Skip to main content
. 2022 Jan 29;22(3):1076. doi: 10.3390/s22031076
Algorithm 2: Disease Prediction Algorithm (DPA)
Input : Testing data, Classification Rules (ClassiRule1, ClassiRule2 and ClassiRule3)
Output : Predicted Patient Disease (PRED)
Step 1 : //If this attribute is a target attribute, then return the target attribute value
Step 2 : IF(ClassiRule1.attribute = TA)
Step 3 :    PRED1 = ClassiRule1.classValue
Step 4 : ELSE
Step 5 :    //otherwise, check which rule should follow
Step 6 :    //by comparing the attribute of the instance
Step 7 :    //with the one in the rule
Step 8 :    VAL = INS[ClassiRule1.attribute]
Step 9 :    i = 0
Step 10 :    For each ClassiRule1.attributeValues [i] from ClassiRule1.attributeValues
Step 11 :       IF (ClassiRule1.attributeValues [i] == VAL)
Step 12 :          predictTargetAttributeValue(ClassiRule1.attributes [i], INS)
Step 13 :       End IF
Step 14 :    End For
Step 15 : End IF
Step 16 : PRED2 = Predict Testing data using MLP classifier with ClassiRule2
Step 17 : PRED3 = Predict Testing data using Dl4jMlpClassifier with ClassiRule3
Step 18 : PRED = ““
Step 19 : IF (PRED1 = PRED2)
Step 20 :    PRED = PRED1
Step 21 : ELSE IF (PRED1 = PRED3)
Step 22 :    PRED = PRED1
Step 23 : ELSE IF (PRED2 = PRED3)
Step 24 :    PRED = PRED2
Step 25 : End IF
Step 26 : return PRED