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Abstract
Population sizes of many birds are declining alarmingly and methods for estimating 
fluctuations in species’ abundances at a large spatial scale are needed. The possibility 
to derive indicators from the tendency of specific species to co-occur with others has 
been overlooked. Here, we tested whether the abundance of resident titmice can act 
as a general ecological indicator of forest bird density in European forests. Titmice 
species are easily identifiable and have a wide distribution, which makes them poten-
tially useful ecological indicators. Migratory birds often use information on the density 
of resident birds, such as titmice, as a cue for habitat selection. Thus, the density of 
residents may potentially affect community dynamics. We examined spatio-temporal 
variation in titmouse abundance and total bird abundance, each measured as biomass, 
by using long-term citizen science data on breeding forest birds in Finland and France. 
We analyzed the variation in observed forest bird density (excluding titmice) in rela-
tion to titmouse abundance. In Finland, forest bird density linearly increased with tit-
mouse abundance. In France, forest bird density nonlinearly increased with titmouse 
abundance, the association weakening toward high titmouse abundance. We then 
analyzed whether the abundance (measured as biomass) of random species sets could 
predict forest bird density better than titmouse abundance. Random species sets out-
performed titmice as an indicator of forest bird density only in 4.4% and 24.2% of 
the random draws, in Finland and France, respectively. Overall, the results suggest 
that titmice could act as an indicator of bird density in Northern European forest bird 
communities, encouraging the use of titmice observations by even less-experienced 
observers in citizen science monitoring of general forest bird density.
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1  |  INTRODUC TION

Species abundances are dynamic and sensitive to environmental 
change (Hughes, 2000; Lemoine et al., 2007) and abundances of 
many animals are declining globally at increasing rates as a response 
to global change (Brondizio et al., 2019). Birds are among the best 
studied taxa in this respect, and alarming evidence is accumulating 
about recent declines in population sizes for many species (Bowler 
et al., 2019; Rosenberg et al., 2019). In the face of this biological 
crisis, we need methods for estimating population abundances 
at extensive spatial scales more than ever. To get spatially exten-
sive abundance data, citizen science approach is a well-established 
method (Devictor et al., 2010; Jiguet et al., 2012). However, for the 
citizen science approach to work reliably, easy methods, that non-
experts can consistently use are required (McKinley et al., 2017; 
Silvertown, 2009). Hence, using the abundance of easily identifiable 
and conspicuous species as an indicator when estimating abundance 
of a target species group may facilitate the use of citizen science 
approach in abundance estimation in general.

Using indicator species has yielded promising results in com-
munity ecology (Caro & O'Doherty, 1999; Fleishman et al., 2005; 
Menon & Shahabuddin, 2021; Sattler et al., 2013). The most effec-
tive ecological indicators are usually species that are closely related 
to the target species (Fleishman et al., 2005; Sattler et al., 2013). For 
example, Lindenmayer et al. (2014) propose that a specific marsupial 
species could be used as an indicator for the abundance of other 
species of the same taxonomic group. However, simultaneously 
using multiple species is proposed to be a more effective ecologi-
cal indicator for species diversity than merely one indicator species 
(Fleishman et al., 2005; Grenyer et al., 2006; Morelli et al., 2014; 
Padoa-Schioppa et al., 2006; Sattler et al., 2013) and the same prob-
ably holds for abundance too. This is because a group of indicator 
species could capture a wider variation of ecological traits in target 
species than a single indicator species (Gregory et al., 2005; Morelli, 
2015).

The use of indicator species to estimate target species occur-
rence or abundance can be based on similar responses to abiotic 
factors (Caro & O'Doherty, 1999; Sætersdal et al., 2003) or biotic as-
sociations between the indicator and target species groups (Møller 
et al., 2017; Sergio et al., 2006). Even though negative interspecific 
interactions, such as competition, can negatively affect species 
co-occurrence and abundance (Forsman et al., 2008; Goldberg & 
Barton, 1992), shared habitat preference and positive interspecific 
interactions may promote co-occurrence of species and create ag-
gregations of individuals (Basile et al., 2021; Forsman et al., 2009). 
Positive interactions among species include, for example, facilita-
tion (Gross, 2008), active attraction to heterospecifics (Forsman 
et al., 2009; Mönkkönen et al., 1990; Thomson et al., 2003), and 
social information use (i.e., the use of inadvertent cues produced by 
other species when making decisions on resource use; Gross, 2008; 
Seppänen et al., 2007; Vazquez & Simberloff, 2003), all of which can 
lead to positive associations between species abundances. Through 
positive interactions, such as social information use across species, 

species’ resource use and interactions with other species may be al-
tered, thereby changing community dynamics (Forsman et al., 2002, 
2009; Mönkkönen et al., 2017; Seppänen et al., 2007; Wisz et al., 
2013).

In this study, we examine the effectiveness of using a group of 
species to estimate the density of target species at extensive geo-
graphical and temporal scales. Our study system is the European 
forest bird community, where we study whether the conspicuous 
and easy-to-identify species of titmice (family Paridae) could indi-
cate density of breeding forest birds. In Asia, species richness of tit-
mice has been found to be a poor indicator of overall bird species 
richness (Møller et al., 2017). However, Møller et al. (2017) observed 
a maximum of two titmouse species, while titmice are more diverse 
in Europe (del Hoyo et al., 2007). Additionally, other bird species 
groups, such as woodpeckers (family Picidae), are suggested to be 
efficient ecological indicators for bird species diversity (Menon & 
Shahabuddin, 2021; Mikusiński et al., 2001). Even with no covaria-
tion between titmouse species richness and overall species richness, 
abundances can still covary. Focusing on abundances offers a finer 
grain indicator than co-occurrences or species diversity. Hence, tit-
mice may have more potential for indicating bird abundance than 
species richness.

