Skip to main content
. 2022 Jan 28;22(3):1010. doi: 10.3390/s22031010

Table 1.

The details of the ESA-rPPGNet network structure. Input is the input dimension of each layer H×W×T×C, Operator is the convolution operation in each layer and the corresponding convolution kernel size, and Exp size is the channel of DWC. Opt size is the final output channel number of the Block, Stride is the step size of the DWC, SA indicates whether to use the 3D-SA module, where 1 indicates yes, 0 indicates no, and NL indicates the nonlinear layer type: 0 means ReLU6, 1 means hswish.

Input Operator Exp Size Opt Size Stride SA NL
1282×128×3 Conv3d, 3 × 3 × 3 - 16 1 × 2 × 2 - -
642×128×16 EBlock, 3 × 3 × 3 16 16 1 × 2 × 2 1 0
322×128×16 EBlock, 3 × 3 × 3 72 24 1 × 2 × 2 0 0
162×128×24 EBlock, 3 × 3 × 3 88 24 1 × 1 × 1 0 0
162×128×24 EBlock, 5 × 5 × 5 96 40 2 × 2 × 2 1 1
82×64×40 EBlock, 5 × 5 × 5 240 40 1 × 1 × 1 1 1
82×64×40 EBlock, 5 × 5 × 5 240 40 1 × 1 × 1 1 1
82×64×40 EBlock, 5 × 5 × 5 120 48 1 × 1 × 1 1 1
82×64×48 EBlock, 5 × 5 × 5 144 48 1 × 1 × 1 1 1
82×64×48 EBlock, 5 × 5 × 5 288 96 2 × 2 × 2 1 1
42×32×96 EBlock, 5 × 5 × 5 576 96 1 × 1 × 1 1 1
42×32×96 EBlock, 5 × 5 × 5 576 96 1 × 1 × 1 1 1
42×32×96 Conv3d, 1 × 1 × 1 - 576 1 × 1 × 1 - -
42×32×576 DCBlock, 4 × 1 × 1 - 288 2 × 1 × 1 - -
42×64×288 DCBlock, 4 × 1 × 1 - 144 2 × 1 × 1 - -
42×128×144 ConvGRU - 64 - - -
42×128×64 GAP - 64 - - -
12×128×64 Conv3d, 1 × 1 × 1 - 1 1 × 1 × 1 - -