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Abstract: As the population in the Western world is rapidly aging, the remote monitoring solutions
integrated into the living environment of seniors have the potential to reduce the care burden helping
them to self-manage problems associated with old age. The daily routine is considered a useful tool
for addressing age-related problems having additional benefits for seniors like reduced stress and
anxiety, increased feeling of safety and security. In this paper, we propose a solution for identifying
the daily routines of seniors using the monitored activities of daily living and for inferring deviations
from the routines that may require caregivers’ interventions. A Markov model-based method is
defined to identify the daily routines, while entropy rate and cosine functions are used to measure
and assess the similarity between the daily monitored activities in a day and the inferred routine.
A distributed monitoring system was developed that uses Beacons and trilateration techniques for
monitoring the activities of older adults. The results are promising, the proposed techniques can
identify the daily routines with confidence concerning the activity duration of 0.98 and the sequence
of activities in the interval of [0.0794, 0.0829]. Regarding deviation identification, our method obtains
0.88 as the best sensitivity value with an average precision of 0.95.

Keywords: daily routine; activities of daily living; Beacons; Markov model; entropy rate and cosine
functions; deviations from routines

1. Introduction

In Europe, it is estimated that the number of older adults will continue to increase
from 90.5 million at the start of 2019 to reach 129.8 million by 2050 [1]. At the same time,
the number of formal and informal caregivers will not grow to match the increasing need,
resulting in higher care costs and a decrease in quality of life [2]. The remote monitoring and
assessment solutions integrated into the living and working environment of seniors have
the potential to reduce the care burden, helping them to self-manage problems associated
with old age. Moreover, older adults’ chronic condition is an important factor that should
be considered, being complicated by additional risk factors such as deficits in activities
of daily living, social situations exposing them to isolation and lack of support, cognitive
decline and emotional anxiety [3]. Poorly managed care often inadequately considers the
seniors’ health decline due to the lack of remote objective monitoring and does not address
promptly potential problems.

Studies show that slowing the cognitive decline and maintaining independent func-
tioning in conducting the activities of daily living (ADL) are important goals in supporting
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the care and wellbeing of older adults [4]. Using ambient assistive technologies in older
adults’ homes is a promising solution for better managing their condition, helping them
to live independently with as little support as possible from caregivers. In this context,
the daily routine is considered a useful tool for addressing cognitive decline and self-
management of chronic conditions having additional benefits like reduced stress and
anxiety, increased feeling of safety and security. The use of IoT sensors and statistical
and computational intelligence methods is promising as they allow formal and informal
caregivers to establish and monitor the daily routines of older adults in an objective manner
and to detect potential deviations requiring intervention. Following a daily routine induces
a state of calm and comfort, for older adults reducing the level of anxiety and stress, and
can increase the likelihood of being transferred into the long-term memory, this being
very important in case of cognitive decline. By performing regular activities from the
daily routine, their self-esteem and confidence may increase, as they are able to perform
activities independently.

Equally important is the continuous monitoring of daily routine and any deviations
from it. This can contribute to the identification of decreasing functionality in activities
of daily living as well as of cognitive decline [5]. The traditional screening methods for
assessing the capacity to conduct daily activities are usually based on self-reporting and they
lack contextual information, not allowing for wider adoption. The use of innovative non-
invasive monitoring solutions may allow the identification of sudden or gradual deviations
from the baseline routines, allowing the setup of personalized intervention processes
prolonging the autonomy and well-being of older adults. Such solutions could also improve
the quality of life and could help older adults to live more years in a meaningful and
dignified manner. Unfortunately, even when the older adult with noticeable decline
symptoms visits the healthcare professional for an assessment, research shows that, in
many cases, such deviations are difficult to identify due to a lack of information.

In this paper, we propose a solution for identifying the daily routines of seniors using
the monitored activities of daily living and for inferring deviations from the baseline
routines that may require professional or informal caregiver interventions. The paper’s
novel contributions are the following:

• Markov model-based method for identifying the daily routines of older adults consid-
ering the daily living activity probability transitions and activity length.

• Technique for identifying relevant deviations from daily routines using entropy rate
and cosine functions to measure and assess the similarity between the sequence of
activities registered in a specific day and the baseline routine.

• Distributed system for testing and evaluation of the proposed methods which uses
Beacons and trilateration techniques for monitoring the activities of the daily living of
older adults.

The paper is structured as follows: Section 2 reviews some of the existing approaches in
the field of daily routine assessment and anomalous behavior detection, Section 3 presents
the daily routine assessment method, Section 4 presents the solution for deviation from
baseline routine identification, Section 5 presents validation and the experimental results,
while Section 6 concludes the paper.