Titmice inhabit broadleaf, conifer and mixed forests, and semi-
forested habitats (Eck & Martens, 2006; del Hoyo et al., 2007; 
Suhonen et al., 1994), and have a wide distribution globally, occurring 
on all continents except South America, Australia, and Antarctica 
(del Hoyo et al., 2007; Gill et al., 2005). European titmouse species 
include both generalist (e.g., great tit [Parus major]) and specialist 
(e.g., coal tit [Periparus ater]) species (del Hoyo et al., 2007), suggest-
ing that their ecology overlaps with many other forest bird species 
and that titmice could serve as an indicator group for bird density 
in forest habitats in general. Additionally, titmice are conspicuous 
due to their highly active foraging, social, and vocal behavior (del 
Hoyo et al., 2007), making them easy to observe. As a group, titmice 
are often easily recognized by the general public due to their highly 
similar appearance across species (del Hoyo et al., 2007) and their 
common visits to garden bird feeders. Additionally, identifying indi-
viduals to species level is mainly easy due to the variation of plumage 
color (Eck & Martens, 2006; del Hoyo et al., 2007), body size (Alatalo 
& Moreno, 1987; Eck & Martens, 2006; del Hoyo et al., 2007), and 
crestedness among species (Eck & Martens, 2006; del Hoyo et al., 
2007). Overall, the ecology of titmice makes them potentially a more 
efficient indicator group for forest bird abundance than, for exam-
ple, woodpeckers or cuckoos, which are less abundant and diverse 
and consist of mainly specialist species (Menon & Shahabuddin, 
2021; Mikusiński et al., 2001; Møller et al., 2017).

As titmouse species are mainly residents (del Hoyo et al., 2007), 
they experience the environmental changes at the breeding grounds 
throughout the year, including nonbreeding season. Therefore, they 
can be more sensitive to changes in habitat quality during a certain 
period of their life cycle. Resident species also have the advantage 
of acquiring a lot of information on the environment and establish-
ing their breeding grounds prior to the arrival of migratory birds. 
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Forsman et al. (2009) found that migratory birds use the density of 
resident titmice with similar ecological niches (i.e., potential compet-
itors) as a cue for habitat selection, which results in a positive asso-
ciation between titmice and migratory birds. Owing to this, titmice 
may be good indicators of habitat quality for migratory birds, and 
it may pay off for migratory species to use titmouse density as a 
cue for habitat selection (Forsman et al., 2009; Mönkkönen et al., 
1990), despite the costs of interspecific competition (Forsman et al., 
2008; Gustafsson, 1987; Mönkkönen et al., 2004; Sasvári et al., 
1987). However, there may be a threshold density of titmice, above 
which negative effects of interspecific competition between indi-
viduals may exceed the benefits of social information use (Forsman 
et al., 2008; Mönkkönen et al., 2004; Seppänen et al., 2007). Thus, 
the avoidance of competition may lead to negative associations be-
tween titmice and other forest birds at least at high densities.

Here, we examine the association between titmouse abundance 
(given as biomass) and the density of other birds in forest habitats 
at a macroecological scale, while controlling for environmental fac-
tors (temperature and precipitation). We analyze long-term citizen 
science breeding bird survey data from Northern and Western 
Europe by using a dynamic species distribution model (Thorson, 
2019; Thorson & Barnett, 2017). We hypothesize that the abun-
dance of resident titmice acts as a general indicator of bird density 
in European forests, if similar habitat preferences or social informa-
tion use, as described by Forsman et al. (2009) generally takes place 
in forest bird communities. To assess the performance of titmice as 
indicators of forest bird density, we compare the titmouse group 
against randomly drawn species groups from the same community 
(see Andelman & Fagan, 2000; Cabeza et al., 2008; Tognelli, 2005). 
A suitable ecological indicator should perform better than randomly 
drawn groups of species in representing the density of forest birds.

2  |  METHODS

2.1  |  Bird surveys

We used breeding forest bird surveys from citizen science programs 
in Finland (The Finnish Museum of Natural History, LUOMUS) and 
France (the French Breeding Bird Survey, FBBS). These citizen sci-
ence data sets (sensu Jiguet et al., 2012) consist of point counts that 
were carried out similarly each year during the surveys and were 
performed by experienced volunteer ornithologists with excellent 
species identification skills. Despite some minor differences (e.g., 
different number of sampling points per sampling route/plot [see 
below], two annual surveys in France due to longer breeding season) 
in survey design between Finland and France, the general methodo-
logical similarity makes the two data sets comparable across space 
and time. Data from 2001 to 2013 were used from both countries. 
At each point count in both countries, all visually and acoustically 
observed birds were recorded during a five-minute observation 
period independently of the distance from the observer. Most of 
the observations are based on sounds and binoculars are used to 

identify distant individuals. Unlimited observation distance (Blondel 
et al., 1981) ensured that no observations were excluded during 
sampling due to unreliable distance estimation.

In Finland, the survey area consisted of routes, established by 
the observers themselves, where the observer performed the point 
counts on 20 points located a minimum of 250 m apart (Koskimies 
& Väisänen, 1991; Laaksonen & Lehikoinen, 2013). Each observa-
tion is transformed into pairs including observations of (i) singing or 
displaying, (ii) other calls, (iii) sightings (male, female, pair, brood, or 
nest), (iv) flying bird, and (v) flying flock. Flocks are transformed into 
pairs, normally by dividing by two (male and female) plus the mean 
species-specific brood size in case of brood flocks. The census unit is 
a pair of birds, not an individual; thus, a male and a female seen sep-
arately or together, or a parent with offspring, is transformed into 
one pair (Koskimies & Väisänen, 1991). Thus, the observed numbers 
of individuals were multiplied by two to get the total number of in-
dividuals. In France, 2 km × 2 km plots were randomly distributed 
across the landscape in the beginning of the survey (Jiguet et al., 
2012). Within each plot, there were 10 random points a minimum 
of 300 m apart where the point counts were performed by counting 
each observed individual as such, and not as a breeding pair (Jiguet 
et al., 2012). For detailed descriptions of the sampling designs, see 
Koskimies and Väisänen (1991) and Jiguet et al. (2012), for Finland 
and France, respectively.

In both countries, all sampling route, plot, and point locations 
remained constant during the study period. However, not all 
routes and plots included in the data were sampled for all years 
of the study period. In Finland, 76 routes, including 939 unique 
points (Appendix 1: Figure A1), were sampled during breeding 
time in spring (May–June). The data yielded a total of 63,156 ob-
served forest birds (breeding pairs) and 75 species (see Supporting 
Information 1 for a list of species: Table S1.1), including six titmouse 
species. The French data were collected over two sampling peri-
ods during each breeding season (April–June) to warrant observa-
tions for both early and late breeding species (Jiguet et al., 2012). 
1169 plots were sampled, including 4342 unique points (Appendix 
1: Figure A2), yielding to a total of 349,886 observed forest birds 
and 63 species (see Supporting Information 1 for a list of species: 
Table S1.1), including six titmouse species. The data from the two 
sampling periods in France were summed to comprise one annual 
data set for each point.

