Skip to main content
. 2022 Jan 21;22(3):807. doi: 10.3390/s22030807

Table 2.

Classification results of DarknNet53 using ultrasound images, where the training/testing ratio is 50:50.

Classifier Sensitivity (%) Precision (%) F1 Score (%) Accuracy (%) FNR Classification Time (s)
CSVM 99.2 99.2 99.2 99.3 0.8 200.697
MGSVM 99.2 99.2 99.2 99.2 0.8 207.879
QSVM 99.16 99.16 99.16 99.2 0.84 159.21
ESD 98.8 98.8 98.8 98.9 1.2 198.053
LSVM 98.93 98.93 98.93 98.9 1.07 122.98
ESKNN 98.6 98.6 98.6 98.7 1.4 189.79
FKNN 98.7 98.7 98.7 98.7 1.3 130.664
LD 98.6 98.6 98.6 98.6 1.4 120.909
CGSVM 98.16 98.2 98.17 98.2 1.84 133.085
WKNN 97.9 97.93 97.91 97.9 2.1 129.357