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Abstract: After lung cancer, breast cancer is the second leading cause of death in women. If breast
cancer is detected early, mortality rates in women can be reduced. Because manual breast cancer
diagnosis takes a long time, an automated system is required for early cancer detection. This paper
proposes a new framework for breast cancer classification from ultrasound images that employs
deep learning and the fusion of the best selected features. The proposed framework is divided
into five major steps: (i) data augmentation is performed to increase the size of the original dataset
for better learning of Convolutional Neural Network (CNN) models; (ii) a pre-trained DarkNet-53
model is considered and the output layer is modified based on the augmented dataset classes; (iii)
the modified model is trained using transfer learning and features are extracted from the global
average pooling layer; (iv) the best features are selected using two improved optimization algorithms
known as reformed differential evaluation (RDE) and reformed gray wolf (RGW); and (v) the best
selected features are fused using a new probability-based serial approach and classified using machine
learning algorithms. The experiment was conducted on an augmented Breast Ultrasound Images
(BUSI) dataset, and the best accuracy was 99.1%. When compared with recent techniques, the
proposed framework outperforms them.

Keywords: breast cancer; data augmentation; deep learning; feature optimization; classification

1. Introduction

Breast cancer is one of the most common cancers in women; it starts in the breast and
spreads to other parts of the body [1]. This cancer affects the breast glands [2] and is the
second most common tumor in the world, next to lung tumors [3]. Breast cancer cells create
a tumor that might be seen in X-ray images. In 2020, approximately 1.8 million cancer cases
were diagnosed, with breast cancer accounting for 30% of those cases [4]. There are two
types of breast cancer: malignant and benign. Cells are classified based on their various
characteristics. It is critical to detect breast cancer at an early stage in order to reduce the
mortality rate [5].

Many imaging tools are available for the prior recognition and early treatment of
breast cancer. Breast ultrasound is one of the most commonly used modalities in clinical
practice for the diagnosis process [6,7]. Epithelial cells that border the terminal duct
lobular unit are the source of the breast cancer. In situ or noninvasive cancer cells are
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those that remain inside the basement membrane of the draining duct and the basement
membrane of the parts of the terminal duct lobular unit [8]. One of the most critical
factors in predicting treatment decisions in breast cancer is the status of axillary lymph
node metastases [9]. Ultrasound imaging is one of the most widely used test materials
for detecting and categorizing breast disorders [10]. In addition to mammography, it
is a common imaging modality used for performing radiological cancer diagnosis. The
problems we may encounter in real life are not even reported. It is imperative to consider the
presence of speckle, and to consider pre-processing such as wavelet-based denoising [11],
in the first and second generations [12].

Ultrasound is non-invasive, well-tolerated by women, and radiation-free; therefore, it
is a method that is frequently used in the diagnosis of breast tumors [9]. In dense breast
tissue, ultrasound is a highly powerful diagnostic tool, often finding breast tumors that
are missed by mammography [13]. Other types of medical imaging, such as magnetic
resonance imaging (MRI) and mammography, are less portable and more costly than
ultrasound imaging [14]. Computer-aided diagnosis (CAD) systems were developed to
assist radiologists in the analysis of breast ultrasound tests [15,16]. Earlier CAD systems
often relied on handmade visual information that is difficult to generalize across ultrasound
images taken using different methods [17–22]. Recent developments have helped the
construction of artificial intelligence (AI) technologies for the automated identification of
breast tumors using ultrasound images [23–25]. A computerized method includes a few
important steps such as the pre-processing of ultrasound images, tumor segmentation,
extraction of features from the segmented tumor, and finally classification [26].

Recently, deep learning showed a huge improvement for cell segmentation [27], skin
melanoma detection [28], hemorrhage detection [29], and a few more [30,31]. In medical
imaging, deep learning was successful, especially for breast cancer [32], COVID-19 [33],
Alzheimer’s disease recognition [34], brain tumor [35] diagnostics, and more [36–38]. CNN
is a type of deep learning that includes several hierarchies of layers. Through CNN, image
pixels are transformed into features. The features are later utilized for infection detection
and classification. In CNN, the features are extracted from the raw images. The features
extracted from the raw images also produce some irrelevant features that later affect the
classification performance. Therefore, it is essential to select only the most relevant features
for a better classification precision rate [39].

The selection of the best features from the originally extracted features is an active
research topic. Many selection algorithms are introduced in the literature and applied in
medical imaging, such as Genetic Algorithm (GA), Particle Swarm Optimization (PSO),
and a few more. Using these methods, the best subset of the features instead of entire
feature space. The main advantage of feature selection methods is that they improve
system accuracy while decreasing computational time [40]. However, sometime during
the best feature selection process, a few important features are also ignored, which impact
on the system accuracy. Therefore, computer vision researchers introduced feature fusion
techniques [41]. The fusion process increases the number of predictors and increases the
accuracy of the system [42]. Some well-known feature fusion techniques are serial-based
fusion and parallel fusion [43].

The following problems are considered in this article: (i) the available ultrasound
images are not enough for the training of a good deep model as a model trained on a
smaller number of images performs incorrect prediction; (ii) the similarity among benign
and malignant breast cancer lesions is very high, which leads to misclassification; (iii) the
features extracted from images contain irrelevant and redundant information that causes
wrong predictions. To solve these problems, we propose a new fully automated deep
learning-based method for breast cancer classification from ultrasound images.

The major contributions of this work are listed below.