Both surveys are designed for monitoring birds breeding in ter-
restrial habitats. We only considered data from forest habitats in 
this study (see Supporting Information 1 for a list of forest classifica-
tions: Table S1.2). We used our expertise for restricting the bird data 
to only include species breeding and/or foraging in forests. Different 
sampling designs compared to those used in the Finnish and French 
breeding bird surveys are generally suggested for counting rap-
tors, grouse, waders, and waterfowl (Andersen, 2007; Conway & 
Nadeau, 2010; Cummins et al., 2015; Hansen et al., 2015; Lor & 
Malecki, 2002; Pakkala et al., 1983). Thus, raptors, grouse, waders, 
and waterfowl were excluded from the analyses. The data of each 
point count in each sampled year were subdivided into two groups: 
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(1) titmouse observations (referred to as titmouse group hereafter) 
and (2) all other (nontitmice) forest bird species (referred to as forest 
birds hereafter).

2.2  |  Environmental data

Both titmouse and forest bird density may be positively correlated 
with environmental productivity, for example, because of resource 
limitations (Forsman & Mönkkönen, 2003; Hawkins et al., 2003; 
Mönkkönen et al., 2006; Pautasso et al., 2011). This potentially con-
founding effect must be considered in statistical analyses, which is 
why we summarized variation in mean monthly precipitation (mm) 
and temperature (°C) to a principal component (PC), derived from 
a principal component analysis (PCA), that serves as a proxy for en-
vironmental productivity. We used climate data from the CHELSA–
database (Karger et al., 2017) with one-kilometer resolution. Data 
were downloaded and handled with ArcGIS Desktop 10.6. software 
(ESRI, 2019). The derived environmental PC was then used to pre-
dict forest bird density at each site (i.e., route or plot), such that we 
account for this relationship while testing for positive correlation 
between titmouse abundance and forest bird density.

Mean monthly precipitation and mean monthly temperature 
were calculated for the geographical centroid of each route and 
plot, in Finland and France, respectively. As the sampling designs 
differ between the two countries, we specified a unique radius for 
each country for extracting the climate data to ensure that the data 
represent the entire potential area (i.e., all unique points along the 
route/plot) from which the bird data were collected. In Finland, 
we used a five-kilometer radius around the centroid of the route 
(the extreme points in the Finnish routes may be >10 km apart). 
In France, a one-kilometer radius around the centroid of each 
2 km × 2 km plot was used to obtain the climate data. For some 
routes and plots, precipitation (mm) or temperature (°C) values var-
ied a lot due to steep altitudinal gradients within the considered 
area. To make sure that the climate data accurately represented 
the conditions at the actual sampling points, we excluded all cases 
where the monthly ranges of precipitation exceeded 50  mm or 
temperature variation exceeded 11°C among the grid cells included 
within the used radius. We calculated the sum of the mean monthly 
precipitation (mm) and the mean of the mean monthly tempera-
ture (°C) for each sampling route or plot for each year and used the 
year-specific values in the analysis. We ran a PCA for the annual 
precipitation and temperature data to derive an index (PC score) 
to represent the environmental conditions at each site and year. 
Environmental productivity increases with higher precipitation 
and temperature (Boisvenue & Running, 2006; Field et al., 1998). 
Therefore, we used the principal component (i.e., PC1 or PC2) that 
was positively correlated with both precipitation and temperature 
as the proxy for productivity (see Supporting Information 1 for de-
tails: Figure S1.1) in each country.

Differences in forest structures potentially affect abundances of 
bird species (Fraixedas et al., 2015; Lehikoinen et al., 2017). Thus, 

to avoid bias from the heterogeneity of different habitat types, we 
first subset the habitat types into main habitat classes according to 
their structural differences. Second, we estimated habitat-specific 
Shannon–Wiener diversity indices (H′; Shannon & Weaver, 1949). 
Third, we combined habitats having similar Shannon entropies 
into the main habitat classes. Consequently, we defined four habi-
tat classes in Finland and five in France (Supporting Information 2) 
and then repeated the analysis explained below separately for each 
of the habitat class-specific subsets of the data (see Supporting 
Information 2 for results).

2.3  |  Spatial Gompertz model for analyzing forest 
bird density

Recently, species distribution models (SDMs) have been used to 
identify indicators for biodiversity (Morelli et al., 2014; Valerio et al., 
2016; Vallecillo et al., 2016). The strength of using SDMs in mak-
ing conservation decisions lies in the possibility to combine spatial 
environmental and biotic data (Guisan et al., 2013). We applied a 
dynamic SDM, a spatio-temporal model that captures localized den-
sity dependence in the interannual dynamics for a response variable, 
while also incorporating covariates to explain residual variation in 
density. Specifically, we tailored the dynamic SDM so that temporal 
abundance changes were described by a Gompertz model, where 
per-capita productivity is a linear function of log-transformed total 
bird density. The Gompertz model is appropriate for modeling tem-
poral abundance changes as it can be used in describing population 
dynamics of natural populations (Saitoh et al., 1997) and it is widely 
used in time-series analysis (Dennis & Taper, 1994). Specifically, we 
used a “spatial Gompertz” model that includes spatial correlations 
among localized densities for nearby sites (Thorson, Skaug, et al., 
2015). Models incorporating dynamic spatial structure and process 
errors, such as the spatial Gompertz model, enhance the identifi-
cation of species codistributions (Kareiva, 1990; Nadeem et al., 
2016; Thorson, Skaug, et al., 2015). Thus, the use of dynamic SDMs 
enables to estimate to which degree a predictor variable (titmouse 
abundance) explains variation in the response variable (forest bird 
density) while accounting for spatio-temporal variation and environ-
mental factors, which facilitates estimation of the effectiveness of 
an ecological indicator.

We used observed titmouse abundance, given as biomass, as a 
predictor variable for forest bird density (excluding titmice) in bird 
communities in Finland and France. A simple spatial Gompertz 
model was built by using the Vector-Autoregressive Spatio-Temporal 
model (VAST), release number 2.0.1 (available as an R package VAST; 
Thorson & Barnett, 2017, Thorson, 2019). The spatial Gompertz 
model can be defined in VAST with particular settings (i.e., univari-
ate model with constant intercepts across years and autoregressive 
process for spatio-temporal variation; see Thorson, Skaug, et al., 
2015) that were used here. The observation data were converted 
to biomass (g) by multiplying the species-specific numbers of indi-
viduals observed by species-specific body mass estimates from del 
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Hoyo et al. (2014). Abundance of forest birds, given as biomass, was 
set as a response variable in the univariate spatio-temporal model. 
VAST uses forest bird abundance, together with the sampling area, 
to model forest bird population density (biomass per unit area), d, at 
location s and year t, d(s, t) (see Table 1 for definition of all symbols). 
We set the statistical sampling area to be (circular) 0.031 km2 here 
because we assume that the vast majority of observations have been 
made within this distance from the observer. Although the radius 
for the sampling area is set subjectively, it does not affect the con-
clusions. The radius only affects the scale of the density estimates 
(i.e., biomass per unit area), and not the estimated relative densities 
among sampling locations, only relative differences among sampling 
locations contributing to inferences.

