| Algorithm 1: DCA: Disease Classification Algorithm | ||
| Input | : | Disease Training Data (DTrD) |
| Output | : | Classification Rules (ClassiRule1, ClassiRule2, ClassiRule3) |
| Step 1 | : | R[] <-- Extract all instances from DTrD |
| Step 2 | : | TA <-- Extract target attribute from R |
| Step 3 | : | TAV[] <-- Extract target attribute values from R |
| Step 4 | : | OA[] <-- Extract other attributes from R |
| Step 5 | : | GDA = 0 //Global Disorder Amount |
| Step 6 | : | For each TAVi from TAV |
| Step 7 | : | F <-- Count Frequency of TAVi |
| Step 8 | : | FP <-- F/R.length //Frequency Probability |
| Step 9 | : | GDA <-- GDA − (FP * log2(FP)) |
| Step 10 | : | End For |
| Step 11 | : | ClassiRule1 = ClassificationRuleGeneration(OA,R) |
| Step 12 | : | ClassiRule2 = Classify DTrD based on MLP classifier using weka |
| Step 13 | : | ClassiRule3 = Classify DTrD based on Dl4jMlpClassifier using WekaDeeplearning4j |
| Step 14 | : | Return ClassiRule1, ClassiRule2, ClassiRule3 |