Table 2.
Six types of feature extraction networks composed of different network components.
Model | Backbone | Neck | Head | Number of Convolutional Layers | ||||
---|---|---|---|---|---|---|---|---|
Focus | ResBlock | CSPNet | SPP block | FPN | PANet | YOLO | ||
YOLOV3-tiny | √ | √ | 13 | |||||
YOLOV3 | √ | √ | √ | 52 | ||||
YOLO-RP | √ | √ | √ | 30 | ||||
YOLO-RCP | √ | √ | √ | √ | 30 | |||
YOLO-A30 | √ | √ | √ | √ | √ | √ | 30 | |
YOLO-A78 | √ | √ | √ | √ | √ | √ | 78 |