Titmouse abundance was used as a covariate in the analysis. In 
order to consider a possible nonlinear effect of titmice on forest bird 
density, we also included the square of titmouse abundance as a co-
variate. Hence, observed titmouse abundance, its square, and the 
environmental PC (i.e., PC1 or PC2; see Section 2.2) were used as dy-
namic covariates that vary among sites and years in the analysis. All 

covariates were standardized prior to analysis (i.e., subtracted by mean 
and divided by standard deviation). The intercept for expected density 
of forest birds (β) was estimated as a fixed effect independently for 
each year. Spatio-temporal variation in expected forest bird density (ε) 
was estimated as a random effect following a Matérn correlation func-
tion across space and a first-order autoregressive process (1-year lag) 
across time (see Thorson & Barnett, 2017 for details).

VAST divides the spatial domain into a user specified number 
(x) of spatial knots s (that have a specific location) and then predicts 
density of forest birds d(s, t) for each location s and year t. The pre-
dicted density estimate and covariate values for the observation 
point of sample i are assumed to be equal to the predicted density 
and covariate values at the nearest location si (Thorson, 2019). Thus, 
covariates are considered at the same spatial scale as the density 
(Thorson, 2019). For Finland, we defined the number of knots as 
equal to the number of sampled points (x  =  939). For France, we 
used x = 1000 in the analysis because tests indicated that the results 
of the analysis were independent of the number of spatial knots, 
provided that x ≥ 1000 (Supporting Information 1: Table S1.3). Using 

TA B L E  1 Symbols used for indices, data, fixed effects, random effects, and derived quantities

Symbol Description Dimensions

Index

i Sample –

s Spatial location (“knot”) –

t Time interval (year) –

Data

b Data for observed forest bird abundance (i.e., biomass; g) ni

a Area sampled 1

tit Covariate data for observed titmouse abundance (i.e., biomass; g) ni × nt

PC Covariate data for environmental principal component (PC1 or PC2) ni × nt

control Covariate data for observed control group species abundance (i.e., biomass; g) ni × nt

x Number of locations (“knots”) in the spatial mesh used in spatial interpolation n

Fixed effects

β Intercept for expected forest bird density ni

�
2

m
Variance in expected forest bird abundance ni

γ1 Estimated effect of titmouse abundance covariate 1

γ2 Estimated effect of [titmouse abundance]2 covariate 1

γ3 Estimated effect of environmental principal component (PC1 or PC2) covariate 1

γ4 Estimated effect of a control group (from a random draw) abundance covariate 1

ρε Temporal autoregressive correlation in spatio-temporal variation of forest bird density 1

Random effects

ω Spatial variation in expected forest bird density ns

ε Spatio-temporal variation in expected forest bird density ns × nt

�
2

�

Variance parameter for spatial variation of expected forest bird density 1

�
2

�

Variance parameter for spatio-temporal variation of expected forest bird density 1

Derived quantities

d Expected forest bird density (g per km2) ns × nt

R Matrix of spatial correlations in expected forest bird density ns × ns
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x equal to the number of sampled points (n = 4342) was not reason-
able for France, because computation time considerably increases 
with increasing x.

We used a generalized linear mixed model for modeling local-
ized densities. Lognormal and gamma distributions for abundance 
were tested for data from both countries. Gamma distribution mod-
els fitted better to the data than models using lognormal distribu-
tion (ΔAIC Finland = 115.66, ΔAIC France = 1756.7, in favor of the 
gamma distribution model) and were therefore used in all subse-
quent analyses. Hence, the estimation model for the expected abun-
dance (i.e., biomass) of forest birds was: 

where bi is the observed forest bird abundance in sample i. gamma(B|d, 
σ2) describes the gamma probability density function for value B, with 
the mean of d and variance of �2

m
, d(si, ti) being the expected density 

(g/km2) of forest birds at location s and year t, and a is the constant 
sampling area.

Density of forest birds d(si, ti) was modeled with a log-linked lin-
ear predictor as:

where β(ti) is the intercept for expected density of forest birds at year 
t, ω(si) is the spatial variation for expected forest bird density across 
locations s (s = 1, …, x), ε(si, ti) is the spatio-temporal variation for ex-
pected forest bird density across locations s (s = 1, …, x) and years t (t 
= 2001, …, 2013), and PC(si, ti) is the score of the environmental PC in 
location s in year t. The annual intercept β(ti) is specified with each year 
as a fixed effect. γ1, γ2, and γ3 describe the estimated effects of the 
three covariates, titmouse abundance (γ1), its square (γ2) and environ-
mental PC (PC1 or PC2; γ3), respectively, on expected density of forest 
birds. tit(si, ti), tit

2(si, ti), and PC(si, ti) are observed titmouse abundance, 
square of observed titmouse abundance, and environmental PC score, 
respectively, that explain variation in forest bird density at a spatial lo-
cation si and in year t.

Spatial and spatio-temporal variation in expected forest bird 
density d(si, ti) were modeled by Gaussian random fields (GRF). The 
value of the random field at a given observation point of sample i 
was assumed to be equal to the value at the nearest location si. We 
defined the Gaussian process for the spatial variation as:

where ω(s) is the spatial variation (GRF) in expected forest bird density 
at location s. MVN describes a multivariate normal probability density 
function with the mean of zero and an estimated variance parameter 
�
2
�
 for spatial variation ω(s). R is a spatial correlation matrix between 

expected forest bird density d among locations s and assumed sta-
tionary, representing the impact of estimated spatial variation ω(s) on 
forest bird density. We assumed that spatial autocorrelation is higher 
for nearby locations than for distant locations. Therefore, spatial 

autocorrelation was specified using the stochastic partial differentia-
tion equations (SPDE; Lindgren et al., 2011) approximation to a Matérn 
function (Lindgren et al., 2011), producing a decaying spatial autocor-
relation with increasing distance between locations.