2. Related Work

In the studied literature, the existing approaches for behavior anomaly detection
differ based on the number of daily activities considered, strategies used to detect nor-
mal/abnormal behaviors and the features considered as relevant in the process [6–8]. The
simplest type of anomaly is the punctual anomaly. In this case, each daily activity is consid-
ered independent, and the anomaly identification does not consider the potential relations
with other activities. Several approaches aim to identify such anomalies in the case of elders
with mild cognitive impairments living in smart homes. They use rule-based induction [9],
statistical and knowledge-based methods [10,11] or combine clustering algorithms with
recurrent neural networks [12].
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A prerequisite in this case is the accurate detection of daily activities. In [13] a two-
layer Hidden Markov Model (HMM) is used to learn and recognize basic activities. In
the first layer, location data from sensors is used to predict the activity class and in the
second layer the prediction is refined for activities under the same class. It obtains better
accuracy than approaches that use Naive Bayes or Conditional Random Field, but it does
not consider the model integration with sensor-based monitoring infrastructure. In [14] a
hybrid approach for recognizing ADL is proposed using smartphone sensors combined
with ambient ones. A coupled Hidden Markov model is used to model the temporal
evolution of each person’s activity, while specific spatiotemporal constraints are used to
limit the viable state space of activities. The approach features good results; however, it is
difficult to use with older adults, as they will have to carry their smartphone with them all
the time. A deep-learning framework to recognize complex ADL leveraging onto activity
state representation while considering motion and environment sensor data is proposed
in [15]. The results obtained are better compared with HMM and LSTM (Long Short-Term
Memory) approaches, but it does not feature any anomaly detection. In [16] the authors
propose a solution, which is the use of wearable sensors, convolutional and LSTM recurrent
units to learn ADL features and temporal dependencies. It offers better accuracy compared
with Convolutional Neural Networks (CNNs) based approaches, but limited results have
been provided considering monitored data.

In the case of collective anomalies, a group of activities is analyzed together to iden-
tify whether the group or sequence is normal or abnormal. Authors of [17] uses data
collected from wearable sensors to detect anomalies in elders’ behavior. The authors define
a probabilistic model based on several parameters such as location, duration, start time
and activities sequences. In [18] signals collected from an accelerometer are combined
with ECG signals to detect users’ behavioral anomalies, while in [19] a supervised ma-
chine learning algorithm to classify anomalous sequences of activities is proposed. In the
classification of contextual anomalies, daily activities are analyzed considering contextual
features such as weekday or weekend, medication, etc. Solutions are proposed for real-time
anomaly detection, with the contextual features being used for pruning the identified
anomalies [20,21]. The daily patterns are detected with machine learning techniques and
heuristics are employed to select relevant contextual features and fine-tune the learning
parameters [22]. The spatial, temporal and contextual features are used to detect other
types of anomalies such as incomplete activities, confusion in performing the activities,
repeating activities or disruption of sleep [10,23,24]. Regardless of the anomaly type, two
classes of strategies can be used for abnormal behavior detection. The profiling strategy
supposes learning a model showing normal behavior [11,25]. The model is then used to
detect anomalies in the new incoming data. The behavior is considered abnormal if there is
a deviation from the learned model. In the case of the discriminating strategy, the abnormal
behavior is included in the training data and the learned model is used then on incoming
data [24,26].

The algorithms used for implementing the abnormal behavior detection strategies
are either statistical or based on machine learning techniques. In the first case, statistical
methods are used to detect abnormal behaviors. In [27], Hidden Markov Models (HMMs)
are constructed from monitored data to predict the changes that could appear in the health
status of older adults. The solution presented in [11] detects abnormal behavior in the
case of elders using Bayesian statistics. Three types of likelihoods are considered: the
sensor activation, the sensor sequence firing, and the event duration. In [28] a transition
probability-based matrix which models the daily activity inside a room and room-to-room
transitions is presented. A transition probability matrix is defined and used to model the
daily mobility behavior of a person. Authors of [29] use a probabilistic Spatio-temporal
statistical model to identify the daily behavior of an elder, and a cross-entropy measure to
determine significant deviations. The daily routine of an elder is modeled as a collection of
behavioral places located arbitrarily in a generic space [30]. Virtual pheromones are used
to build images of the distribution maps which describe the evolution in space and time
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of the interactions between the elder and the environment. The deviations from the daily
routine are detected by applying statistical analysis on top.

