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Highlights
Severe acute respiratory syndrome co-
ronavirus 2 (SARS-CoV-2) infection in
pregnancy is known to confer a risk of in-
creased morbidity and mortality for the
mother, but data are lacking regarding
the impact of maternal SARS-CoV-2 in-
fection on the developing fetal brain.

Placental and fetal infection with SARS-
CoV-2 have been rare to date; SARS-
CoV-2 infection in pregnancy appears
most likely to impact fetal brain develop-
ment via maternal and placental immune
activation.
The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
infection during pregnancy on the developing fetal brain is poorly understood.
Other antenatal infections such as influenza have been associated with adverse
neurodevelopmental outcomes in offspring. Although vertical transmission has
been rarely observed in SARS-CoV-2 to date, given the potential for profound
maternal immune activation (MIA), impact on the developing fetal brain is likely.
Here we review evidence that SARS-CoV-2 and other viral infections during
pregnancy can result in maternal, placental, and fetal immune activation, and
ultimately in offspring neurodevelopmental morbidity. Finally, we highlight the
need for cellular models of fetal brain development to better understand poten-
tial short- and long-term impacts of maternal SARS-CoV-2 infection on the
next generation.
Maternal, placental, and fetal immune
activation have been observed in
SARS-CoV-2 infection during preg-
nancy, and adverse neurodevelopmental
outcomes have been reported in early
follow-up studies of offspring.

Maternal and placental immune activa-
tion may impact the placenta and devel-
oping fetal brain via induction of immune
activation and proinflammatory cytokine
production, dysregulation of serotonin/
other neurotransmitter signaling, and in-
creased oxidative stress.
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Potential transgenerational impact of viral infections in pregnancy
Some viral infections acquired antenatally can have lasting, potentially devastating, impacts on
the developing fetal brain. Those viruses that demonstrate neuroinvasion and neurotropism –

that is, the ability to invade the blood–brain barrier and infect neurologic tissues, such as Zika
virus or cytomegalovirus – can directly damage the developing fetal brain if transplacental trans-
mission occurs [1,2]. Other infections that do not cross the placental barrier, including viral infec-
tions such as influenza, have also been consistently associatedwith adverse neurodevelopmental
outcomes in offspring, primarily via mechanisms related to maternal, placental, and subsequent
fetal brain immune activation [3–8]. Adverse neurodevelopmental outcomes observed following
prenatal infection range from autism spectrum disorder (ASD), attention deficit hyperactivity dis-
order, and cognitive dysfunction, to anxiety, depression, and schizophrenia [3,4,7–13].

Past pandemics have provided a window into potential neurodevelopmental consequences in
subsequent generations. For example, individuals who were fetuses during the 1957 influenza
pandemic had an increased risk for being hospitalized for schizophrenia as adults [12]. The ru-
bella pandemic of 1964 was associated with a 10–15-fold increase in ASD and schizophrenia
in offspring [14]. In a cohort of more than 115 000 pregnancies, fevers in pregnancy were asso-
ciated with an increased odds ratio of up to 3.1 for ASD [11].

The potential for neurodevelopmental morbidity in offspring exposed prenatally to SARS-CoV-2 is
therefore of great concern. Given the large number of exposed individuals, even a modest
increase in risk for adverse offspring neurodevelopment would still have a massive public health
impact [15–20]. More than 59 million people in the United States and 300 million worldwide
have been diagnosed with coronavirus disease 2019 (COVID-19)i, including over 155 500
pregnant women in the United States [21]. With approximately 140 million live births occurring
annually worldwideii, and the prevalence of SARS-CoV-2 positivity in pregnant women as high
as 15% in urban centers [22], the numbers of children exposed to maternal COVID-19 infection
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in utero worldwide could reach up to 20 million per year, particularly in the setting of low COVID-
19 vaccine uptake in pregnant populations [23,24]. In fact, a 12-month follow-up of more than
7000 deliveries in a large hospital system, including more than 200 COVID-19-exposed
pregnancies, suggested that prenatal SARS-CoV-2 infection is associated with an increased
risk for offspring neurodevelopmental diagnoses [25].

There are multiple potential pathways by which a maternal infection with SARS-CoV-2 could impact
the developing fetal brain [13,26–28]: (i) viaMIA (see Glossary) during key neurodevelopmental win-
dows in pregnancy; (ii) via direct fetal infection of neurologic tissues via transplacental transmission of
virus; or (iii) via compromised placental function resulting in adverse pregnancy outcomes associated
with an increased risk of neurologic injury (e.g., fetal growth restriction, pretermbirth, abruption). In this
review, we present emerging evidence regarding the impact of SARS-CoV-2 infection during preg-
nancy on offspring neurodevelopmental outcomes, explore potential mechanisms by which prenatal
SARS-CoV-2 exposure might impact the developing fetal brain, and discuss virus and host factors
that might influence risk. Lastly, we discuss the need for cellular models to best study the impact of
SARS-CoV-2 on the developing brain, and to identify individuals most at risk for adverse outcomes
who may benefit from early intervention or therapeutics.