• We modified a pre-trained deep model named DarkNet53 and trained it on augmented
ultrasound images using transfer learning.
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• The best features are selected using reformed deferential evolution (RDE) and reformed
gray wolf (RGW) optimization algorithms.

• The best selected features are fused using a probability-based approach and classified
using machine learning algorithms.

The rest of the manuscript is organized as follows. The related work of this manuscript
is described in Section 2. Section 3 presents the proposed methodology, which includes
deep learning, feature selection, and fusion. Results and analysis are discussed in Section 4.
Finally, we conclude the proposed methodology in Section 5.

2. Related Work

Researchers present a number of computer vision-based automated methods for breast
cancer classification using ultrasound images [44,45]. A few of them concentrated on the
segmentation step, followed by feature extraction [46], and a few extracted features from
raw images. Researchers used the preprocessing step in a few studies to improve the
contrast of the input images and highlight the infected part for better feature extraction [47].
For example, Sadad et al. [48] presented a computer-aided diagnosis (CAD) method for
the detection of breast cancer. They applied Hilbert Transform (HT) for reconstructing
brightness-mode images from the rough data. After that, the tumor is segmented using a
marker-controlled watershed transformation. In the subsequent step, shape, and textural
features are extracted and classified using the K-Nearest Neighbor (KNN) classifier and the
ensemble decision tree model. Badawy et al. [3] performed semantic segmentation, fuzzy
logic, and deep learning for breast tumor segmentation and classification from ultrasound
images. They used fuzzy logic in the preprocessing step and segmented the tumor using
the semantic segmentation approach. Later, eight pre-trained models were applied for final
tumor classification.

Mishra et al. [49] introduced a machine learning (ML) radiomics-based classification
pipeline. The region of interest (ROI) was separated, and useful features were extracted.
The extracted features were classified using machine learning classifiers for the final clas-
sification. The experimental process was conducted on the BUSI dataset and showed
improved accuracy. Byra [14] introduced a deep learning-based framework for the classifi-
cation of breast mass from ultrasound images. They used transfer learning (TL) and added
deep representation scaling (DRS) layers between pre-trained CNN blocks to improve
information flow. Only the parameters of the DRS layers were updated during network
training to modify the pre-trained CNN to analyze breast mass classification from the
input images. The results showed that the DRS method was significantly better compared
with the recent techniques. Irfan et al. [5] introduced a Dilated Semantic Segmentation
Network (Di-CNN) for the detection and classification of breast cancer. They considered
a pre-trained DenseNet201 deep model and trained it using transfer learning that was
later used for feature extraction. Additionally, they implemented a 24-layered CNN and
parallel fused feature information with the pre-trained model and classified the nodules.
The results showed that the fusion process improves the recognition accuracy.

Hussain et al. [50] presented a contextual level set method for segmentation of breast
tumors. They designed a UNet-style encoder-decoder architecture network to learn high-
level contextual aspects from semantic data. Xiangmin et al. [51] presented a deep doubly
supervised transfer learning network for breast cancer classification. They introduced a
Learning using Privileged Information (LUPI) paradigm, which was executed through the
Maximum Mean Discrepancy (MMD) criterion. Later, they combined both techniques using
a novel doubly supervised TL network (DDSTN) and achieved improved performance.
Woo et al. [52] introduced a computerized diagnosis system for breast cancer classification
using ultrasound images. They introduced an image fusion technique and combined it
with image content representation and several CNN models. The experimental process
was conducted on BUSI and private datasets and achieved notable performance. Byra
et al. [53] presented a deep learning model for breast mass detection in ultrasound images.
They considered the problem of variation in breast mass size, shape, and characteristics. To
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solve these issues, they performed selective kernel U-Net CNN. Based on this approach,
they fused the information and performed an experimental process on 882 breast images.
Additionally, they considered three more datasets and achieved improved accuracy.

Kadry et al. [54] created a computerized technique for detecting breast tumor section
(BTS) from breast MRI slices This study employs a combined thresholding and segmentation
approach to improve and extract the BTS from 2D MRI slices. To improve the BTS, a tri-level
thresholding based on the Slime Mould Algorithm and Shannon’s Entropy is created, and
Watershed Segmentation is implemented to mine the BTS. Following the extraction of the
BTS, a comparison between the BTS and ground truth is carried out, and the required
Image Performance Values are generated. Lahoura et al. [55] used an Extreme Learning
Machine (ELM) to diagnose breast cancer. Second, the gain ratio feature selection approach
is used to exclude unimportant features. Finally, a cloud computing-based method for
remote breast cancer diagnostics is presented and validated on the Wisconsin Diagnostic
Breast Cancer dataset.

Maqsood et al. [56] offered a brain tumor diagnosis technique based on edge detection
and the U-NET model. The suggested tumor segmentation system is based on image en-
hancement, edge detection, and classification using fuzzy logic. The contrast enhancement
approach is used to pre-process the input pictures, and a fuzzy logic-based edge detection
method is utilized to identify the edge in the source images, and dual tree-complex wavelet
transform is employed at different scale levels. The decaying sub-band pictures are used to
calculate the features, which are then classified using the U-NET CNN classification, which
detects meningioma in brain images. Rajinikanth et al. [57] created an automated breast
cancer diagnosis system utilizing breast thermal images. First, they captured images of
various breast orientations. They then extracted healthy/DCIS image patches, processed
the patches with image processing, used the Marine Predators Algorithm for feature extrac-
tion and feature optimization, and performed classification using the Decision Tree (DT)
classifier, which achieved higher accuracy (>92%) when compared with other methods.
In [58], the authors presented a novel layer connectivity based architecture for the low
contrast nodules segmentation from ultrasound images. They employed dense connectivity
and combined it with high-level coarse segmentation. Later, the dilated filter was applied
to refine the nodule. Moreover, a class imbalance loss function is also proposed to improve
the accuracy of the proposed architecture.

