Table 5.
The logistic regression analysis to construct the stacking ML based Nomogram.
| Outcome | Coef. | Bootstrap Std. Err. | Z | P>|z| | [95% conf. Interval] | |
|---|---|---|---|---|---|---|
| Gradient Boosting (M1) | 6.685314 | 0.7587142 | 8.81 | 0.000 | 5.198262 | 8.172367 |
| Random Forest (M2) | 1.3158 | 0.4752868 | 2.77 | 0.006 | 0.3842555 | −2.247345 |
| XGBoost (M3) | 0.6338573 | 0.4685463 | 1.35 | 0.176 | −0.2844766 | −1.552191 |
| cons | −3.516128 | 0.205643 | −17.10 | 0.000 | −3.919181 | −3.113076 |