Computational intelligence methods such as supervised, semi-supervised and unsu-
pervised learning have been used in the literature to detect normal and abnormal behavior
patterns. In [31] Random Forest algorithms are used to create clusters of human behavior
patterns, while agglomerative clustering is used to reveal data clusters into a 2D space.
In [32], the kernel K-means algorithm is combined with a novel nominal matrix factorization
method to detect the daily living routine of an elder. A behavior-aware flow graph is built to
represent the trajectory data, then a kernel k-means algorithm is used to identify sub-flows
representing behavioral patterns, and finally, a nominal matrix factorization method is used
to identify the daily routine. In [33] the k-means clustering algorithm is applied to extract
the daily behavior model of a person, and then the model and a cross-entropy measure are
used to detect anomalies. Neural networks are used for behavioral anomaly detection [24].
Vanilla Recurrent Neural Networks (VRNNs), Long Short Term RNNs (LSTMs) and Gated
Recurrent Unit RNNs (GRUs) are used in the case of elders with dementia to recognize
daily life activities and to learn daily life behavioral routines. Authors of [24] propose a
method based on Convolutional Neural Networks (CNNs) to identify abnormal behaviors
such as repetitive activities, sleeping problems and confusion in performing an activity,
etc. In [26] Long Short-Term Memory (LSTM), Convolutional Neural Network (CNN),
CNN-LSTM and Autoencoder-CNN-LSTM are used to identify and predict the abnormal
behavior of elders. The four networks have been applied on two public data sets, namely
SIMADL Dataset [34] and MobiAct Dataset [35], and the experimental results demonstrate
that hybridization of CNN with LSTM provides the best results in the case of detecting
temporal and spatial abnormal behavior. In [36] an unsupervised approach for learning
the ADL routine of elders living alone and detecting deviations from it is proposed. The
daily living activities are identified by correlating the elder’s location in the house with
the location’s power consumption. The approach deals with identifying the activities of
daily living, modeling the basic routine of the elder and detecting the deviations from the
routine in new sensor data using a fuzzy inference system to detect deviations from the
routine. A Probabilistic Neural Network for activity recognition and an H2O autoencoder
to identify anomalies about activity duration and the number of subevents are combined
in [25]. In [37] the daily routine is sketched in collaboration with the monitored person,
who is asked to describe the activities carried out daily. Based on the identified routine, a
score is calculated that reflects how well an activity fits with the daily routine. In [7] the
normal behavior of a person is defined as a sequence of four activities (sleeping, eating,
taking a shower and leaving home), which are performed at specific times of the day. For
detecting the behavior model, an unsupervised approach based on the DBSCAN algorithm
is applied and the deviations are detected by computing a similarity score between the
current behavior of the elder and her/his normal behavioral pattern. Other methods are
based on a graph or task models. In [38], a graph that represents the sequence of performed
activities and the duration corresponding to each activity for a specific participant is built
and used to detect abnormal behavioral anomalies. In [39] a method for detecting behav-
ioral changes in the daily routine of a person is defined by comparing activity curves that
model the daily activity routines of a person between different points of time. In [40] the
authors propose a method that compares the elder’s expected behavior with the elder’s
actual behavior registered as a sequence of events unfolded in the current context. The
elder expected behavior is represented as a task model which consists of sequences of tasks
performed by an elder in a day (i.e., wake up, go to the bathroom, take medicine without
food, prepare breakfast, take another medicine).

This paper builds upon the existing state of the art by proposing a solution for identify-
ing the daily routines of older adults considering the length of the monitored activities and
transition probabilities among activities as relevant features. The daily activity monitoring
is done using Beacon technology, which offers an affordable, easy-to-install solution with
a high potential of personalization since it may be associated with specific objects and
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related to activities that are being conducted. For identifying the daily routine, we have
proposed a Markov-based model. Since the daily routine of a person is defined as the
sequence of activities it is suitable to use a probabilistic model in which the transitions
between activities are modeled using probabilities. Existing approaches in the reviewed
literature based on probabilistic models such as [11,17] consider a few types of probabilities
as parameters in their models, identifying a limited precision of the potential deviations.
In our approach, new parameters have been considered to improve the model precision
such as (i) the activity length probability used to identify the most likely length for the
daily routine, (ii) the probability of conducting an activity is used to identify the most likely
activities to be part of the routine and (iii) the probabilities of an activity to be the start or
end activity of the routine. For anomaly detection, we used a two steps approach that is
based on entropy rate and cosine similarity measure. The entropy rate offers the flexibility
to consider the days for which we have only minor fluctuations compared to the daily
routine in terms of the sequence of activities performed as normal and those for which there
are major fluctuations as abnormal. In this way, we introduce the concept of flexibility in
defining the daily routine of a person and the days that follow the daily routine. The cosine
similarity measure was used to reduce the false-positive rate that could be generated by
using the entropy rate. The days that are classified as being normal thus without significant
deviation using the entropy metric are then further assessed using the cosine similarity
metric to improve the precision of deviation detection. As a result, the precision of our
approach is better, as shown in the experimental evaluation section of this paper.

3. Daily Routine Detection

For baseline evaluation, we used a Markov model considering activity sequencing,
(i.e., the order in which they are conducted) and activity transition probabilities. Four types
of probabilities were considered.

The first one is the transition probability, P
(

Ai, Aj
)
, which refers to the probability of

activity Aj succeeding activity Ai. To calculate the transition probabilities, we considered
the number of times the specific activity transition appears ( Ai → Aj ) and divided it by
the number of all transitions starting with the same activity Ai but not having as successor
activity Aj:

P
(

Ai, Aj
)
=

∑ Ai → Aj

∑ Ai → Ak, k 6= j
(1)

Figure 1 presents an example of daily activity transitions for five days, highlighting all
the activity transitions from A1 to A2. The number of transitions starting from a specific
activity is equal with the total number of occurrences of that activity, which means that even
if the activity is the last one from a day and has no activity following it, we will still count
it in the total number of events. In our approach we have considered daily routines; thus,
the last activity of one day does not transition into the first activity of the following day.
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The second probability is the occurrence probability of an activity Ai, P(Ai), which
represents the probability with which an activity Ai is executed by an older adult. It is
computed as:

P(Ai) =
count (Ai)

∑n
k=1 count (Ak), k 6= j

(2)

where count(Ai) represents the number of occurrences of the activity Ai, count
(

Aj
)

rep-
resents the number of occurrences of an activity Aj (including Ai activity) in the training
data set and n represents the total number of activities from the training data set.