Based on the techniques mentioned above, we discovered that most researchers do not
pay attention to the preprocessing step. Typically, researchers performed the segmentation
step first, followed by the extraction of features. A few of them used feature fusion to
improve their classification results. They did not, however, concentrate on the selection of
optimal features. They also ignored computational time, which is now an important factor.
In this paper, we proposed an optimal deep learning feature fusion framework for breast
mass classification. A summary of a few of the latest techniques is given below Table 1.

Table 1. Summary of existing techniques for breast cancer classification.

Reference Methods Features Dataset

[47], 2021 Shape Adaptive CNN Deep learning Breast Ultrasound Images
(BUSI)

[48], 2020 Hilbert transform and Watershed Textural features BUSI

[3], 2021 Fuzzy Logic and Semantic
Segmentation Deep features BUSI

[49], 2021 Machine learning and radiomics Textural and geometric features BUSI
[14], 2021 CNN and deep representation scaling Deep features through scaling layers BUSI

[50], 2020 U-Net Encoder-Decoder CNN
architecture High level contextual features BUSI

[56], 2021 U-Net and Fuzzy logic CNN features BUSI
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3. Proposed Methodology

The proposed framework for breast cancer classification using ultrasound images is
presented in this section. Figure 1 illustrates the architecture of the proposed framework.
Initial data augmentation is performed on the original ultrasound images and then passed
to the fine-tuned deep network DarkNet53 for training purposes. Training is performed
using TL and extract features from the global average pool layer. Extracted features are
refined using the reformed feature optimization techniques, such as reformed differential
evolution (RDE) and reformed gray wolf (RGW) algorithms. The best selected features are
fused using a probability-based approach. Finally, the fused features are classified using
machine learning classifiers. A detailed description of each step is given below.
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3.1. Dataset Augmentation

Data augmentation has been an important research area in recent years in the domain
of deep learning. In deep learning, neural networks required many training samples; how-
ever, existing data sets in the medical domain belong to the low resource domain. Therefore,
a data augmentation step is necessary to increase the diversity of the original dataset.

In this work, the BUSI dataset is used for the validation process. There are 780 images
in the collection with an average image size of 500× 500 pixels. This dataset consists of three
total categories: normal (133 images), malignant (210 images), and benign (487 images) [59],
as illustrated in Figure 2. We divided this entire dataset into the training and testing of
ratio 50:50. After this, the training images of each class were normal (56 images), malignant
(105 images), and benign (243 images). This dataset is not enough to train the deep
learning model; therefore, a data augmentation step is employed. Three operations such
as horizontal flip, vertical flip, and rotate 90 are implemented and performed on original
ultrasound images to increase the diversity of the original dataset. These implemented
operations are performed multiple times until the number of images in each class has
reached 4000. After the augmentation process, the number of images in the dataset is 12,000.

3.2. Modified DarkNet-53 Model

DarkNet-53 is a 53-layer deep convolutional neural network. It serves as the basis
for the YOLOv3 object detection method. It can ensure super expression of features while
avoiding the gradient problem produced by a too-deep network by combining Resnet’s
qualities. The structure of the DarkNet-53 model is shown in Figure 3. It combines the
residual network with the deep residual network. It contains successive 1× 1 and 3× 3
convolution layers and residual blocks. The convolutional layer is defined as follows:

an
m = ∑

j∈Xi

an−1
j ∗ yn

jm + zn
m (1)
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In Equation (1), the input image is twisted by several convolution kernels to produce m
separate feature maps an

m, which is represented in layer n by the m feature map. The symbol
* represents the convolution operation. The feature vector of the image is represented by Xi
and the j element of the m convolution kernel in the layer n is represented by yn

j .
The next important layer is the batch normalization (BN) layer.

aout =
∝ (an

m − ∂)√
ω2 + ϕ

+ γ (2)

In Equation (2), the scaling factor is represented by ∝, the mean of all outputs is
represented by ∂, the input variance is represented by ω, ϕ is a constant offset represented
by γ, and the convolution calculation result is denoted by aout. The result of BN denoted
by aout. The output is normalized using Batch Normalization corresponding to the same
distribution of the coefficients of the same batch of eigenvalues. Following that, it has a
convolutional layer that can accelerate network convergence, as well as avoiding over-
fitting. The next layer is also known as an activation layer. In DarNet53, a leaky ReLu
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layer is included as an activation function. This function increases the nonlinearity of
the network:

xj =

{
yj, i f aout ≥ 0
yj
bj

, i f aout < 0 (3)

In Equation (3), the input value is denoted by yj, the activation value is represented
by xj, and the fixed parameter in the interval (1, +∞) is denoted by bj. Another important
layer in this network is pooling layer. This layer is employed for the downsampling of
weights in the network. The max-pooling layer is used in this network. In the last example,
all weights are combined in one layer in the form of a 1D array, also called features. These
extracted features are finally classified in the output layer. The depth of this model is 53,
the size is 155 MB, the number of parameters is 41.6 million, and the image input size is
256-by-256. The detailed layer-wise architecture is given in Figure 4.
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3.3. Transfer Learning

