Skip to main content
. 2022 Jan 31;22(3):1100. doi: 10.3390/s22031100

Table 2.

The summary of the time domain features used in EEG-based DDD.

Features Mathematic Expression
Statistical measure Maximum (Max) [80] Max=xkx1xN
Minimum (Min) [80] Min=xkx1xN
Standard deviation (STD) [76,81,82,83] σ=1Nk=1N(xkμ)2
Root mean square (RMS) [70] RMS=k=1N(xk)2N
Integration [42,44,75,80] Integration=k=1Nxk
The Number of Zero-Crossing (NZC) [42,46,70,80] NZCx=k=1N1sxk,xk+1
s(xk,xk+1)=10 if xkxk+1<0if (xkxk+10
Hjorth parameters [70] Activity: Act=k=1N(xkμ)2N
Mobility: Mob=var(x˙k)var(xk)
Complexity: Com=Mobx˙kMobxk
Barlow parameters [70] Absolute Mean Amplitude: MA=k=1NxkN
Mean Frequency: MF=1Nk=1Nx˙kMA
Spectral Purity Index: SPI=k=1Nx˙kk=1Nx¨k
Auto regressive model coefficients(ARMC) [70] xk+1=c+k=1Nϕkxk+εk+1
where c is the intercept and φ is ARMC which specifies how much the xk contributes to the xk+1. εk+1 is assumed to be the random zero mean noise.
Entropy Shannon entropy (SE) [36,45,75] SEx=k=1Npxk×logbpxklogbM
where p(xk) represents the probability that the xk occurs anywhere in the EEG samples x. The p(xk) is estimated by a histogram method where the x is linearly divided into M bins.
R’enyi entropy (RE) [37,45,60] Hαx=11αlog(k=1Np(xk)α)
where α is the order, α ≥ 0 and α ≠ 1
Mean comparison test (MCT) [61] Mi=μ1μ2iσ12t1+σ22it2
where μ1 indicates the fixed reference window, μ2(i) indicates the ith dynamic window.
Mahalanobis Distance (MD) [43] Mx=(xμ)TS1xμ