Similarly, we used GRF to specify the spatio-temporal variation:

where ε(s, t) is the spatio-temporal variation in expected forest bird 
density at location s and in year t. R represents the stationary spatial 
correlation matrix between expected forest bird density d among lo-
cations s and was defined by the Matérn function. ρε is the temporal 
autocorrelation of spatio-temporal covariation in expected forest bird 
density. �2

�
 is an estimated variance parameter of ε(s, t).

For the forest bird density, we estimate the annual intercepts 
β(t), the variance in expected forest bird abundance �2

m
, the effect of 

the three density covariates γ1, γ2, γ3, and the two estimated param-
eters of the Matérn function governing geometric anisotropy and 
decorrelation distance as fixed effects. The smoothness parame-
ter for the Matèrn function was fixed to one (v = 1). Spatial ω(s) and 
spatio-temporal ε(s, t) variation and their variance parameters �2

�
 and 

�
2
�
 were treated as random effects. We used SPDEs to approximate 

the Gaussian random fields as implemented in the software package 
R-INLA (Lindgren, 2012; see Thorson, Skaug, et al., 2015 for details). 
Parameters were estimated by maximizing the marginal likelihood of 
fixed effects, given the observed data (Thorson & Barnett, 2017) by 
using Template Model Builder (TMB; Kristensen et al., 2016) in R ver-
sion 3.6.0 (R Core Team, 2019). The marginal likelihood and its gradi-
ent for fixed effects were calculated using the Laplace approximation 
(Skaug & Fournier, 2006). The maximum likelihood estimate (MLE) of 
fixed effects was estimated using a nonlinear optimizer within R statis-
tical environment (R Core Team, 2019). We then estimated the values 
for random effects that maximize the joint log-likelihood, given the 
MLE of fixed effects, using empirical Bayes method in TMB. TMB also 
estimates standard errors for all fixed and random effects using a gen-
eralization of the delta-method (Kass & Steffey, 1989). More detailed 
description of the computation is available in Thorson, Skaug, et al. 
(2015) and the R code for the analysis is provided in the Supporting 
Information (R code 1). We inferred all the parameters whose 95% con-
fidence intervals did not encompass zero to be statistically significant.

We tested whether there was a need to include the quadratic term 
of titmouse abundance among the covariates by comparing models 
with and without the quadratic titmouse effect with Akaike informa-
tion criterion (AIC) and by checking the statistical significance of the 
quadratic term. We chose the quadratic model for inferences if that 
model had a lower AIC value than the model lacking the quadratic ef-
fect and the estimated quadratic effect was statistically significant. 
Otherwise, we based our inferences on the model including only a 
linear effect of titmouse abundance on forest bird density. The final 
model fit was assessed by visually inspecting residual plots, produced 
by VAST and R package “DHARMa” (Hartig, 2020), and assessing the 

(1)Pr(bi = B) = gamma
{
B| a × d(si , ti), �

2
m

}

(2)log[d(si , ti)] = �(ti) + �(si) + �(si , ti) + �1tit(si , ti) + �2tit
2(si , ti) + �3PC(si , ti)

(3)�(s) ∼ MVN(0, �2
�
R)

(4)𝜀(s, t) ∼

⎧
⎪⎨⎪⎩

MVN(0,R) if t= t1

MVN(𝜌
𝜀
𝜀(s, t−1), 𝜎2

𝜀
R) if t> t1
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match between predicted and observed densities of forest birds. The 
diagnostic plots indicated that the models fitted the data well for both 
countries (Supporting Information 1: Figure S1.2–S1.5). We derived the 
95% confidence intervals for the log-predicted density of forest birds 
from intercept (β) and titmouse covariate parameter (γ1, γ2) values that 
were sampled from a multivariate normal distribution including their 
variances and covariances. We investigated the influence of extreme 
data points to the results by repeating the analyses with data where 
the observations with the lowest 2.5% and the highest 2.5% of forest 
bird abundance were removed.

2.4  |  Spatial Gompertz model for random 
species groups

We assessed the effectiveness of the titmouse group as an ecologi-
cal indicator for forest bird density by evaluating the performance of 
titmice compared with randomly drawn species sets. Six species were 
randomly sampled from the observed forest bird data. The group of 
sampled species represented a control indicator group (referred to as 
control group hereafter) for the six titmouse species observed in the 
two countries. The forest birds for each control group comprised of all 
the other bird species in the community excluding the control group 
species. The analysis is computationally intensive, which is why we re-
stricted the random sampling to 300 control groups for each country.

To facilitate comparisons among the performances of titmice and 
control groups, we only included the linear effect of a control group 
on forest bird density (excluding the species in the respective con-
trol group). Therefore, we first applied the spatial Gompertz model 
to estimate the effect of titmouse abundance on forest bird density 
without the quadratic term of titmice for both countries. The “tit-
mouse model” for density of forest birds d(si, ti) with a log-linked 
linear predictor was identical to Equation 2, but eliminating the qua-
dratic effect of titmice, γ2 = 0.

Prior to the analysis of each of the data sets with a randomly 
drawn control group, we removed samples where no forest birds 
were observed (<0.01% of all observations in both countries), to 
have a 100% bird encounter probability. Standardized control group 
abundance (given as biomass) and standardized environmental PC 
(i.e., PC1 or PC2; see Section 2.2) were used as varying among sites 
and years. The “control species model” for density of forest birds 

d(si, ti) was again identical to Equation 2, but replacing variable tit(si, 
ti) with control(si, ti) and eliminating the quadratic effect of titmice, 
γ2 = 0. Spatial and spatio-temporal variation in expected forest bird 
density d(si, ti) for each, the titmouse group and the control groups, 
were modeled similarly as described above (Equations 3 and 4).

The use of some control groups did not result in model conver-
gence, so we excluded the control groups with nonconverged models 
from further consideration. To infer statistical significance for each 
converged control group model, we compared the 95% confidence 
interval of the γ4 estimate of the control group to zero. We only com-
pared the control group models with a statistically significant γ4 pa-
rameter estimate to the point estimate of γ1 (titmouse estimate). The 
γ4 estimates were considered to be significantly different from the γ1 
estimate when the 95% confidence intervals of the γ4 estimate did 
not encompass the γ1 estimate. The R codes are provided in supple-
mentary material (see R code 2 and 3).

