant Analysis (LDA) 67.88 ± 2.27 67.69 ± 2.27 67.88 ± 2.27 67.88 ± 2.27 67.77 ± 2.27
XGBoost (XGB) 81.43 ± 1.89 81.37 ± 1.89 81.43 ± 1.89 81.43 ± 1.89 81.39 ± 1.89
Random Forest (RF) 82.91 ± 1.83 82.87 ± 1.83 82.91 ± 1.83 82.91 ± 1.83 82.74 ± 1.84
Logistic Regression (LR) 68.37 ± 2.26 68.63 ± 2.26 68.37 ± 2.26 68.37 ± 2.26 68.47 ± 2.26
Support Vector Machine (SVM) 62.28 ± 2.36 70.03 ± 2.23 62.28 ± 2.36 62.28 ± 2.36 61.53 ± 2.37
AdaBoost 74.66 ± 2.12 74.45 ± 2.12 74.66 ± 2.12 74.66 ± 2.12 74.22 ± 2.13
K-Nearest Neighbors (KNN) 79.17 ± 1.97 79.11 ± 1.98 79.17 ± 1.97 79.17 ± 1.97 79.13 ± 1.98
Gradient Boosting (GB) 89.88 ± 1.47 89.86 ± 1.47 89.88 ± 1.47 89.88 ± 1.47 89.87 ± 1.47
Stacking model (GB + RF + XGB) 91.45 ± 1.36 91.44 ± 1.36 91.45 ± 1.36 91.45 ± 1.36 91.44 ± 1.36