Table 1.
The details of the ESA-rPPGNet network structure. Input is the input dimension of each layer , Operator is the convolution operation in each layer and the corresponding convolution kernel size, and Exp size is the channel of DWC. Opt size is the final output channel number of the Block, Stride is the step size of the DWC, SA indicates whether to use the 3D-SA module, where 1 indicates yes, 0 indicates no, and NL indicates the nonlinear layer type: 0 means ReLU6, 1 means .
Input | Operator | Exp Size | Opt Size | Stride | SA | NL |
---|---|---|---|---|---|---|
Conv3d, 3 × 3 × 3 | - | 16 | 1 × 2 × 2 | - | - | |
EBlock, 3 × 3 × 3 | 16 | 16 | 1 × 2 × 2 | 1 | 0 | |
EBlock, 3 × 3 × 3 | 72 | 24 | 1 × 2 × 2 | 0 | 0 | |
EBlock, 3 × 3 × 3 | 88 | 24 | 1 × 1 × 1 | 0 | 0 | |
EBlock, 5 × 5 × 5 | 96 | 40 | 2 × 2 × 2 | 1 | 1 | |
EBlock, 5 × 5 × 5 | 240 | 40 | 1 × 1 × 1 | 1 | 1 | |
EBlock, 5 × 5 × 5 | 240 | 40 | 1 × 1 × 1 | 1 | 1 | |
EBlock, 5 × 5 × 5 | 120 | 48 | 1 × 1 × 1 | 1 | 1 | |
EBlock, 5 × 5 × 5 | 144 | 48 | 1 × 1 × 1 | 1 | 1 | |
EBlock, 5 × 5 × 5 | 288 | 96 | 2 × 2 × 2 | 1 | 1 | |
EBlock, 5 × 5 × 5 | 576 | 96 | 1 × 1 × 1 | 1 | 1 | |
EBlock, 5 × 5 × 5 | 576 | 96 | 1 × 1 × 1 | 1 | 1 | |
Conv3d, 1 × 1 × 1 | - | 576 | 1 × 1 × 1 | - | - | |
DCBlock, 4 × 1 × 1 | - | 288 | 2 × 1 × 1 | - | - | |
DCBlock, 4 × 1 × 1 | - | 144 | 2 × 1 × 1 | - | - | |
ConvGRU | - | 64 | - | - | - | |
GAP | - | 64 | - | - | - | |
Conv3d, 1 × 1 × 1 | - | 1 | 1 × 1 × 1 | - | - |