3  |  RESULTS

3.1  |  Spatial Gompertz model for titmouse 
abundance and forest bird density

In Finland, the spatial Gompertz models including the linear and 
quadratic titmouse abundance effects were nearly equally good 
(ΔAIC = 2.0). However, as the quadratic term of titmouse abundance 
was not statistically significant (γ2 = −0.0005, [95% confidence in-
terval: −0.013, 0.012]; see Appendix 1 for results of the quadratic 
model: Table A1) in the quadratic model, we base our inferences on 
the simpler (i.e., linear) model (Table 2; Figure 1). There was a positive 
association between titmouse abundance and forest bird density 
(Table 2; Figure 1). The effect of environmental PC was not different 
from zero at the 95% confidence level (Table 2). Additionally, stand-
ard deviations for both spatial (σω) and spatio-temporal (σε) variation 
were high and clearly different from zero (Table 2). Spatial variation 
was stronger than spatio-temporal variation over the study period 
(see also Appendix 1: Figure A3). We identified four structurally dif-
ferent habitat class-specific subsets of data for Finland (deciduous, 
spruce and pine forest, and deciduous bush; Supporting Information 
2: Table S2.1 and Figure S2.1). For these separate analyses, decidu-
ous forest and spruce forest had a positive relationship between 

Parameter Estimate
Lower 
95% CI

Upper 
95% CI

Titmouse abundance (γ1) 0.025 0.005 0.045

Environmental PC (γ3) 0.005 −0.073 0.083

Standard deviation of spatial variation (σω) 1.810 1.489 2.131

Standard deviation of spatio-temporal 
variation (σε)

0.447 0.336 0.557

Note: Parameter estimates are in log-scale and parameters that are different from zero at 95% 
confidence level are highlighted in bold. Variance components are not highlighted because they are 
inevitably non-negative.

TA B L E  2 Parameter estimates and 
their 95% confidence intervals for the 
model including only a linear relationship 
between titmouse abundance (measured 
in biomass) and forest bird density in 
Finland 2001–2013; parameter estimates 
and their 95% confidence limits (Lower/
Upper 95% CI) for the effects of titmouse 
abundance (γ1; see Table 1), environmental 
PC (γ3), standard deviation of spatial 
variation (σω) and spatio-temporal 
variation (σε)
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titmouse abundance and forest bird density, but the relationship 
was statistically significant only in deciduous forest (Supporting 
Information 2: Tables S2.3 and S2.4, and Figure S2.3). The models 
for deciduous bush and pine forest habitats did not converge, most 
likely due to the relatively small sizes of these data sets. The removal 
of extreme observations did not change the results (Supporting 
Information 1: Table S1.4 and Figure S1.6).

In France, the spatial Gompertz model including titmouse abun-
dance, squared titmouse abundance, and environmental PC best 
fitted to the data as indicated by the AIC comparison (ΔAIC = 12.2; 
see Appendix 1 for results of the linear model: Table A2). The pre-
dicted forest bird density increased with titmouse abundance, 
the positive association becoming weaker toward higher titmouse 
abundance (Table 3; Figure 2). Standard deviation for spatial (σω) 
variation was higher than for spatio-temporal (σε) variation in for-
est bird density (Table 3; see also Appendix 1: Figure A4). There 
was no association between forest bird density and environmen-
tal PC (Table 3). French data were classified into five structurally 
different habitat types (coniferous, mixed, deciduous and young 
forest, and coppice; Supporting Information 2: Table S2.2 and 
Figure S2.2). All habitat-specific models that converged indicated a 
positive relationship between titmouse abundance and forest bird 
density (Supporting Information 2: Tables S2.5–S2.8 and Figures 
S2.4–S2.7). The linear relationship was statistically significant 
in coniferous and mixed forest, and the quadratic relationship in 
deciduous and young forest. The relatively small sizes of the data 

sets resulted in wide confidence intervals in each habitat type, ex-
cluding deciduous forest. The model for coppice did not converge, 
likely for the same reason. The results remained unchanged even 
when the observations with the lowest 2.5% and the highest 2.5% 
of forest bird abundance were removed (Supporting Information 1: 
Table S1.5 and Figure S1.7).

3.2  |  Spatial Gompertz models for random 
species groups

In Finland, 297 out of the 300 data sets with randomly drawn control 
groups resulted in model convergence. 158 parameter estimates of 
the association between abundance of the control group and density 
of forest birds were different from zero at the 95% confidence level 
(see Supporting Information 1 for a list of species and parameter 
estimates: Table S1.6). These associations between control groups 
and forest birds were overall positive (mean γ4 = 0.017, median γ4 = 
0.026). Only seven (4.4%) out of these 158 significant models had 
in turn a significantly stronger positive association with forest birds 
than titmice and 32 (20.3%) control groups had a significantly weaker 
association (i.e., the 95% confidence intervals did not encompass the 
titmouse estimate; Figure 3a; Supporting Information 1: Table S1.6). 
The associations between the control groups and forest birds ranged 
between a minimum of γ4 = −0.078 and a maximum of γ4 = 0.062. In 
Finland, the control group that had the strongest positive association 

F I G U R E  1 Frequency distribution 
of standardized titmouse abundance 
(given as biomass; g) in Finland (a). The 
relationship between log-predicted 
density of forest birds (g/km2) and 
standardized titmouse abundance (given 
as biomass; g) in Finland in 2001 (i.e., 
first study year; β = 10.315, γ1 = 0.025; 
see Table 1 for definition of all symbols) 
(b). Circles are predicted forest bird 
densities for the sampling points and 
the fitted line with 95% confidence 
intervals derives from the spatial 
Gompertz model (see Section 2.3 for 
details) visualizing the linear relationship 
between predicted forest bird density and 
titmouse abundance. There was minor 
variance among years in the intercept 
(10.184 < β < 10.418), so the elevation of 
the line varies among years, but the slope 
remains the same. Frequency distribution 
of log-predicted density of forest birds (g/
km2) in Finland (c)
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with the total density of forest birds consisted of Muscicapa striata, 
Turdus pilaris, Picoides tridactylus, Cuculus canorus, Phylloscopus col-
lybita, and Oriolus oriolus.