Transfer learning (TL) is a machine learning approach in which a pre-trained model is
reused for another task [60]. Reusing or transferring data from previous learned tasks for
the newly learned tasks has the potential to dramatically improve the sampling efficiency
of a supervised learning agent from a practical standpoint [61]. Here, TL is employed for
the deep feature extraction. For this purpose, initially pre-trained model is fine-tuned and
then trained using TL. Mathematically, TL is defined as follows:
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A domain d = {Y, p(y)} is described by two parameters: a feature space Y, and a dis-
tribution of marginal probabilities f (y), where y = {y1, y2, y3, . . . yn} ∈ Y. If there are two
different domains, then they either have dissimilar marginal probabilities

(
p
(
Yp
)
6= p

(
Yq
))

or feature space
(
Yp 6= Yq

)
.

Task: Given a particular domain d, there are two components of task t {X, g(.)}: a label
space X, and a predictive function g (.); this is not visible, but can be derived from training
data

{
(mj, nj j{1, 2, 3, . . . N}, where mjY and nj X

}
. From a probabilistic point, f

(
mj
)

may
also be written as p

(
nj
∣∣mj
)
, thus we can rewrite the task t as t = {X, P(x|Y)}. If two tasks

are dissimilar, their label spaces may differ
(
Xp 6= Xq

)
or result in dissimilar distributions

with conditional probabilities
(

p
(
Xp
∣∣Yp
)
6= p

(
Xq
∣∣Yq
))

.
The visual process of transfer learning is illustrated in Figure 5. The knowledge of the

original model (source domain) is transferred to the modified deep model (target domain).
After that, this modified model is trained, and the following hyper parameters are utilized:
learning rate is 0.001, mini batch size is 16, epochs are 200, and the learning method is the
stochastic gradient descent. The features are extracted from the Global Average Pooling
(GAP) layer of the modified deep model. The extracted features are later optimized using
two reformed optimization algorithms.
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3.4. Best Features Selection

In this work, two optimization algorithms are reformed for the selection of best
features such as differential evolution and gray wolf and fused their information for the
final classification. The vector size after performing a differential evolution algorithm is
4788× 818. Here, 818 is the number of features and 4788 is the number of images. The
vector size after performing the gray wolf optimization algorithm is 4788× 734.

3.4.1. Reformed Differential Evolution (RDE) Algorithm

The DE algorithm searches the solution space using the differences between individu-
als as a guide. The DE’s main idea is to scale and differentiate two different specific vectors
in the same population, then add a third individual vector to this population to generate a
mutation independent vector, which is crossed with the parent independent vector with
a certain possibility to produce an intended individual vector. Finally, greedy selection
is applied to the generated individual vector and the parent independent vector, and the
consistently better vector is preserved for the future generation. The DE’s fundamental
evolution processes are as follows:

Initialization: D-dimensional vectors (D) are used as the starting solution in the DE
algorithm. The population number can be represented by P, each independent factor can
be denoted by zj (Y) =

(
zj1(Y), zj2(Y), zj3(Y), . . . , zjn(Y)

)
, and zj (Y) ∈ denotes the deep

extracted features. The starting population is produced in [zmin, zmax]. Here, the number
of D-dimensional vectors is denoted by D, population numbers are represented by P, and
zj(Y) represents the jth individual.

zjw = zmin + rand(0, 1)× (zmax + zmin) (4)

where Y denotes the Yth generation, the maximum and minimum values of the search
space are representing by zmax and zmin, respectively, and rand(0, 1) indicates a random
number that falls inside (0, 1) the normal distribution.

Mutation Operation: The DE method generates a mutation vector Mj,Y for each
individual zj,Y in the existing population (target vector) using the mutation operation. A
specific mutation technique can generate a relevant mutation vector for each derived target
vector. Several DE mutation strategies are established based on the varied generating ways
of mutation people. The five most widely utilized mutation techniques are:

DE/rand/1:
Mj,Y = zr1, Y + L·(zr2, Y − zr3, Y) (5)

DE/best/1:
Mj,Y = zbest, Y + L·(zr1, Y − zr2, Y) (6)

DE/rand-to-best/1:

Mj,Y = zj, Y + L·
(
zbest, Y − zj, Y

)
+ L·(zr1, Y − zr2, Y) (7)

DE/rand/2:

Mj,Y = zr1, Y + L·(zr2, Y − zr3, Y) + L· (zr4, Y − zr5, Y) (8)

Random exclusive integers are created and denoted by r1, r2, r3, r4 and r5 within [1, D].
To scale a divergence vector, the scaling factor E is a positive constant value. In the Yth
generation, zbest, Y is an independent vector with the best global value.

Crossover Operation: To construct a test vector vj,Y =
(
v1,Y, v2,Y, v3,Y, . . . , vj,y

)
, each

pair of target vectors zj,Y and their matching mutation vectors Mj,Y are crossed.
A binomial crossover is defined as follows in the DE algorithm:

vj,Y =

{
Mj,Y i f (randi(0, 1) ≤ C) or (i = irand, i = 1, 2, 3, . . . , K)
zj,y Otherwise

(9)
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where C denotes the crossover frequency and is a constant on [0, 1]. This is used to limit the
quantity of the duplicated mutation vector. The selected integer on [1, K], which is random,
is denoted by irand.

