Table 4.
Classifiers | AUC (95% CI) | Se (95% CI) | Sp (95% CI) | PPV | NPV | Correct rate |
---|---|---|---|---|---|---|
SVM a | 0.996 (0.989, 1.000) | 0.982 (0.906, 1.000) | 0.907 (0.797, 0.969) | 0.918 | 0.946 | 0.946 |
SVM b | 0.813 (0.761, 0.866) | 0.780 (0.707, 0.842) | 0.717 (0.618, 0.803) | 0.816 | 0.756 | 0.756 |
RF a | 0.995 (0.988, 1.000) | 0.983 (0.906, 1.000) | 0.907 (0.797, 0.969) | 0.919 | 0.955 | 0.955 |
RF b | 0.727 (0.665, 0.788) | 0.723 (0.647, 0.791) | 0.525 (0.422, 0.627) | 0.696 | 0.636 | 0.636 |
LR a | 0.991 (0.971, 1.000) | 0.965 (0.879, 0.996) | 0.982 (0.901, 1.000) | 0.982 | 0.973 | 0.973 |
LR b | 0.783 (0.725, 0.841) | 0.516 (0.435, 0.596) | 0.869 (0.786, 0.928) | 0.859 | 0.640 | 0.640 |
SVM, support vector machine; RF, randomforest; LR, logistic regression; Se, sensitivity; Sp, specificity; PPV, positive predictive value; NPV, negative predictive value; AUC, area under the ROC curve; ROC, receiver operating characteristic curve
aVerified in the 50% samples of GSE12288 (111/222)
bVerified in the integrated dataset of GSE7638 and GSE66360 (258)