In France, the analysis of the spatial Gompertz model includ-
ing only linear titmouse effect on forest bird density resulted in a 
significantly positive titmouse covariate effect (γ1 = 0.174, [0.153, 
0.195]; Appendix 1: Table A2). All 300 analyzed models for the 
control groups converged. 293 out of the models resulted in a 
statistically significant parameter estimate for the association be-
tween the control group and forest birds, and all considered as-
sociations were positive (mean γ4 = 0.147, median γ4 = 0.142; see 
Supporting Information 1 for a list of species and parameter esti-
mates: Table S1.7). 24.2% (71) out of these 293 significant control 
groups had a significantly stronger and 56.0% (164) a significantly 

weaker association with forest birds than titmice (i.e., the 95% 
confidence intervals did not overlap with the titmouse estimate; 
Figure 3b; Supporting Information: Table S1.7). The estimates 
among the control groups ranged between a minimum of γ4 = 
0.025 and a maximum of γ4  =  0.343. Turdus philomelos, Fringilla 
coelebs, Turdus merula, Dendrocopos major, Cuculus canorus, and 
Phoenicurus ochruros were the species of the best performing con-
trol group in France.

4  |  DISCUSSION

Bird density showed a positive association with titmouse abun-
dance (given in biomass) in European forest bird communities when 

F I G U R E  2 Frequency distribution 
of standardized titmouse abundance 
(given as biomass; g) in France (a). The 
relationship between log-predicted 
density of forest birds (g/km2) and 
standardized titmouse abundance (given 
as biomass; g) in France in 2001 (i.e., 
first study year; β = 10.251, γ1 = 0.198, 
γ2 = −0.030; see Table 1 for definition 
of all symbols) (b). Circles are predicted 
forest bird densities for the sampling 
points and the fitted line with 95% 
confidence intervals derives from the 
spatial Gompertz model (see Section 
2.3 for details) visualizing the quadratic 
relationship between predicted forest 
bird density and titmouse abundance. 
There was minor variance among years 
in the intercept (10.145 < β < 10.259), 
so the elevation of the line varies among 
years, but the curve remains the same. 
Frequency distribution of log-predicted 
density of forest birds (g/km2) in France (c)

Parameter Estimate
Lower 
95% CI

Upper 
95% CI

Titmouse abundance (γ1) 0.198 0.173 0.222

[Titmouse abundance]2 (γ2) −0.030 −0.045 −0.014

Environmental PC (γ3) −0.019 −0.047 0.008

Standard deviation of spatial variation (σω) 0.641 0.579 0.703

Standard deviation of spatio-temporal 
variation (σε)

0.295 0.269 0.320

Note: Parameter estimates are in log-scale and parameters that are different from zero at 95% 
confidence level are highlighted in bold. Variance components are not highlighted because they are 
inevitably non-negative.

TA B L E  3 Parameter estimates and 
their 95% confidence intervals for the 
model including a quadratic relationship 
between titmouse abundance (measured 
in biomass) and forest bird density in 
France 2001–2013; parameter estimates 
and their 95% confidence limits (Lower/
Upper 95% CI) for the effects of titmouse 
abundance (γ1; see Table 1), quadratic 
term of titmouse abundance (γ2), 
environmental PC (γ3), standard deviation 
of spatial variation (σω), and spatio-
temporal variation (σε)
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controlling for gradients in temperature and precipitation and spatio-
temporal autocorrelations. This positive relationship was linear in 
Finland, but nonlinear in France, where the positive association at 
low titmouse abundance leveled off at higher titmouse abundance. 
In Finland, titmice appear to be generally better indicators of forest 
bird density than groups of species drawn randomly from the same 
community. In France, many randomly drawn species groups were 
equally good or even better indicators of forest bird density than 
titmice. Overall, titmice seem to be a potential ecological indicator of 
forest bird density at the macroecological scale in Northern Europe, 
while the performance of the titmouse indicator group is not as clear 
in Western Europe.

There was a linear and positive association between titmouse 
abundance and forest bird density in Finland. This implies that 
shared habitat preferences as well as positive interspecific interac-
tions, where forest birds choose a breeding habitat near titmouse 
species (i.e., heterospecific attraction), may underlie the result. 
Heterospecific attraction has been suggested to result in passerine 
aggregations in Northern Europe (Forsman et al., 2009; Mönkkönen 
et al., 1990; Thomson et al., 2003) and may be a consequence of ac-
quiring and using interspecific social information on habitat quality 
(e.g., food availability or predator density) from species that breed 
earlier in the year (Forsman et al., 2002, 2009). The proportion of 

migratory species is higher in Northern Europe than in Western 
Europe (Newton, 2008), and thus, social information provided by tit-
mice can be more important for migratory and later breeding birds 
in Finland than in France. While our results cannot prove heterospe-
cific attraction, the results are consistent with the prediction of the 
heterospecific attraction hypothesis (Forsman et al., 2002, 2009; 
Mönkkönen et al., 1990, 1996, 2004). Furthermore, heterospecific 
attraction has mainly been studied among specific species, whereas 
here we studied the entire forest songbird community. However, as 
a result of a lower number of observations and a poorer spatial cov-
erage of the data in Finland than in France, for example, a possible 
nonlinear association between titmice and forest birds in Finland 
may have remained unobserved.

The nonlinear, approximately asymptotic, relationship between 
titmouse abundance and forest bird density in France suggests that 
positive associations become weaker with increasing titmouse abun-
dance. This pattern likely arises from stronger interspecific competi-
tion at high levels of titmouse abundance. Alternatively, the strength 
of the association could be explained by change in habitat quality. 
Titmice include both generalist and specialist species, and the gener-
alists (e.g., great tit [Parus major]) may persist with higher abundances 
in habitats of lower quality (i.e., less resources), while other forest 
bird species may decline in the same conditions. Thus, the strength 

F I G U R E  3 VAST estimates from 
the models that converged and had a 
significant parameter estimate (a: n = 158; 
b: n = 293) for the associations between 
abundance (given as biomass) of each 
randomly drawn control group and forest 
bird density (γ4) with error bars showing 
the 95% confidence intervals in Finland 
(a) and in France (b). Red filled circles 
represent those estimates that were 
statistically different from the titmouse 
estimate (γ1; a: n = 39; b: n = 235) and the 
black triangles depict those estimates that 
were not significantly different from the 
titmouse estimate (a: n = 119; b: n = 58) at 
95% confidence level (see Section 2.4 for 
details). The estimate for the association 
between titmouse abundance (given as 
biomass) and forest bird density is shown 
with the blue dashed line (a: γ1 = 0.025; 
b: γ1 = 0.174), and the gray shaded area 
shows the 95% confidence intervals for 
the titmouse estimates
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of the association between titmice and other forest birds may de-
crease after a certain threshold in the quality of the habitat. However, 
habitat quality variation is an unlikely explanation for our result be-
cause it is not likely that the highest observed abundances of titmice, 
where the association between titmice and other forest birds levels 
off, were observed at low-quality habitats. Instead, it seems plausible 
that the highest titmouse abundances occur in high-quality habitats. 
The asymptotic relationship between titmouse abundance and forest 
bird density reported here also parallels the low-density end of the 
unimodal relationship between Parus and Fringilla species in Central 
Europe (Mönkkönen et al., 2004). Indeed, high densities of titmice 
could negatively affect the fitness of other passerines (Forsman et al., 
2008; Gustafsson, 1987; Sasvári et al., 1987), leading to avoidance 
of habitats with high titmouse densities because of increased com-
petition. Thus, interspecific competition is the most likely process 
leading to the observed asymptotic relationship between titmouse 
abundance and other forest bird density. Also, when using multiple 
species instead of a single one as an ecological indicator, the density 
of the indicator species within the community increases in relation to 
the target species. Therefore, density-dependent factors should be 
considered when multiple species are used as an indicator.