The third and fourth probabilities are the probability of activity Ai being the first
activity of the day (PS(Ai)) and the probability of activity Ai being the last activity of the
day (PE(Ai)). They are computed by dividing the number of days starting with activity Ai
and, respectively, ending with activity Ai by the total number of days.

For baseline detection we construct the transition probability matrix (which corre-
sponds to the Markov model) with each position in the matrix, with (i, j) representing the
probability P

(
Ai, Aj

)
that activity Aj follows activity Ai:

MM =

 P(A1, A1) · · · P(A1, An)
· · · P(Ai, Ai) · · ·

P(An, A1) · · · P(An, An)

 (3)

The baseline is modeled as the most likely sequence of activities that the older adult
will do in a specific day:

(B,→ ) = {Ai|∀ i = 1..d, ∃ Ai+1 such that Ai → Ai+1,
A1 f irst activity o f the day, Ad last activity o f the day} (4)

The baseline detection algorithm iterates through the whole set of daily living activities
and considers for each activity the probabilities to be first or last in the day as well as the
transition probabilities. The iteration is started from the most likely activity to be the first
one in a specific day (the activity with the highest PS(Ai)). For each activity Ai we compare
the probability that the activity is the last one in the daily sequence, PE(Ai), with all the
transition probabilities P

(
Ai, Aj

)
. If a transition probability higher than PE(Ai) is found,

then the activity Aj becomes the current activity and Ai and Aj are added in sequence to
the daily baseline. The algorithm stops and returns the baseline when no other activity Az
can be found such that PE(Ai) < P(Ai, Az), where Ai is the last activity in the baseline
sequence. The EP variable is used to fine tune the importance of the activity in the baseline
detection algorithm.

However, when individuals always end their days with the same activity or follow
a strict transition activity the algorithm stopping condition might be affected. If the end
activity probability is not evenly distributed, the algorithm tends to favor a shorter baseline,
stopping whenever the most likely ending activity is reached (i.e., no transition probability
is greater than the end probability in this case). Alternatively, if two activities with high
transition probability between each other are encountered, the algorithm would tend to
bounce from one activity to the next indefinitely, thus favoring longer baselines. To address
this issue, we considered another feature, the activity length probability. We determine the
most likely length for a baseline using a weighted average of the length of daily activities,
and then discount the end probability PE(Ai) with respect to the relative distance between
the average length and the length of the baseline which is currently constructed. Algorithm
1 presents the pseudocode for the baseline detection. The closer we get to the median
length, the smaller the discount should be, thus we used an inversely proportional mapping
function denoted “interpolate”.

First, the probability of occurrence of each potential baseline length Bx, PL(Bx) is
computed and then it is used to determine the median length of the daily baseline LM
using a weighted average. Linear interpolation is used to map in an inversely proportional
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manner the [0, LM] interval to the [LDMax, 0] interval, where LDMax acts as a weight
allowing us to tune the emphasis put by the algorithm on the length of the baseline. The
value is used to proportionally discount the end probability based on the current length
difference between the median and the baseline. As the baseline’s length approaches the
median the discount is reduced. When the median length is reached the discount is set to
0, thus effectively removing any notion of length from the algorithm’s logic. As a result,
the length probability parameter ensures the termination logic is not affected by unevenly
distributed data. The length discount, LD, will be calculated by interpolating in each
step the current length of the baseline in the [0, LM] interval, and then mapping it to the
[LDMax, 0] interval.

Algorithm 1: Baseline detection considering both activity sequence and activity length

Inputs: MM—transition probability matrix, PS—set holding each activity probability to be the
first one of the day, PE—set holding each activity probability to be the last one of the day,
EP—end probability weight, LM—length median, LDMax—length probability weight, P—the
transition probability from an activity Ai to an activity Aj;
Outputs: B—activity sequence representing the baseline.
Begin
1 B← [];
3 lastVal ← max(PS);
4 lastActivity← label(lastVal);
4 prevVal ← null, prevActivity← null;
5 LD ← LDMax
6 while ∃ Ai such MM[lastActivity, Ai] > PE[lastActivity]× EP –LD do
7 append(B, lastActivity);
8 prevVal ← lastVal;
9 prevActivity← lastActivity;
10 LD ← interpolate(len(B), [0, LM], [LDMax, 0]);
11 lastVal ← PE[prevActivity]× EP− LD;
12 foreach Ai do
13 P ← MM[prevActivity, Ai]
14 if lastVal < prevVal × P then
15 lastVal ← prevVal × TP;
16 lastActivity ← Ai
17 end
18 end
19 end
20 return B
End