Selection operation: If the parameter values reach the upper or lower bounds, they
can be regenerated in a random and uniform manner within the specified range. The
values of all the objective functions of the test vectors are then evaluated, and the selection
operation is carried out. Each test vector’s objective function f

(
vj,Y
)

is matched to the
associated target vector’s optimal solution value of the associated target vector in the
current sample. If the test vector’s objective function is much less than or similar to the
target vector’s, the target vector is replaced by the test vector for the upcoming generation.
The target vector is kept for the following generation if this is not the case.

zj,Y+1 =

{
vj,Y i f

(
f
(
vj,Y
)
≤ f

(
zj,Y
))

zj,Y Otherwise
(10)

After obtaining the selected features vj,Y, features are further refined using another
threshold function called the selected standard error of mean (SSEoM). Using this new
threshold function, the Sl(k) features are selected as a final phase.

Tr =
{

Sl(k) f or vj,Y ≥ SM
Ignore, Elsewhere

(11)

where Tr is a threshold function and SM is the standard error mean.

3.4.2. Reformed Binary Gray Wolf (RBGW) Optimization

The key update Equation for bGWO1 in this approach is provided as follows:

lh+1
j = crossover (l1, l2, l3) (12)

crossover(l, m, n) is an appropriate crossover between solutions l, m, n and l1, l2, l3, which
are binary vectors showing the effect of wolves moving towards alpha, beta, and delta grey
wolves, in that order. l1, l2, l3 can be computed by using the following Equation (13):

lt
1 =

{
1 i f

(
lt
a + bistept

a
)
≥ 1

0 Otherwise
(13)

where position vector in dimension t is denoted by lt
1 and binary step is represented by

bistept
a in dimension t. It can be computed by using Equation (15):

bistept
a =

{
1 i f costept

a ≥ rand
0 Otherwise

(14)

where rand is an integer picked at random from a uniformly distributed ∈ [0, 1], and
the continuous value of the size step is denoted by costept

a; this can be computed by the
following Equation (15):

costept
a =

1

1 + e−10(Xt
1Yt

a−0.5)
(15)

where Xt
1 and Dt

a are computed through Equations (16) and (17) that were later employed
for the threshold selection as follows:

→
X = 2c·→r1 − c (16)

→
Dα =

∣∣∣∣→C1·
→
Xa −

→
X
∣∣∣∣ (17)
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lt
2 =

{
1 i f

(
lt
b + bistept

b
)
≥ 1

0 Otherwise
(18)

where in Equation (16),
→
X is the updated position of prey,

→
r1 denotes the random distribu-

tion, and c is constantly reduced in the scope of (2,0). In Equation (18),
→
Dα represent the

distances of prey from each gray wolf and
→
C1 represent the coefficient variable. In Equation

(18), the position vector in dimension t is denoted by lt
2 and the binary step is represented

by bistept
b in dimension t. It can be computed by using the following Equation (19):

bistept
b =

{
1 i f costept

b ≥ rand
0 Otherwise

(19)

where rand is an integer picked at random from an uniformly distributed ∈ [0, 1] and the
continuous valued of size step is denoted by costept

b; this can be computed by the following
Equation (20):

costept
b =

1

1 + e−10(Xt
1Dt

b−0.5)
(20)

where Dt
b in dimension t can be computed by Equation (21).

Dt
b =

∣∣∣∣→C2·
→
Xb −

→
X
∣∣∣∣ (21)

lt
3 =

{
1 i f

(
lt
c + bistept

c
)
≥ 1

0 Otherwise
(22)

where the position vector in dimension t is denoted by lt
3 and the binary step is represented

by bistept
c in dimension t. It can be computed by using the following Equation (23):

bistept
c =

{
1 i f costept

c ≥ rand
0 Otherwise

(23)

where rand is an integer picked at random and uniformly distributed ∈ [0, 1], and the con-
tinuous value of the size step is denoted by costept

c; this can be computed by Equation (24).

costept
c =

1

1 + e−10(Xt
1Yt

c−0.5)
(24)

where Yt
c in dimension t can be computed by Equation (25).

→
Yc =

∣∣∣∣→S3·
→
Rc −

→
R
∣∣∣∣a = 1, (25)

A stochastic crossover process is used per dimension to crossover u, v, w solutions.

lt =


ut i f rand < 1

2
vt

1
2 ≤ rand < 2

5
wt Otherwise

(26)

Binary values are ut, vt and wt. These are three parameters in dimension t. The output
of the crossover is denoted by lt in dimension t.

The algorithm is summarized in Algorithm 1.
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Algorithm 1. Reformed Features Optimization Algorithm

Input: g the pack’s total number of grey wolves,
Gth the number of optimization iterations.
Output: lαBinary position of the grey wolf that is optimal,
f (lα)Best fitness value
Begin
1. Create a population of g wolves with random positions ∈ [0, 1]
2. Find a, b, c solutions that are based on fitness.
3. While Criteria for stopping not met do

For each wol f j ∈ pack do
Calculate l1, l2, l3 using Equations (13), (18) and (22).
lh+1
j ← crossover among l1, l2, l3 using Equation (26). end

I Update c, X, S.
II Examine the individual wolf positions.
III Update a, b, c.

End

3.5. Feature Fusion and Classification

The best selected features from the RDE and RGW algorithms are finally fused in
one feature vector for the final classification. For the fusion of selected deep features,
a probability-based serial approach is adopted. In this approach, initially probability is
computed for both selected vectors and only one feature is employed based on the high
probability value. Based on the high probability value feature, a comparison is conducted
and features are fused in one matrix. The main purpose of this comparison is to tackle the
problem of redundant features of both vectors. The final fused features are next classified
using machine learning algorithms for the final classification. The size of the vector is
4788× 704 after fusion.

