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ABSTRACT
Background. Triple-negative breast cancer (TNBC) is a highly aggressive type of cancer
with few available treatment methods. The aim of the current study was to provide a
prognostic autophagy-related gene (ARG) model to predict the outcomes for TNBC
patients using bioinformatic analysis.
Methods. mRNA expression data and its clinical information for TNBC samples
obtained from The Cancer Genome Atlas (TCGA) and Metabric databases were
extracted for bioinformatic analysis. Differentially expressed autophagy genes were
identified using the Wilcoxon rank sum test in R software. ARGs were downloaded
from the Human Autophagy Database. The Kaplan–Meier plotter was employed to
determine the prognostic significance of the ARGs. The sample splitting method and
Cox regression analysis were employed to establish the risk model and to demonstrate
the association between the ARGs and the survival duration. The corresponding ARG-
transcription factor interaction network was visualized using the Cytoscape software.
Results. A signature-based risk score model was established for eight genes (ITGA3,
HSPA8, CTSD, ATG12, CLN3, ATG7, MAP1LC3C, and WIPI1) using the TCGA data
and the model was validated with the GSE38959 and Metabric datasets, respectively.
Patients with high risk scores had worse survival outcomes than those with low risk
scores. Of note, amplification of ATG12 and reduction of WIPI were confirmed to be
significantly correlated with the clinical stage of TNBC.
Conclusion. An eight-gene autophagic signature model was developed in this study
to predict the survival risk for TNBC. The genes identified in the study may favor the
design of target agents for autophagy control in advanced TNBC.

Subjects Bioinformatics, Molecular Biology, Oncology, Women’s Health, Medical Genetics
Keywords Autophagy gene, Prognosis, Predict model, Triple negative breast cancer, TCGA

INTRODUCTION
Breast cancer (BC) is the most lethal malignancy among women (Fitzmaurice et al., 2019).
Approximately 15% of BC cases are triple-negative breast cancer (TNBC). TNBC is a highly
heterogeneous and highly aggressive BC subtype characterized by the lack of expression
of hormone receptors (HR) and human epidermal growth factor receptor 2 (HER2)
(Lehmann et al., 2011; Sorlie et al., 2001). Standard chemotherapy remains the primary
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treatment option for TNBC patients (Anders & Carey, 2008; Prat et al., 2015). Though new
target agents such as poly (ADP-ribose) polymerase inhibitors, phosphoinositide 3-kinase
inhibitors, and immune checkpoint inhibitors have shown promising efficacy in prolonging
the overall survival (OS) times, most of these agents benefit only small populations of
patients harboring specific gene changes (Lehmann et al., 2014; Narod, Booth & Foulkes,
2017; Yonemori et al., 2019). Most patients who experience disease progression therefore
struggle with the lack of effective drugs, and the median OS is estimated to be only 18
months.

Autophagy is an intracellular evolutionarily conserved, self-degradation process, in
which cytoplasmic macromolecules, damaged proteins, organelles, or pathogens are
delivered to lysosomes and digested by lysosomal hydrolases (Klionsky, 2007; Nakatogawa
et al., 2009; Yorimitsu & Klionsky, 2005). Due to this degradation and renovation process,
autophagy is essential for the maintenance of homeostasis in the physiological condition
and plays vital roles in the development of many diseases, such as cardiovascular disorders,
neurodegeneration, autoimmune diseases, and cancer (Ren, Sowers & Zhang, 2018; Ye et
al., 2019; Yin et al., 2018). Since autophagy provides cell fuel such as essential metabolites
or amino acids to tumor cells under stress, the process may sustain and promote tumor
growth. Gene mutations abrogate the autophagy capability of eukaryocytes, making it
easier for cancer cells to develop more autophagy blockage than normal cells. It is now
recognized that autophagy can both impede and promote carcinogenesis (Bortnik & Gorski,
2017; Goldsmith, Levine & Debnath, 2014; Singh et al., 2018).

TNBC cells exhibit dysregulation in many autophagic signal pathways. Combined
use of autophagy inhibitors and other chemotherapy drugs results in a synergistic effect
and may reverse drug resistance (Lefort et al., 2014; Park et al., 2016; Rontogianni et al.,
2020). Herein, to understand the autophagy genes critical for TNBC development, data
currently available in public databases, specifically the Cancer Genome Atlas (TCGA),
and the Human Autophagy Database (HADb), were compiled to identify differentially
expressed genes (DEGs) related to autophagy in TNBC. Using a sample splitting method
and Cox regression analysis, a gene risk score model was established in this study to assess
the association between autophagy-related genes (ARGs) and the prognosis of TNBC.
The model is expected to be applicable for prognostic evaluation in clinical settings, to
provide potential targets capable of modulating cancer-related autophagic pathways, and
to improve the survival of TNBC patients.