Finally, the importance of the baseline length and of the activity end probability can
be tuned considering the data at hand using variables LD and EP. Their values can vary
between 0 minimum importance and 1 maximum importance concerning the algorithm.
Irrespective of the chosen parameters’ configuration the baseline should have the highest
Markov product. For example, let us consider that Ai is the last activity chosen as part of
the baseline sequence at step i. At step i + 1 the algorithm has n + 1 options to choose from,
where n is the number of distinct daily activities (see Figure 2). To yield the maximum
Markov product, we need to choose the option with the highest associated probability. The
probability to end the sequence with Ai as the last activity is calculated as PE(Ai) weighted
with EP and discounted by the length discount factor LD. If the algorithm cannot find
another activity Aj to add to the baseline such that PE(Ai)× EP− LD < P

(
Ai, Aj

)
, ∀j! = i

then Ai is chosen as the end activity of the baseline and the algorithm’s execution finalizes.
Otherwise, if an activity Aj satisfying the above condition is found, Aj is added to the
baseline sequence and the process is repeated with step i + 2.
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4. Deviation Identification

As defined in the previous section the baseline is a sequence of daily living activities
executed by an older adult, representing their normal routine. Therefore, to be able to
automatically detect anomalies in terms of deviations from the daily routine, a function
that associates the sequence of activities registered for a day to a certain similarity value in
relation to the baseline is needed. Moreover, an interval of acceptance ∆ should be defined
in such a way that whenever the value resulting from the mapping falls inside the interval,
we accept it as a sequence of activities similar to the daily routine baseline. Alternatively,
the day will be flagged as an anomaly or with a deviation from the normal routine.

The entropy rate is a function that has been extensively studied for similarity mea-
sures and its pattern detection capabilities [41]. Entropy is usually used as a measure
for quantifying information and indicating the degree of randomness in a sequence of
activities. Thus, the entropy rate function can be applied to our daily sequence of activities
leveraging the already computed transition probability matrix. The following formula is
used in similarity computation:

ε = −∑
i,j

Pij × log
(

Pij
)

(5)

where ε is the entropy value and Pij is the transition probabilities from an activity Ai to an
activity Aj in the Markov model associated with the day.

The higher the entropy value, the higher the uncertainty (randomness). If all the
daily recorded activity transitions occur with equal probability, then the entropy value
reaches its maximum. The entropy rate function value is proven to work well for pattern
matching [42,43], but the downside in our case is the fact that it relies only on transition
probabilities. For instance, let P(A1, A2) = P(A2, A1) for two arbitrary activities A1 and
A2; then, the entropy value used above assigns the same value to both transitions. We could
improve the discrimination ability in the case of daily deviation from baseline detection
by incorporating the probability of occurrence of each registered activity. In this case the
entropy rate is determined as:

ξ = −∑
i,j

Pi × Pij × log
(

Pij
)

(6)

The interval of confidence, ∆, is calculated using the entropy rates, using the
following formula:

∆ = ξb ± µ×
√
(ξd − ξb)

2 (7)
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where ξb is the entropy rate of the daily routine baseline, ξd is the entropy rate of the new
registered daily sequence of activities and µ is a confidence index empirically determined
considering the size and variance of the data. If the data is scarce and/or has a high
deviation, we use a higher confidence index, thus effectively increasing the boundaries
of the confidence interval to reduce the false positive rate (days detected erroneously as
anomalous). Otherwise, if the data is uniform and in sufficient quantity, we reduce the
confidence index for better accuracy. The anomalies are identified as days in which entropy
rates of the registered sequence of activities exceed the confidence interval boundaries.

Anyway, considering only the transition probabilities of the daily registered activities
in a day is not always sufficient; thus, the duration in time of each activity is also considered.
Introducing this second dimension will potentially reduce the false positive rate, therefore
improving the accuracy of deviation detection. In this case the daily routine baseline is
augmented by associating each activity in the original sequence with its average duration.

(B,→ ) = {Ai|∀ i = 1..d, ∃ Ai+1 such that (Ai, avg (Ai)→ (Ai+1, avg(Ai+1)),
A1 f irst activity o f the day, Ad last activity o f the day} (8)

The average duration of a specific activity is calculated considering all available
historical data by adding the lasting time associated with each activity registration and
dividing it by the number of occurrences of that activity. The following formula is used:

avg(Ai) =
∑m

j=1 t(Ai, j)

m
, m = count(Ai) (9)

where t(Ai, j) represents the time duration of the jth occurrence of activity Ai and m the
total number of activity j occurrences.

Moreover, in this case comparison measure and a threshold need to be defined and
used in the same way in which the confidence interval and the entropy rate were used for
the unidimensional deviation detection. The function used to quantify a day similarity in
relation to the baseline considering the duration of registered activities is cosine similarity.
Cosine similarity is a measure used to quantify the similarity between two or more vectors
measuring the “distance” between two vectors in space. The formula below has been used:

cosineSim(d, B) =
∑n

i=1 t(d(Ai))× t(B(Ai))√
∑n

i=1 t(B(Ai))
2 ×

√
∑n

i=1 t(d(Ai))
2

(10)

where B represents the daily routine baseline, d is the day for which the sequence of activities
is analyzed, t(d(Ai)) is the duration of the activity Ai in the day to be assessed and t(B(Ai))
is the duration of the activity Ai recorded in the baseline. If the two vectors for the current
day and for the baseline are 90 degrees apart, the cosine will be 0, indicating maximum
discrepancy between the two vectors. Alternatively, if the two vectors are perfectly similar,
the angle between them will be 0 degrees, yielding a cosine of 1. Essentially the closer the
cosine similarity measurement is to 1, the more similar the two vectors are.