4. Experimental Results and Analysis

Experimental Setup: During the training of fine-tuned deep learning model, the
following hyper parameters are employed, such as a learning rate of 0.001, mini batch
size of 16, epochs at 200, the optimization method is Adam, and the feature activation
function is sigmoid. Moreover, the multiclass cross entropy loss function is employed for
the calculation of loss.

All experiments are performed on MATLAB2020b using a desktop computer Core i7
with 8GB of graphics card and 16GB RAM.

The following experiments have been performed to validate the proposed method:

(i) Classification using modified DarkNet53 features in training/testing ratio of 50:50;
(ii) Classification using modified DarkNet53 features in training/testing ratio 70:30;
(iii) Classification using modified DarkNet53 features in training/testing ratio 60:40;
(iv) Classification using DE based best feature selection on training/testing ratio 50:50;
(v) Classification using the Gray Wolf algorithm based best feature selection in train-

ing/testing ratio 50:50, and
(vi) Fusion of best selected features and classification using several classifiers, including

the support vector machine (SVM), KNN, decision trees (DT), etc.

The results of the proposed method are discussed in this section in terms of tables and
visual plots. Different training and testing ratios are considered for analysis, such as 70:30,
60:40, and 50:50. The cross-validation value is selected at 10 for all experiments.

4.1. Results

The results of the first experiment are given in Table 2. This table presented the best
accuracy obtained of 99.3% for Cubic SVM. A few other parameters are also computed for
this classifier, such as sensitivity rate, precision rate, F1 score, FNR, and time complexity,
and their values are 99.2, 99.2, 99.2, 0.8%, and 20.69 (s), respectively. The Q-SVM and
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MGSVM obtained the second-best accuracy of 99.2%. The rest of the classifiers such as ESD,
LSVM, ESKNN, FKNN, LD, CGSVM, and WKNN and their accuracy values are 98.9%,
98.9%, 98.7%, 98.7%, 98.6%, 98.2%, and 97.9%, respectively.

Table 2. Classification results of DarknNet53 using ultrasound images, where the training/testing
ratio is 50:50.

Classifier Sensitivity (%) Precision (%) F1 Score (%) Accuracy (%) FNR Classification Time (s)

CSVM 99.2 99.2 99.2 99.3 0.8 200.697
MGSVM 99.2 99.2 99.2 99.2 0.8 207.879
QSVM 99.16 99.16 99.16 99.2 0.84 159.21

ESD 98.8 98.8 98.8 98.9 1.2 198.053
LSVM 98.93 98.93 98.93 98.9 1.07 122.98

ESKNN 98.6 98.6 98.6 98.7 1.4 189.79
FKNN 98.7 98.7 98.7 98.7 1.3 130.664

LD 98.6 98.6 98.6 98.6 1.4 120.909
CGSVM 98.16 98.2 98.17 98.2 1.84 133.085
WKNN 97.9 97.93 97.91 97.9 2.1 129.357

The sensitivity rate of Cubic SVM is validated through the confusion matrix illustrated
in Figure 6. In addition, the computational time of each classifier is noted, and the best time
is 120.909 (s) for LDA, and the worst time is 207.879 (s) for MGSVM.
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The results of the second experiment are given in Table 3. The best accuracy of 99.3%
was obtained for Cubic SVM. A few other parameters are also computed, such as sensitivity
rate, precision rate, F1 score, accuracy, FNR, and time complexity, and their values are
99.3%, 99.3%, 99.3%, 99.3%, 0.7%, and 11.112 (s), respectively. The MGSVM and Q-SVM
classifiers obtained the second-best accuracy of 99.3% and 99.2%, respectively. The rest of
the classifiers also achieved better performance. The confusion matrix of the Cubic SVM is
illustrated in Figure 7. In addition, the computational time of each classifier is noted, and the
minimum time is 111.112 (s) for the Cubic SVM, whereas the highest time is 167.126 (s) for
ESD. When comparing the results of this experiment in Table 2, the classification accuracy
is found to be consistent, but the computational time is minimized.
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Table 3. Classification results of DarkNet53 using ultrasound images, where the training/testing
ratio is 70:30.

Classifier Sensitivity (%) Precision (%) F1 Score (%) Accuracy (%) FNR (%) Classification Time (s)

CSVM 99.3 99.3 99.3 99.3 0.7 111.112
MGSVM 99.2 99.2 99.2 99.3 0.8 113.896
QSVM 99.16 99.2 99.17 99.2 0.84 125.304

ESD 99.0 99.03 99.01 99.0 1.0 167.126
LSVM 99.06 99.1 99.07 99.1 0.94 120.608

ESKNN 98.06 98.03 98.04 98.1 1.94 141.71
FKNN 97.73 97.76 97.74 97.7 2.27 124.324

LD 97.6 97.6 97.6 97.7 2.4 131.507
CGSVM 98.06 98.06 98.06 98.1 1.94 155.501
WKNN 96.03 96.13 96.07 96.0 3.97 127.675
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The results of the third experiment are given in Table 4. This table presented the
best accuracy obtained at 98.9% for Cubic SVM. The MGSVM and Q-SVM obtained the
second-best accuracy of 98.7%. The rest of the classifiers such as ESD, LSVM, ESKNN,
FKNN, LD, CGSVM, and WKNN, and their accuracy values are 98.7%, 98.6%, 98%, 97.8%,
98.1%, 97.9% and 97.2%, respectively. The confusion matrix of Cubic SVM is illustrated in
Figure 8. In addition, the computational time of each classifier is also noted, and the best
time is 76.2 (s) for Cubic SVM and the worst time is 107.679 (s) for the ESKNN classifier.
The accuracy of classifiers from experiments (i)–(iii) using different training/testing ratios
is summarized in Figure 9. This figure illustrated that the performance at 50:50 is overall
better than the rest of the selected ratios.
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Table 4. Classification results of DarkNet53 using ultrasound images, where the training/testing
ratio is 60:40.