MATERIALS AND METHODS
Gene expression profile data from GEO and TCGA
TNBC microarray data (GSE38959) (Komatsu et al., 2013) were downloaded from the
GEO database. The dataset met the following criteria: (1) it contained data on patients with
TNBC; (2) it contained case-control groups; and (3) it contained at least 30 samples.

mRNA expression data along with the clinical information (including survival state,
survival time, age, pathological stage, TNM stage) from a cohort of 111 patients with TNBC
and 10 matched non-cancerous samples were retrieved from TCGA. mRNA expression
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was quantified based on the Genome Research Project of the Encyclopedia of DNA
Elements (GENCODE, GRCh38 catalog; http://www.gencodegenes.org/). The raw data
were normalized and analyzed using the edgeR package (Robinson, McCarthy & Smyth,
2010).

Distinct autophagy-related gene expression profiles
ARGs were downloaded from the HADb. The genes identified from bioinformatics analysis
of the TCGA dataset were evaluated for intersections with genes in the HADb database.
Overlapping genes were deemed autophagy genes that were expressed in TNBC and were
retained for further survival and functional analyses. Additionally, the identification of
differentially expressed autophagy genes was performed using the Edge Package in R
software (3.6.0). Genes with |log2FC|>1 and adjusted P-values <0.05 were considered to
be statistically significant. Heatmaps were generated by hierarchical clustering analysis and
used to identify differences in gene expression. The ggpubr package in R software was used
to generate a box plot.

Construction of risk score model for survival
To determine the genes that could be used for survival prediction, the correlations
between the survival information for TNBC and the expression of autophagy-related
genes were analyzed using the univariate Cox proportional regression model (O’Quigley
& Moreau, 1986) with P < 0.05 set as the significance threshold. To prevent over-fitting,
LASSO regression analysis was conducted to screen out autophagy genes significantly
related to the prognosis. Based on the correlation coefficients obtained with LASSO
regression (Fontanarosa & Dai, 2011), a risk prediction model was constructed: risk score
= 6CoefmRNAs ×ExpmRNAs, where CoefmRNAs represents the regression coefficient, and
ExpmRNA indicates the expression level of the corresponding mRNA. The risk score for
each sample was calculated using the above formula. Using the median of the risk scores as
the cut-off value, the samples were divided into high-risk and low-risk groups. Using the
timeROC package in R software (https://cran.r-project.org/web/packages/timeROC/index.
html) (Heagerty, Lumley & Pepe, 2000), the feasibility and reliability of the prognosis model
at 1, 3, and 5 years were evaluated.

Survival significance of the model
To assess whether the risk score system can be used as an independent prognostic
factor for TNBC, the risk score obtained from the model was associated with the
clinical characteristics of TNBC patients (age and pTNM stage) using univariate and
multivariate Cox regression analyses. Forest maps were drawn to represent the relationship
and the disease prognosis was analyzed using the ‘‘Survival’’ package in R software
(https://cran.r-project.org/web/packages/survival) (O’Quigley & Moreau, 1986) with a
significance threshold for P values < 0.05.

Target regulatory network analysis
Cancer transcription factor (TF) data were downloaded from the Cistrome database.
The corresponding expression levels for TFs in TNBC were extracted from TCGA. The
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correlations of TFs with the eight prognosis-related genes were analyzed and the correlation
coefficient for TF screening was set as >0.3 with P < 0.01 (Liu et al., 2011; Shannon et al.,
2003). One hundred and fifty seven interaction relationships were obtained and visualized
using the Cytoscape website.

External validation
The validation dataset (GSE38959) was downloaded from the GEO database. Receiver
operating characteristic (ROC) (Le et al., 2019a; Le, Yapp & Yeh, 2019b) analysis was used
to evaluate whether the prognostic genes had good pattern recognition between the tumor
and normal tissue. We also downloaded another dataset (Metabric) from the cBioPortal
database (https://www.cbioportal.org/) and the Kaplan–Meier curve was adopted to identify
the survival difference between risk groups.

