Skip to main content
. 2022 Jan 29;22(3):1076. doi: 10.3390/s22031076
Algorithm 1: DCA: Disease Classification Algorithm
Input : Disease Training Data (DTrD)
Output : Classification Rules (ClassiRule1, ClassiRule2, ClassiRule3)
Step 1 : R[] <-- Extract all instances from DTrD
Step 2 : TA <-- Extract target attribute from R
Step 3 : TAV[] <-- Extract target attribute values from R
Step 4 : OA[] <-- Extract other attributes from R
Step 5 : GDA = 0              //Global Disorder Amount
Step 6 : For each TAVi from TAV
Step 7 :    F <-- Count Frequency of TAVi
Step 8 :    FP <-- F/R.length        //Frequency Probability
Step 9 :    GDA <-- GDA − (FP * log2(FP))
Step 10 : End For
Step 11 : ClassiRule1 = ClassificationRuleGeneration(OA,R)
Step 12 : ClassiRule2 = Classify DTrD based on MLP classifier using weka
Step 13 : ClassiRule3 = Classify DTrD based on Dl4jMlpClassifier using WekaDeeplearning4j
Step 14 : Return ClassiRule1, ClassiRule2, ClassiRule3