Classifier Sensitivity (%) Precision (%) F1 Score (%) Accuracy (%) FNR (%) Classification Time (s)

CSVM 98.9 98.9 98.9 98.9 1.1 107.697
MGSVM 98.7 98.7 98.7 98.7 1.3 103.149
QSVM 98.7 98.7 98.7 98.7 1.3 89.049

ESD 98.6 98.7 98.65 98.7 1.4 94.31
LSVM 98.5 98.5 98.5 98.6 1.5 68.827

ESKNN 97.9 98 97.95 98.0 2.1 79.34
FKNN 97.8 97.8 98.24 97.8 2.2 84.537

LD 98.1 98.1 98.1 98.1 1.9 85.317
CGSVM 97.8 97.9 98.34 97.9 2.2 76.2
WKNN 97.2 97.2 97.2 97.2 2.8 81.191
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Table 5 presents the results of the fourth experiment. In this experiment, a 50:50
training/testing ratio is used. The best features are selected using the binary DE method.
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The 99.1% accuracy is achieved by Cubic SVM after feature selection. A few other parame-
ters are also computed for this classifier, such as sensitivity rate, precision rate, F1 score
accuracy, FNR, and time complexity, and their values are 99.1%, 99.06%, 99.08%, 1, 0.9 and
16.082, respectively. The confusion matrix of Cubic SVM is illustrated in Figure 10. The
computational time of each classifier is also noted, and the best time is 28.082 (s) for the
CSVM classifier, and the worst time is 42.829 (s) for the WKNN classifier. This shows that
the computational time after the selection process is significantly minimized compared
with the time given in Tables 2 and 3.

Table 5. Classification results of binary differential evolution selector using ultrasound images, where
the training/testing ratio is 50:50.

Classifier Sensitivity (%) Precision (%) F1 Score (%) Accuracy (%) FNR Classification Time (s)

CSVM 99.10 99.06 99.08 99.1 0.9 28.082
MGSVM 99.13 99.13 99.13 99.1 0.87 41.781
QSVM 99.10 99.10 99.1 99.1 0.9 35.448

ESD 98.70 98.70 98.7 98.7 1.3 42.74
LSVM 98.90 98.86 98.88 98.9 1.1 33.073

ESKNN 98.40 98.36 98.38 98.4 1.6 37.555
FKNN 98.26 98.30 98.28 98.3 1.74 35.349

LD 98.50 98.50 98.5 98.5 1.5 35.213
CGSVM 98.43 98.43 98.43 98.4 1.57 39.686
WKNN 97.00 97.10 97.05 97.0 3.0 42.829
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Figure 10. Confusion matrix of Cubic SVM for the features selected using DE and the train/test ratio
of 50:50.

The results of the fifth experiment are given in Table 6. In this experiment, the binary
gray wolf optimization algorithm is implemented and selects the best features for the final
classification. This table presents the best accuracy obtained of 99.1% for Cubic SVM. A
few other parameters are also computed for this classifier, such as sensitivity rate, precision
rate, F1 score, accuracy, FNR, and time complexity, and their values are 99.06%, 99.1%,
99.08%, 1, 0.94, and 15.239, respectively. The confusion matrix of Cubic SVM is illustrated
in Figure 11. The computational time of each classifier is also noted, and the best time is
25.239 (s) for CSVM. This table shows that the overall time is minimized, and the accuracy
is consistent with Tables 2 and 3.
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Table 6. Classification results of binary gray wolf optimization selector using ultrasound images,
where the training/testing ratio is 50:50.

Classifier Sensitivity (%) Precision (%) F1 Score (%) Accuracy (%) FNR Classification Time (s)

CSVM 99.06 99.1 99.08 99.1 0.94 25.239
MGSVM 98.96 98.96 98.96 99.0 1.04 29.732
QSVM 98.96 98.96 98.96 99.0 1.04 33.632

ESD 98.5 98.5 98.5 98.5 1.5 30.823
LSVM 98.7 98.7 98.7 98.7 1.3 35.774

ESKNN 98.5 98.5 98.5 98.5 1.5 31.585
FKNN 98.36 98.36 98.36 98.4 1.64 40.854

LD 98.2 98.2 98.2 98.3 1.8 38.5073
CGSVM 98.06 98.1 98.08 98.1 1.94 32.396
WKNN 97.2 97.2 97.2 97.2 2.8 30.698
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Finally, the best selected features are fused using the proposed approach. The results
are given in Table 7. This table presented the best accuracy obtained with 99.1% for Cubic
SVM. The confusion matrix of Cubic SVM is illustrated in Figure 12. In this figure, the
diagonal values show the correct predicted values. In addition, the computational time of
each classifier is noted, and the best time is 13.599 (s) for the CSVM classifier.