Statistical analysis
Univariate and multivariate Cox proportional hazards regression analyses were conducted
using the ‘‘Survival’’ package in R software. The hazard ratio (HR) and 95% confidence
interval (CI) were calculated to identify protective (HR <1) and risk-related genes (HR
>1). A survival curve was plotted with the Kaplan–Meier (KM) method to estimate the
differences in the survival duration between the high- and low-risk patients. All the
statistical analyses were conducted with R (version 3.6.0).

RESULTS
Preliminary screening of differentially expressed ARGs from TCGA
Gene expression profiles for 111 TNBC samples, composed of 101 primary TNBC samples
and 10 normal breast tissue samples with clinical files, were obtained from TCGA. The
HADb was also searched and 232 genes implicated in the autophagy process were extracted.
A total of 35 differentially expressed ARGs (DE-ARGs) in TNBC were retrieved from the
TCGA database (log2FC >1 and P < 0.05). The validated top five up-regulated genes were
BIRC5, CDKN2A, EIF4EBP1, GAPDH, and IKBKE, while the top five down-regulated hub
genes were FOS, MAP1LC3C, TP63, DLC1, and HSPB8 (Fig. 1).

Survival analysis of the candidate autophagy genes
Since the number of DE-ARGs was small, all of the autophagy genes were included
in the survival analysis. The expression levels of autophagy genes and their clinical
data were extracted from the corresponding database for survival analysis. Univariate
Cox regression analysis revealed 10 ARGs with significant prognostic value (P < 0.05)
(Table 1). Among these, eight optimal gene sets were selected using LASSO regression
analysis (Figs. 2A and 2B) to construct a risk score system for TNBC. These genes were
integrin alpha-3 (ITGA3), heat shock protein family A member 8 (HSPA8), cathepsin D
(CTSD), autophagy-related 12 (ATG12), neuronal ceroid lipofuscinosis (CLN3), ATG7,
microtubule associated protein 1 light chain 3 gamma (MAP1LC3C), and WD repeat
domain phosphoinositide-interacting protein 1 (WIPI1). Based on the Cox coefficients and
mRNA expression levels for individual genes, the following formula was used to calculate
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Figure 1 Differentially expressed autophagy genes in TNBC from the TCGA database analysis. (A)
The expression pattern of 35 genes in TNBC. Red indicates higher expression and yellow indicates lower
expression. (B) The boxplot of 35 genes identified from the TCGA dataset.

Full-size DOI: 10.7717/peerj.12878/fig-1

Table 1 Autophagy genes independently related to TNBC prognosis.

ID HR Hazard ratio 95% CI P value

ITGA3 1.000044 1.000012 1.000076 0.007217
WIPI1 0.999282 0.998627 0.999938 0.03193
ARSA 1.000152 1.000013 1.000292 0.032175
HSPA8 1.000033 1.000012 1.000053 0.001653
CTSD 1.000016 1.000006 1.000026 0.001976
ATG12 1.000598 1.000044 1.001151 0.034299
CLN3 1.000413 1.000023 1.000803 0.038094
ATG7 1.000834 1.000319 1.001349 0.00149
MAP1LC3C 1.013562 1.00074 1.026548 0.038099
IRGM 1.117321 1.026867 1.215744 0.01001

the risk scores for each sample: risk score = 2.50E-05*ITGA3 + −0.000109582*WIPI1
+ 2.40E−05*HSPA8 + 2.11E−06*CTSD + 0.000372025*ATG12 + 0.000170205*CLN3 +
0.000365579*ATG7 + 0.008241647*MAP1LC3C. With the median of the risk scores set as
the cut-off value, the cut off value was 41.11, the patients were classified into high- and
low-risk groups (Fig. 3A). As shown in Fig. 3B, death events occurred more frequently
in the high-risk group than in the low-risk group. The expression status of the genes in
patients is presented individually as dots with specific colors in Fig. 3C. Additionally, the
KM curves showed that patients in the low-risk group survived longer than those in the
high-risk group (Fig. 4; P < 0.05).
A ROC curve was plotted to evaluate the reliability of this prognostic model. The AUC

values for 1, 3, and 5 years were calculated as 0.99, 0.81, and 0.79 respectively, which
indicated the performance of this prognostic model was reliable in the clinical setting
(Fig. 5).
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Figure 2 (A) LASSO coefficient profiles of the 10 survival-associated genes. (B) The tuning parame-
ter (λ) in the LASSOmodel selected through a cross-validation procedure was plotted as a function of
log(λ). The y-axis represents the partial likelihood dev.