Species densities are directly and indirectly affected by envi-
ronmental factors. The overall lower titmouse densities in harsher 
environments in Northern Europe (Forsman & Mönkkönen, 2003) 
reduce competition even at high local titmouse densities. This may 
favor social information use (Forsman et al., 2009), where migrant 
species seek a breeding habitat with high resident titmouse den-
sities. Higher productivity of the environment facilitates overall 
higher titmouse densities in Western and Central Europe than in 
Northern Europe (Forsman & Mönkkönen, 2003). Consequently, the 
negative effects of competition between titmice and forest birds 
may outweigh the positive effects of social information use at high 
densities (Mönkkönen et al., 2004), leading to weaker associations 
between titmice and forest birds in Western and Central Europe. 
However, spatial variation in temperature and precipitation (proxies 
of productivity) did not explain our results. Productivity varies a lot 
within Europe, increasing toward the south (Boisvenue & Running, 
2006; Field et al., 1998), and densities of resident species are known 
to increase with higher temperature and precipitation (Forsman & 
Mönkkönen, 2003). Thus, we expected environmental principal 
component (PC) summarizing temperature and precipitation varia-
tion to be positively correlated with species densities. Nevertheless, 
environmental PC may only describe the potential environmental fa-
vorability at each location and the lack of this environmental effect 
could indicate missing variables that would describe the actual local 
environmental conditions. Our supplementary analysis (Supporting 
Information 2) for subsets of the data accounted for potentially im-
portant environmental factors affecting forest bird density, such 
as specific forest types (e.g., spruce, pine and broad-leaved) or dif-
ferent tree heights (Fraixedas et al., 2015; Lehikoinen et al., 2017). 
Although the indicator value of titmice was the highest in deciduous 
forests, which reflects the main habitat preference of many titmouse 
species (del Hoyo et al., 2007), titmice had a positive relationship 

with forest bird density in all forest types and in the pooled data 
including all forest types. This suggests that titmice could be used 
as an indicator of forest bird density independently of forest type.

The use of indicator species to study population trends or bio-
diversity is a common practice but has received some criticism 
(Andelman & Fagan, 2000; Cabeza et al., 2008; Favreau et al., 2006). 
This emphasizes that selecting a suitable species or species group 
as a potential indicator requires careful consideration. In Finland, 
we found stronger evidence on the efficiency of titmice as an in-
dicator group, when comparing the performance of titmice against 
randomly drawn species groups. There was an extremely low pro-
portion of randomly drawn species groups (7 out of 158, i.e., 4.4%) 
performing significantly better than titmice. Hence, we found strong 
evidence for titmouse abundance to be a suitable indicator for total 
forest bird density in Northern Europe. In France, a large propor-
tion (71 out of 293, i.e., 24.2%) of control groups outperformed the 
titmouse group as an indicator, suggesting that the relationship be-
tween titmouse abundance and total bird density is more complex in 
Western Europe.

Even though many of the randomly drawn species groups per-
formed better as an indicator than titmice, in France, the species 
sets included in those random species groups cannot be observed 
as easily as titmice. Similarly, other commonly used indicator bird 
species groups, such as woodpeckers (Menon & Shahabuddin, 2021; 
Mikusiński et al., 2001) or cuckoos (Møller et al., 2017), are relatively 
less abundant and diverse, and more habitat specialized than many 
titmouse species, potentially making them less suitable indicators 
for forest bird abundances. Titmice have many features of a suitable 
ecological indicator group: cost-efficient observations, well-known 
biology, conspicuous behavior, almost global distribution (Caro & 
O'Doherty, 1999; del Hoyo et al., 2007; Gill et al., 2005; Landres 
et al., 1988), and ecological traits broadly overlapping with those of 
a wide range of the target species. Thus, using titmice as an indica-
tor group seems practical, this practicality potentially outweighing 
the better performance of some random and other common species 
groups. Also, many resident titmouse populations have declined in 
Finland, and two earlier common species are now threatened (wil-
low tit [Poecile montanus] and crested tit [Lophophanes cristatus]; 
Hyvärinen et al., 2019). In the light of our results, the decline in tit-
mouse populations could be an early warning signal of a more wide-
spread decline of forest bird populations in near future. Together the 
practicality and the wide distribution of titmice makes them poten-
tially useful indicators in some biogeographical realms, yet caution is 
needed when extrapolating our results outside of Northern Europe.

5  |  CONCLUSIONS

In most of the current citizen science bird monitoring programs, 
observers must visually and acoustically identify all birds, demand-
ing a high level of species identification skills. If overall forest bird 
densities could be estimated using titmouse abundance as an indica-
tor, as suggested by our results, it would open the possibility to use 
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also less-experienced observers (i.e., observers with limited species 
identification skills) in citizen science to support current bird density 
estimation methods. This could increase the spatial and temporal ex-
tents of the current bird monitoring schemes, especially in Northern 
Europe. These cost-effective data sets may increase the efficiency 
of planning conservation areas and actions, which is one of the most 
urgent global issues in applied ecology. The globally wide distribu-
tion and conspicuous behavior of the titmouse group may open new 
possibilities for planning forest bird conservation at a macroecologi-
cal scale. More locally, focusing on titmice could be a cost-effective 
approach to monitor the consequence of local disturbance or con-
servation plans. For instance, the level and velocity in the restora-
tion of a given forested ecosystem (e.g., following fire or logging) 
could be reflected by the dynamics of titmouse populations more 
easily than using an exhaustive survey of the entire bird community.
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