Table 7. Classification results using the feature fusion of DE and BGWO using ultrasound images,
where the training/testing ratio is 50:50.

Classifier Sensitivity (%) Precision (%) F1 Score (%) Accuracy (%) FNR (%) Classification Time (s)

CSVM 99.06 99.06 99.06 99.18 0.94 13.599
MGSVM 99.10 99.10 99.10 99.16 0.9 15.659
QSVM 98.96 98.96 98.96 99.30 1.04 17.601

ESD 98.76 98.80 98.78 98.90 1.24 26.240
LSVM 98.93 98.90 98.91 99.00 1.07 19.185

ESKNN 98.56 98.60 98.58 98.90 1.44 22.425
FKNN 98.36 98.36 98.36 98.74 1.64 24.508

LD 98.40 98.40 98.40 98.40 1.60 21.045
CGSVM 98.20 98.20 98.20 98.30 1.80 20.627
WKNN 97.46 97.53 97.49 98.10 2.54 18.734
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Figure 12. Confusion matrix of Cubic SVM after the proposed feature fusion approach.

Figure 13 compares the computational time while using the original features, the selected
features based on DE, the feature selection based on BGWO, and feature fusion. In this
figure, it is illustrated that the computational time of the original features is high, which was
decreased after the feature selection step. Further, the proposed fusion process improves the
performance in terms of computational time and consistency with the accuracy.
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4.2. Statistical Analysis

For statistical analysis and comparison of the results, we used the post-hoc Nemenyi
test. Demšar [62] has suggested using the Nemenyi test to compare techniques in a paired
manner. The test determines a critical difference (CD) value for a given degree of confidence
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α. If the difference in the average ranks of two techniques exceeds the CD value, the null
hypothesis, H0, that both methods perform equally well, is rejected.

The results of statistical analysis are summarized in Figure 14 (mean ranks of classifiers)
and Figure 15 (mean ranks of feature selection methods). The best classifier is CSVM, but
MGSVM and QSVM also show very good results, in terms of accuracy, which are not
significantly different from CSVM. The best feature selection method among the four
methods analyzed is the proposed feature fusion approach, which is significantly better
than other approaches (DE, BGWO, and original).
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4.3. Comparison with the State of the Art

The proposed method is compared with the state-of-the-art techniques, as given in
Table 8. In [63], the authors used ultrasound images and achieved an accuracy of 73%.
In [64], the adaptive histogram equalization method was used to enhance ultrasound
images and obtained an accuracy of 89.73%. In [52], a CAD system was presented for tumor
identification that combines an imaging fusion method with various formats of image
content and ensembles of multiple CNN architectures. The accuracy achieved for this
data set was 94.62%. In [65], the source breast ultrasound image was first processed using
bilateral filtering and fuzzy enhancement methods. The accuracy achieved was 95.48%.
In [66], authors implemented a semi-supervised generative adversarial network (GAN)
model and achieved an accuracy of 90.41%. The proposed method achieved an accuracy of
99.1% using a BUSi augmented dataset, where the computational time is 13.599 (s).
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Table 8. Comparison with the state-of-the-art techniques.

Reference Year Accuracy (%) Time (s)

Cao et al. [63] 2020 73.0 -

Illesnami et al. [64] 2021 89.73 -

Pang et al. [66] 2021 90.41 -

Moon et al. [52] 2020 94.62 -

Zhuang et al. [65] 2021 95.48 -

Proposed 99.1 13.599

5. Conclusions

We proposed an automated system for breast cancer classification using ultrasound
images. The proposed method is based on a few sequential steps. Initially, the breast
ultrasound data are augmented and then retrained using a DarkNet-53 deep learning
model. Next, the features were extracted from the pooling layer and then the best feature
was selected using two different optimization algorithms such as the reformed BGWO and
the reformed DE. The selected features are finally fused using a proposed approach that is
later classified using machine learning algorithms. Several experiments were performed,
and the proposed method achieved the best accuracy of 99.1% (using feature fusion and
CSVM classifier). The comparison with recent techniques shows improvement in the
results using the proposed framework. The strength of this work is: (i) augmentation of
the dataset improved the training strength, (ii) the selection of best features reduced the
irrelevant features, and (iii) the fusion method further reduced the computational time and
consistency of accuracy.

In future, we will focus on two key steps: (i) increasing the size of the database, and
(ii) designing a CNN model from scratch for breast tumor classification. We will discuss
our proposed model with ultrasound imaging specialists and medical doctors, aiming for
practical implementation at hospitals.
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Abbreviations

CNN Convolutional neural network
RDE Reformed differential evaluation
RGW Reformed differential evaluation
MRI Magnetic resonance imaging
CAD Computer-aided diagnosis
AI Artificial intelligence
GA Genetic algorithm
PSO Particle swarm optimization
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HT Hilbert transform
KNN K-Nearest neighbor
ML Machine learning
ROI Region of interest
TL Transfer learning
DRS Deep representation scaling
Di-CNN Dilated semantic segmentation network
LUPI Learning using privileged information
MMD Maximum mean discrepancy
DDSTN Doubly supervised TL network
BTS Breast tumor section
ELM Extreme learning machine
DT Decision tree
SVM Support vector machine
WKNN Weighted KNN
QSVM Quadratic SVM
CGSVM Cubic gaussian SVM
LD Linear discriminant
ESKNN Ensemble subspace KNN
ESD Ensemble subspace discriminant
FNR False negative rate
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