Table 4.
Comparison of the average performance metrics from five-fold cross-validation for different classifiers and the stacking classifier.
| Overall |
Weighted with 95% CI |
||||
|---|---|---|---|---|---|
| Classifier | Accuracy | Precision | Recall | F1-score | Specificity |
| Linear Discriminant Analysis (LDA) | 67.88 ± 2.27 | 67.69 ± 2.27 | 67.88 ± 2.27 | 67.88 ± 2.27 | 67.77 ± 2.27 |
| XGBoost (XGB) | 81.43 ± 1.89 | 81.37 ± 1.89 | 81.43 ± 1.89 | 81.43 ± 1.89 | 81.39 ± 1.89 |
| Random Forest (RF) | 82.91 ± 1.83 | 82.87 ± 1.83 | 82.91 ± 1.83 | 82.91 ± 1.83 | 82.74 ± 1.84 |
| Logistic Regression (LR) | 68.37 ± 2.26 | 68.63 ± 2.26 | 68.37 ± 2.26 | 68.37 ± 2.26 | 68.47 ± 2.26 |
| Support Vector Machine (SVM) | 62.28 ± 2.36 | 70.03 ± 2.23 | 62.28 ± 2.36 | 62.28 ± 2.36 | 61.53 ± 2.37 |
| AdaBoost | 74.66 ± 2.12 | 74.45 ± 2.12 | 74.66 ± 2.12 | 74.66 ± 2.12 | 74.22 ± 2.13 |
| K-Nearest Neighbors (KNN) | 79.17 ± 1.97 | 79.11 ± 1.98 | 79.17 ± 1.97 | 79.17 ± 1.97 | 79.13 ± 1.98 |
| Gradient Boosting (GB) | 89.88 ± 1.47 | 89.86 ± 1.47 | 89.88 ± 1.47 | 89.88 ± 1.47 | 89.87 ± 1.47 |
| Stacking model (GB + RF + XGB) | 91.45 ± 1.36 | 91.44 ± 1.36 | 91.45 ± 1.36 | 91.45 ± 1.36 | 91.44 ± 1.36 |