Algorithm 2 shows the pseudocode for the duration-based anomaly detection. The
Davg variable stores the average duration for each activity. We assume the functions for
computing the average duration, computeAverageDuration, and the one used to compute
the cosine similarity of two days, cosineSimilarity, have already been defined.

We might have a different length in terms of number of activities for the baseline and
the day being compared. In this case, we compute the minimum distance of the two and
simply discard the remaining values in the bigger duration sequence. Using this approach,
we ensure that a day that has already passed the initial anomaly check (based on ordering
and transition probabilities, described in the previous subsection) will not be penalized
again. Otherwise, take for example the 0-padding approach (pad the smaller sequence
with 0 s), if the day would mimic the baseline up to the second to last entry, with the last
activity in the baseline missing, we would have to add a 0 corresponding to the last entry
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in the duration sequence of the day. When calculating the cosine similarity in this case, the
0 would strongly affect the result of the duration check step. However, the missing activity
was already accounted for in the previous step, ordering anomaly detection, and it passed
as a day respecting the baseline.

Algorithm 2: Anomaly detection

Inputs: TD—testing data set, NDT—days that respect the baseline from the training data set,
[c1,c2]—confidence interval, DSMax—duration similarity threshold.
Outputs: AND—days deviated from baseline, APD—days that respect the baseline
1 ND← [];
2 AND← [];
3 APD← [];
4 Davg← computeAverageDuration(NDT);
5 foreach dayi in TD do
6 E← computeEntropy(dayi);
7 if c1 ≤ E ≤ c2 then
8 append(ND, dayi);
9 else
10 append(AND, dayi);
11 end
12 end
13 foreach dayi in ND do
14 Dt← Davg
15 if len(Davg)! = len(dayi) then
16 CA← union(dayi, Davg);
17 dayi ← difference(dayi, difference(dayi, CA));
18 Dt← difference(Davg, difference(Davg, CA));
19 endif
20 CS← computeCosinesSimilarity(dayi, Dt);
21 if CS > DSMax then
22 append(APD, dayi);
23 else
24 append(AND, dayi);
25 end
26 end
27 return AND, APD

5. Evaluation Results

This section describes the system developed for the monitoring and identification of
older adults, ADLs, and the results obtained in relation with daily routine detection and
deviation identification.

5.1. Activity of Daily Living Identification

To test our proposed solution, we designed and implemented a distributed system
that allows for the identification of daily life activities out of sensors data. The system
design is based on stream processing principles for supporting the reliable acquisitions of
potential big volumes of data from IoT sensors (see Figure 3).

As sensors, we used Bluetooth Beacons to detect the presence of older adults in
different rooms inside their homes and to infer the potential daily activity conducted. The
Beacons were configured as shown in Table 1 where the Advertising Interval represents
the time between advertising packets that are sent periodically by the Beacon on each
advertising channel, txPower is used to adjust a device transmit power level based on the
Received Signal Strength Indicator (RSSI) and Cal. power 0 m indicates the level of power
received after any possible loss in the environment from the antenna level to the receiver.
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Table 1. Beacon’s configuration.

Beacon Property

Advertising Interval txPower Cal. power 0 m
200 ms +4 dBm −21 dBm

In such a Beacon-based monitoring system, data privacy and providing a secured
data link between the sensors and the software tools is rather challenging. By default, the
Beacons do not send encrypted data and the data can be tampered with. To deal with this
type of concern in our system two state-of-the-art methods can be implemented to protect
the Beacons against potential attacks: Time-varying IDs [44] and anomaly detection in ID
transitions [45]. The first one aims to program the Beacons to broadcast IDs that are not
fixed but vary in time and cryptographic techniques such as pseudorandom functions are
used to generate such IDs. The downside of this approach is that it may lead to reducing
the lifespan of the Beacon’s battery. The second one aims to detect anomalies in Beacon ID
transitions by investigating the hypothesis of possible hacked smartwatches. When a user’s
smartwatch is moved in the area of the Beacon, the transitions of consecutive Beacon IDs
registered by the system should follow a specific probability distribution. The advantage,
in this case, is that this method does not require Beacon modification and does not shorten
Beacon lifespan.

An Android application was developed and deployed on a Smartwatch with internet
capabilities to acquire and process data from the Bluetooth devices in the room and send it
to a monitoring database using a messaging system. The Smartwatch watch is worn on the
hand of the older adult whose activity we want to detect. The application processes the RSSI
signal coming from the Beacons to determine the distance and position using trilateration.

To determine the distance between the Smartwatch from the Bluetooth Beacons in-
stalled in a room using the strength of the RSSI signal the following relation was used [46]:

d = 0.89976× (PRx /txPower)7.7095 + 0.111 (11)

where txPower is established by the device manufacturer and set during its configuration
and PRx is the fluctuation of the power of the received signal directly affecting the value of
the calculated distance.

