Skip to main content
. 2022 Jan 28;14(3):527. doi: 10.3390/polym14030527

Table 4.

The most appropriate features for the machine learning methods determined through the trial-and-error process.

Model The Most Appropriate Characteristics Collection AAPD% RAPE% RMSE R2
MLPNN Nine hidden neurons Training 11.13 7.38 4.95 0.988679
Hyperbolic tangent and logistic Testing 6.25 5.37 2.38 0.997467
Levenberg optimization algorithm Overall 10.39 7.07 4.65 0.990062
CFFNN Nine hidden neurons Training 8.74 6.68 4.54 0.990058
Hyperbolic tangent and logistic Testing 9.42 7.28 5.32 0.990337
Levenberg optimization algorithm Overall 8.84 6.76 4.67 0.990082
RNN Seven hidden neurons Training 10.92 9.81 4.00 0.992677
Hyperbolic tangent and logistic Testing 11.07 13.76 9.14 0.966081
Scaled conjugate gradient algorithm Overall 10.94 10.44 5.12 0.988174
LSSVR Gaussian kernel function Training 13.03 8.14 5.22 0.987382
Testing 14.13 8.78 4.33 0.992005
Overall 13.20 8.24 5.09 0.988064
ANFIS2 Hybrid optimization algorithm
Cluster radius = 0.5
Training 8.54 5.27 4.41 0.991163
Testing 16.28 8.79 5.36 0.985432
Overall 9.71 5.74 4.57 0.990414
ANFIS3 Hybrid optimization algorithm
Nine clusters
Training 25.81 13.87 6.29 0.981923
Testing 19.01 18.39 7.78 0.971648
Overall 24.78 14.53 6.54 0.980306