Full-size DOI: 10.7717/peerj.12878/fig-2

Prognosis significance for the risk model
To investigate whether the risk prediction system can be used as an independent prognostic
factor, the relationships between the risk scores obtained from the model and the clinical
characteristics of the patients were evaluated. The results confirmed that the risk score
model can be used as an independent prognostic factor to predict the survival of TNBC
patients (P < 0.05) (Fig. 6).

Transcription factor correlation analysis
Data for 318 TFs were downloaded from the Cistrome database. Expression files for the
TFs were extracted from TCGA and 61 interaction relationships for seven of the eight
optimal gene sets were identified through combined analysis. The interaction networks
for these genes were visualized using the Cytoscape software (Fig. 7). CTSD, ATG7, and
MAP1LC3C were located at the core positions in the network, which indicated that they
may share common regulatory genes and may participate in signal pathways with similar
functions.

Clinical significance of the autophagy gene sets
Analyzing the correlations between the expression levels of the eight genes and the clinical
characteristics of the patients revealed that the expression levels of ATG12 andWIPI1 were
significantly associated with the pathological stage of TNBC. ATG12 levels in stage I-II
patients were significantly lower than those in stage III-IV patients (P = 0.009). TheWIPI1
levels in stage I-II patients were significantly higher than those in stage III-IV patients
(P = 0.02). This indicated that clusters for the tumor stage could be created based on the
two genes with significant differences, providing new avenues for the prognostic prediction
of TNBC (Fig. 8).
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Figure 3 Autophagy-related gene signature risk score distribution and heat-map of the eight gene ex-
pression profiles. (A) Patients were classified into high- and low-risk groups using the median of the risk
scores as the cut-off value. (B) Death events occurred more frequently in the high-risk group. (C) Heat-
map of the ARG expression profiles: Rows represent genes and columns represent patients. Red indicates
higher expression and blue indicates lower expression.

Full-size DOI: 10.7717/peerj.12878/fig-3

Premium prognostic model evaluation
The association between the clinical characteristics of the samples and the risk score from
the prognosis model was investigated. As shown in Fig. 8, the area under the curve (AUC)
value for the risk score was higher than that for clinical parameters such as age, clinical
stage, and TMN stage, indicating the gene signature model has excellent performance for
survival length estimation (Fig. 9).

External validation
The validation dataset (GSE38959) downloaded from the GEO database comprised 30
TNBC samples and 13 normal breast tissue samples. The expression levels of the prognostic
genes and their corresponding clinical information extracted from GSE38959 were used to
confirm the reliability of the prognosis model. ROC analysis was then performed to verify
the degree of pattern recognition for the genes. The prediction accuracy of the genes was
proportional to the AUC value (Fig. 10). These results suggested that the eight-gene-based
classifier could accurately indicate the diagnosis for TNBC patients. In addition, we used
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Figure 4 Survival analysis for the eight gene signatures between the high-risk and low-risk groups.
Full-size DOI: 10.7717/peerj.12878/fig-4

the Metabric dataset to validate the performance of the signature. As shown in Fig. 11A,
the KM curve analysis suggested that a significant survival divergence existed between the
high-risk and low-risk groups (P < 0.05). We also discovered that the high-risk group had
more death cases and high risk scores, whereas patients in the low-risk group had better
survival durations (Fig. 11B).

DISCUSSION
Autophagy, also known as type II cell death, serves as a system for intracellular control and
enables cells to adapt to stress and adverse surroundings; thus, the autophagic response
defends the body against diseases (He & Klionsky, 2009; Khandia et al., 2019). In some
situations, autophagic dysfunction can cause malignant transformation and degeneration,
particularly in conditions such as hypoxia and malnutrition. Individuals with defects
or dysregulation in autophagic genes may develop various malignancies (Chen et al.,
2019; Debnath, 2011; Galluzzi, Pedro & Kroemer, 2016). Autophagy in cancer-associated
fibroblasts has been reported to cause TNBC cells to engage in the epithelial–mesenchymal
transition process through Wnt/ β-catenin, resulting in enhanced cancer cell invasion
and proliferation (Wang et al., 2017). Compounds administered to elicit mitochondrial
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Figure 5 Receiver operating characteristic (ROC) analysis of the sensitivity and specificity of the sur-
vival duration predicted by the eight-gene signature-based risk score in 1, 3, and 5 years.