To evaluate the accuracy of the distance determination method, we calculated the
distance at a granularity of 0.2 m, gradually moving away from the Beacon (see Figure 4).
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At each point, data was collected at a granularity of 100 ms for 2 s and the average was
calculated. As can be seen the distance estimation works well especially when the distance
is smaller than 2 m, making it feasible for use in house rooms. As the distance increases the
assessment error also increases but even in this case the average error is below 42 cm.
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For daily activity detection minimum three devices are deployed in each room and
trilateration techniques are used [47,48] which determine the point of intersection of the
three circles generated by the Bluetooth Beacons emitting signals in the room. Table 2
shows the point of intersection (x, y) representing the older adult location inside the
room. The central points (x1, y1), (x2, y2), (x3, y3) representing the coordinates of the
Beacons deployed in the room and circulus radius of the emitted signals (r1, r2, r3) are
already known. To ease the calculation and activity identification processes the Beacons
are installed in the corners of the room or attached to the objects relevant for the activity
carried out (e.g., TV, bed, fridge, book, etc.).

Table 2. Trilateration technique used for determining the location in a room (adapted from [47,48]).
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1+y2
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1)×(y3−y2)+(x2
2+y2

2+r2
2)×(y1−y3)+(x2

3+y2
3+r2

3)×(y2−y1)

2(x1×(y3−y2)+x2×(y1−y3)+x3×(y2−y1))

y =
(x2

1+y2
1+r2

1)×(x3−x2)+(x2
2+y2

2+r2
2)×(x1−x3)+(x2

3+y2
3+r2

3)×(x2−x1)

2(y1×(x3−x2)+y2×(x1−x3)+y3×(x2−x1))

The results of using the trilateration technique to determine the location are good,
with the average error reported on the x-axis being 61.630 cm, and for y-axis 69.273 cm
(see Figure 5).
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The signal strength of the Beacons, together with the calculated distances and coordi-
nates of the location in the house plan, is sent from the Android application to a messaging
system and then saved in a non-relational database. This type of message queue offers an
asynchronous publish–subscribe mechanism that has the role of maintaining persistent
data and ensures high performance and reliability especially in times when the volume
of data is very high when the data comes from multiple clients simultaneously, and the
database server cannot process them all at the same time.

The data saved in the database were then processed using an inference system to
detect the ADLs of the older adult. The daily activities associated with each room of the
house and specific objects are (see Figure 6): (i) Sleeping—the older adult is located in the
bedroom and then on the bed; (ii) eating—the older adult is in the kitchen and the fridge is
used; (iii) personal hygiene—the older adult is in the bathroom; (iv) reading—the older
adult is located in the living room and the book is used; (v) spare time/TV—the older adult
is in the living room and close to the TV; (vi) walking—the older adult is inside the house
and is moving around; (vii) outside—the older adult leaves the house.
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5.2. Routine and Deviation Assessment

To validate the proposed algorithms for baseline and deviation detection we con-
structed a data set named ADLS (i.e., the activity of daily living set), which contains
information about daily life activities of 10 older adults and was generated using the
system described in Section 5.1.

The ADLS data set contains information about daily life activities performed by
10 older adults collected throughout various time frames. We have used it to validate and
assess the efficiency of the baseline and deviation detection algorithms in different settings.
Table 3 provides a more detailed description of the data including the link to the older adult,
which was monitored, the total number of monitored days and out of these the number of
days with sequence and duration anomalies.

Table 3. ADLS data used in experiments.

Older Adult and
Codification Number of Monitored Days Number of Days with

Sequence Anomalies
Number of Days with
Duration Anomalies

M1 84 13 8
W1 42 9 5
W2 112 26 23
W3 70 12 18
M2 84 16 15
W4 42 6 5
W5 56 4 12
M3 98 15 22
M4 56 8 12
M5 70 8 14

For each older adult, the data set contains the start time and end time of a monitored
activity together with the activity label. Figure 7 shows a snippet from the ADLS data set
corresponding to the older adult M1, which contains the activities performed during the
day of 28 November 2020, together with their start and end time of each activity.
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To evaluate the proposed algorithms’ success rate of abnormal behaviour detection,
we applied the k-fold cross-validation technique and the results were evaluated using
the precision, recall, F-measure, specificity and accuracy metrics. For each older adult,
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we split the dataset containing the daily monitored activities into k folds, where one fold
contains the daily activities monitored for two weeks. For each fold, we performed the
following steps:

- The fold was considered as a test data set on which the deviation detection algorithm
was applied to detect the days with deviations.

- The remaining folds were considered as part of the training set on which the baseline
learning algorithm was applied to identify the routine of the older adult.

- In order to detect deviations, the test set was compared against the identified baseline.
- The results obtained while detecting the deviations in daily life activities were evalu-

ated with the precision, recall, F-measure, specificity and accuracy metrics.

