Algorithm 1: DCA: Disease Classification Algorithm |
Input |
: |
Disease Training Data (DTrD) |
Output |
: |
Classification Rules (ClassiRule1, ClassiRule2, ClassiRule3) |
Step 1 |
: |
R[] <-- Extract all instances from DTrD |
Step 2 |
: |
TA <-- Extract target attribute from R |
Step 3 |
: |
TAV[] <-- Extract target attribute values from R |
Step 4 |
: |
OA[] <-- Extract other attributes from R |
Step 5 |
: |
GDA = 0 //Global Disorder Amount |
Step 6 |
: |
For each TAVi from TAV |
Step 7 |
: |
F <-- Count Frequency of TAVi |
Step 8 |
: |
FP <-- F/R.length //Frequency Probability |
Step 9 |
: |
GDA <-- GDA − (FP * log2(FP)) |
Step 10 |
: |
End For |
Step 11 |
: |
ClassiRule1 = ClassificationRuleGeneration(OA,R) |
Step 12 |
: |
ClassiRule2 = Classify DTrD based on MLP classifier using weka |
Step 13 |
: |
ClassiRule3 = Classify DTrD based on Dl4jMlpClassifier using WekaDeeplearning4j |
Step 14 |
: |
Return ClassiRule1, ClassiRule2, ClassiRule3 |