Full-size DOI: 10.7717/peerj.12878/fig-5

Figure 6 Cox regression analysis for the clinical factors and the eight-gene risk score.
Full-size DOI: 10.7717/peerj.12878/fig-6

dysfunction in MDA-MB-231 cells can induce the production of reactive oxygen species
and suppress cell growth (D’Anneo et al., 2013). Further, deubiquitinase inhibitors impair
TNBC viability and lead to the activation of autophagy, which compensates for stress in
the ubiquitin-proteasome system (Vogel et al., 2015).

In this study, a viable panel of ARGs specifically expressed in TNBC was identified
based on integrin bioinformatic analysis of data in the public TCGA and HADb databases.
We noticed that the top five upregulated and top five downregulated genes were in
the ARG database, but some of them were not directly involved in the autophagy
process. For example, GAPDH is a housekeeping gene involved in glycolysis, and Fos
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Figure 7 Network construction for the transcription factors and prognostic autophagy genes.
Full-size DOI: 10.7717/peerj.12878/fig-7

Figure 8 Correlation analysis for the prognostic genes and clinical traits.
Full-size DOI: 10.7717/peerj.12878/fig-8

is a translation factor. However, GAPDH was recently found to be a pivotal and central
regulator of autophagy under glucose deficient conditions, undergoing AMPK-dependent
phosphorylation and nuclear translocation to activate Sirt1 deacetylase activity. Fos can
regulate downstream apoptosis-related genes when phosphorylated via the JNK pathway
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Figure 9 ROC analysis for the prognostic genes and clinical traits.
Full-size DOI: 10.7717/peerj.12878/fig-9

during the autophagic response induced by endoplasmic reticulum stress. Because the
number of differential genes is small, we included all ARGs expressed by TNBC in the
prognosis analysis. Cox proportional hazard regression analysis revealed 10 key prognostic
ARGs related to the overall survival of TNBC patients. In further multivariate survival
analysis, eight of the ten genes were selected and used to construct a risk model capable
of independent prediction of tumor prognosis. The reliability of the signature model was
validated using a dataset downloaded from the GEO database. The genes ITGA3, HSPA8,
CTSD, ATG12, CLN3, ATG7, and MAP1LC3C negatively influenced patient survival,
whereas WIPI1 may protect the patients from cancer-related death. Of note, tracing the
clinical features of the tumors revealed that highWIPI1 and ATG12 expression levels were
closely related to the stage of TNBC. However, in the differential expression analysis, no
significant differences in the two genes were found between the TNBC and normal samples.

The autophagy response consists of four steps: (1) cytoplasmic components are captured
by phagophores; (2) the phagophores expand and close to become autophagosomes; (3) the
autophagosomes combine with vesicles or endosomes; (4) the autophagosomes fuse with
lysosomes, the cargos are eliminated, and the products are recycled. Several ARGs regulate
this process (Levine & Kroemer, 2019). In the first step of autophagy, serine/threonine-
protein kinase (ULK) induces phagophore nucleation by phosphorylating the Beclin-1
complex. The subsequent phagophore elongation comprises two ubiquitin-like conjugation
processes: the formation of the ATG12–ATG5-ATG16L1 complex and the conjugation of

Yang et al. (2022), PeerJ, DOI 10.7717/peerj.12878 11/20

https://peerj.com
https://doi.org/10.7717/peerj.12878/fig-9
http://dx.doi.org/10.7717/peerj.12878


Figure 10 ROC analysis for the eight prognostic genes in the validation dataset.
Full-size DOI: 10.7717/peerj.12878/fig-10

light chain 3 (LC3) to phosphatidylethanolamine (Radoshevich et al., 2010). ATG7 is one of
the modulators of the above process (Tanida et al., 2012). PI3P production represents the
initiation signal for autophagosome formation. TheWIPI1 protein family specifically binds
with PI3P at the nascent autophagosome to activate the PI3P signal, which controls early
autophagosome assembly and is implicated in both canonical and noncanonical autophagy
pathways (Proikas-Cezanne et al., 2015; Tsuyuki et al., 2014). The expression of WIPI1 is
strongly elevated in human cancers such as melanoma and colon cancer (D’Arcangelo et
al., 2018), but the role of WIPI1 in the oncogenetic process of TNBC is unclear.

