Skip to main content
. 2022 Feb 12;22:42. doi: 10.1186/s12872-022-02481-4

Table 4.

Validation and evaluation results of three machine learning classifiers performance

Classifiers AUC (95% CI) Se (95% CI) Sp (95% CI) PPV NPV Correct rate
SVM a 0.996 (0.989, 1.000) 0.982 (0.906, 1.000) 0.907 (0.797, 0.969) 0.918 0.946 0.946
SVM b 0.813 (0.761, 0.866) 0.780 (0.707, 0.842) 0.717 (0.618, 0.803) 0.816 0.756 0.756
RF a 0.995 (0.988, 1.000) 0.983 (0.906, 1.000) 0.907 (0.797, 0.969) 0.919 0.955 0.955
RF b 0.727 (0.665, 0.788) 0.723 (0.647, 0.791) 0.525 (0.422, 0.627) 0.696 0.636 0.636
LR a 0.991 (0.971, 1.000) 0.965 (0.879, 0.996) 0.982 (0.901, 1.000) 0.982 0.973 0.973
LR b 0.783 (0.725, 0.841) 0.516 (0.435, 0.596) 0.869 (0.786, 0.928) 0.859 0.640 0.640

SVM, support vector machine; RF, randomforest; LR, logistic regression; Se, sensitivity; Sp, specificity; PPV, positive predictive value; NPV, negative predictive value; AUC, area under the ROC curve; ROC, receiver operating characteristic curve

aVerified in the 50% samples of GSE12288 (111/222)

bVerified in the integrated dataset of GSE7638 and GSE66360 (258)