In what follows, we trace the baseline and deviation detection algorithms considering
the k-fold cross validation technique in the case of the older adult M1. The older adult M1
was monitored for 84 days and the corresponding data was split in six folds, where each
fold consists of 14 monitored days. Five folds are used to extract the normal behavior, also
called the daily routine, while the remaining fold is used to detect the abnormal behavior
of the monitored person (i.e., the days that do not follow the daily routine). Figure 8 shows
an example of daily routine identified by our algorithm for the older adult M1 considering
the start time and end time for each activity, and the duration and chronological order of
the activities in the sequence.
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Based on the identified baseline and on the days from the five folds considered for
baseline detection that are like the baseline in terms of sequence of activities, a confidence
interval and a confidence duration were determined for each older adult considered. For
example, in the case of the older adult M1, a confidence interval of [0.0794, 0.0829] was
determined using Formula (7) while the confidence duration was determined as 0.98.

After the daily activities baseline is computed we used the remaining one fold to
classify the days that feature deviations from the baseline. The entropy rate of each
day from this fold is computed using Formula (6). Figure 9 illustrates the entropy rates
computed for all the days in the fold used for detecting deviations for the older adult M1.
The days on which the entropy rate does not fall in the confidence interval are classified as
days with sequence anomalies.

Figure 10 illustrates for the older adult M1 an example with the activities from the
date 11 February 2021, which has been classified as a day with sequence anomalies.

The days from the one fold that have not been classified as having activity sequence
anomalies are further analyzed to detect the ones with activity duration anomalies. For
each day a duration similarity is computed which is compared with the confidence duration
value (i.e., 0.98). If the duration similarity is lower than the confidence duration, then the
day is considered to have time anomalies (see Figure 9).
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Figure 11 illustrates for the older adult M1 the activities from the date 10 February 2021,
which has been classified as a day with activity duration anomalies. If the duration similar-
ity is higher than the confidence duration, then the day conforms to the learned baseline,
without any significant deviations (e.g., days February 8 and February 9 in Figure 9).
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Similarly, we applied the baseline and deviation detection algorithms for all the other
folds corresponding to the M1 older adult and for each round of experiments we computed
the values of the precision, recall, F-measure, specificity and accuracy metrics.
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Finally, Table 4 illustrates the obtained experimental results for each of the 10 older
adults of our data set, with the steps followed being the same as the ones presented for older
adult M1. The metrics values represent averages of the results obtained when applying
the k-fold cross validation technique. The last row in the table presents the overall average
values of the considered metrics.

Table 4. Cross-validation evaluation results.

Older Adult Precision Recall F-Measure Specificity Accuracy

M1 0.95 0.86 0.9 0.86 0.85
W1 1 0.73 0.84 1 0.76
W2 1 0.74 0.84 1 0.8
W3 0.88 0.72 0.79 0.83 0.74
M2 0.89 0.81 0.84 0.82 0.8
W4 0.88 0.88 0.87 0.64 0.81
W5 0.98 0.74 0.84 0.75 0.75
M3 0.93 0.79 0.85 0.81 0.78
M4 0.98 0.75 0.84 0.75 0.76
M5 1 0.76 0.86 0.8 0.8

AVERAGE 0.95 0.78 0.85 0.83 0.79

Figure 12 below shows the parameter learning features of our defined Hidden Markov
model. Given a sequence of days each having a set of activities the defined model can learn
the defined probability parameters with a minimum time overhead (Figure 12—right).
Moreover, the learned probability parameter values converge after several iterations
throughout consecutive days (see Figure 12—left).
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To determine the effectiveness of our approach for anomaly detection in daily life
activities we compared the results obtained with the ones reported in the state of the
art by [11,17] (see Table 5). As described in the related work section, Refs. [11,17] apply
probabilistic models for detecting anomalies in elders’ behaviour. For comparison we
considered the values of the precision, recall and F-measure metrics as they were reported
by the two approaches. In case of [11] we have averaged the values reported for the above-
mentioned metrics considering a sensor activation likelihood of 95% BCI (i.e., Bayesian
credible interval) for both real and synthetic data. For [17] we averaged the obtained values
for precision, recall and F-measure for various values of the threshold in anomaly detection,
a configurable parameter used by authors. By analysing the results from Table 5 it can
be noticed that our approach provides better precision than [11,17] with a slight penalty
in recall.
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Table 5. Comparison results.

SOTA Approach Precision Recall F-Measure

[11] 0.6 0.85 0.63
[17] 0.8085 0.8892 0.7836375

Our approach 0.95 0.78 0.85

6. Conclusions

In this paper we proposed a solution for identifying the daily routines of older adults
and potential deviations considering the length of the monitored activities and transition
probabilities among activities as relevant features. The daily activity monitoring is done
using Beacon technology, while for deviation from routine assessment a Markov model
is employed. The entropy rate and cosine functions are used to determine the similarity
between the sequence of activities registered in a specific day and the routine solution
featuring good values of precision. The proposed techniques can identify the daily rou-
tines with confidence concerning the activity duration of 0.98 and confidence concerning
the sequence of activities in the interval [0.0794, 0.0829]. Compared with other relevant
approaches found in the state of the art our solution provides a recall value that is slightly
lower and a higher precision value. Related to the baseline learning, the Hidden Markov
model shows promising results in terms of determining the activity transition probabilities
and learning time being dependent on the amount of data used in training.
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