The degradation of selective substances is mediated by specific autophagic receptors that
contain an MAP1LC3/LC3-interacting region motif. High levels of MAP1LC3A have been
observed in many tumor cell lines and are associated with impaired autophagic activity,
which facilitates carcinogenesis (Bai et al., 2012; Giatromanolaki et al., 2014). For breast
cancer, cells expressing LC3A protein showed three distinct autophagic patterns and an
increased number of ‘‘stone-like’’ structures were linked with a less favorable prognosis
(Sivridis et al., 2010). In a study on drug sensitivity, LC3A was reported to be a biomarker
for Lapatinib-resistance (Zhang et al., 2017). In our study, the expression level of LC3A
in TNBC was lower than that in normal tissues, but the level reflected aggressive tumor
behavior.
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Figure 11 Associations between the autophagy-related risk signature and survival features in TNBC
patients from analysis of the Metabric dataset. (A) Kaplan–Meier curves for OS in the high-risk and low-
risk groups when stratified according to the autophagy-related signature (P < 0.05); (B) Based on the me-
dian risk score, the eight-gene risk signature was used to divide patients into high-risk and low-risk groups
with distinct prognoses in the Metabric validation set. The red dots represent deaths, while the blue dots
represent living patients. In the heat map, the transition from blue to red suggests that the expression level
increased.

Full-size DOI: 10.7717/peerj.12878/fig-11

The ATG protein cathepsin D (encoded by CTSD) is a lysosomal, aspartic
endoproteinase. Extracellular cathepsin D can modify the local extracellular matrix,
inducing oncogenic activity by proteolysis at low pH or via protein-protein interactions. In
a study involving 504 TNBC samples, CTSD was found to be overexpressed in 71.5% of the
samples and was proposed to be a prognostic indicator for the TNBC outcome (Foekens et
al., 1999). In the MDA-MB-231 metastatic xenograft model, the anti-cathepsin D antibody
prevents M2-like macrophages and the recruitment of myeloid-derived suppressor cells,
leading to less immunosuppression in the tumor microenvironment (Ashraf et al., 2019).

Integrin signaling is one of the autophagy mechanisms that promote tumor invasion
(Hellyeh & Johanna, 2018). ITGA3, a receptor for fibronectin, laminin, and collagen,
participates in focal adhesion, invadopodia formation, and matrix degradation. ITGA3
has been reported to account for the differentiation and metastasis of many cancer types
through extracellularmatrix interactions, focal adhesion, and othermolecularmechanisms.
Targeting on ITGA3 prevents cancer progression.

HSPA8 is involved in protein import into organelles or cellular compartments. When
cells are exposed to stress, HSPA8 is notably induced and serves as a buffering system
to maintain cell survival (Liu, Daniels & Cao, 2012; Stricher et al., 2013). In the cancer
environment, it may activate immunocytes to promote tumor cell killing, but can also
enhance immune system escape, enabling tumor cells to survive. HSPA8 overexpression
has been found in a wide range of human cancers and is considered to be closely related to
tumor invasion and metastasis (Xiang, You & Li, 2018).
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CLN3 impacts the function of lysosomes and galactosylceramide lipid transport from
the Golgi apparatus to lipid rafts in the plasma membrane. Defects in the gene or low
levels of CLN3p lead to enhanced neurodegeneration and apoptosis, while high levels of
CLN3p may lead to the inhibition of apoptosis, thereby promoting carcinogenesis (Mirza
et al., 2019). The expression of CLN3mRNA and CLN3 protein is increased in a variety of
cancers, including breast cancer. In a study of human breast cancer samples, the absence of
HER2 expression was found to be correlated with CLN3 overexpression (Makoukji et al.,
2015).

CONCLUSIONS
In summary, TNBC is a very aggressive cancer type with unique genetic and molecular
properties. Understanding the bilateral roles that autophagy genes play in TNBC
development is fundamental for precise control of the disease. The present study, based
on bioanalyses of data from the TCGA database, represents the first attempt to construct
an ARG model to evaluate the survival risk for TNBC. The eight genes included in the
model may serve as potential biomarkers or targets to optimize the treatment of TNBC.
However, this study had limitations because we only analyzed the survival times of TNBC
patients impacted by ARGs. We could not perform stratified analysis of the patients
according to therapeutic strategies including chemotherapy and radiotherapy, which may
have profoundly influenced the survival outcomes. Experiments on clinical samples are
needed to validate our conclusions in the future.
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