Early evidence of adverse neurodevelopmental outcomes in children with
prenatal exposure to SARS-CoV-2
Mounting evidence suggests that SARS-CoV-2 infection can cause both acute and chronic neurol-
ogic and psychiatric sequelae in adult and pediatric populations [29–34]. A recent study from the
UK suggests that 3.8% of children hospitalized with COVID-19 experience a neurologic complica-
tion that also has long-term consequences, ranging from behavioral change, hallucinations, and
encephalopathy, to status epilepticus, encephalitis, Guillain–Barré/acute demyelinating syn-
dromes, chorea, and psychosis [35]. A persistent problem in interpreting these data is the paucity
of studies with well-matched controls – for example, to understand whether these sequelae reflect
direct effects of SARS-CoV-2, or simply the consequences of any severe illness requiring hospital-
ization. One early report using neurocognitive assessments suggested that the pattern of deficits in
adults was nonspecific, consistent with other complicated hospitalizations [36]. Still, in aggregate,
these results suggest at least the possibility that SARS-CoV-2 – whether via inflammation or
immune-mediated mechanisms or via direct infection of the central nervous system – can have a
lasting impact on the developed (and therefore likely also on the developing) brain.

Early signals of adverse neurodevelopmental outcomes at 3–6 months, 1 year, and 1.5 years in in-
fants and children exposed to SARS-CoV-2 in utero, and/or born during the COVID-19 pandemic
are emerging [37–41]. A longitudinal cohort study of 57 infants with prenatal exposure to SARS-
CoV-2 in China identified deficits in the social–emotional domain of neurodevelopmental testing
at 3 months of age [40]. A preliminary report of 298 infants born to women with SARS-CoV-2 in-
fection during pregnancy found evidence of developmental delay in 10% of infants at 12 months
of age, although neither study included a noninfected comparator group [41]. Another preliminary
report of over 7000 infants born during the COVID-19 pandemic to both SARS-CoV-2 infected and
noninfected mothers identified an association between maternal SARS-CoV-2 exposure and a
neurodevelopmental diagnosis at 12 months [25]. Importantly, that study found that while the as-
sociation between maternal SARS-CoV-2 exposure and offspring neurodevelopmental morbidity
was enhanced by preterm delivery, the presence of a neurodevelopmental diagnosis was not en-
tirely explained by prematurity, suggesting a more specific mechanism of effect than simply SARS-
CoV-2 contributing to pregnancy complications. Whether a definitive connection exists between
prenatal SARS-CoV-2 exposure and neurodevelopmental disorders in offspring is not yet
known, in part because most children born to women infected in the first wave of the pandemic
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Glossary
Histiocytic intervillositis: a placental
lesion characterized by infiltration of
maternal macrophages into the
intervillous space; can be associated
with adverse pregnancy outcomes.
Hofbauer cells: specialized population
of fetal macrophages that reside in the
chorionic villous and are involved in
immune regulation and transfer of ions,
proteins, and nutrients across the
maternal–fetal barrier.
Interferon-stimulated genes: genes
that can be expressed in response to
stimulation by IFN, a primary mediator of
the innate immune response to viral
pathogens.
iPSC: somatic cells that have been
reprogrammed in culture into an
embryonic-like, pluripotent state.
Maternal immune activation (MIA):
elevated inflammatory markers
above normal range during pregnancy,
in the presence or absence of a
pathogen.
Microglia: specialized population of
resident macrophages in the central
nervous system that can direct
inflammatory responses and support
synaptic organization, neuronal
development, brain protection, and
repair.
Peripheral blood monocytes: bone
marrow-derived leukocytes with a single
round nucleus isolated from peripheral
blood, characterized by the ability to
phagocytose, produce cytokines, and
present antigen.
Perivillous fibrin: a placental lesion in
which fibrin is noted to be surrounding
the chorionic villous.
Polyinosinic:polycytidylic acid (poly
[I:C]): an immunostimulant used to
simulate viral infections; a synthetic
analog of double-stranded RNA that
resembles the molecular pattern of
certain viruses.
SARS-CoV-2 placentitis: the triad of
histiocytic intervillositis, perivillous fibrin
deposition, and villous trophoblastic
necrosis in the setting of maternal
SARS-CoV-2 infection.
Spike (S) proteina: large,
transmembrane glycoprotein located on
the surface of SARS-CoV-2 that binds to
host cell surface receptors to facilitate
viral entry.
Syncytiotrophoblast: specialized
epithelial cells that line the placental
chorionic villous, forming a physical
barrier between the maternal and fetal
circulations.
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are still too young for reliable diagnosis of many neurodevelopmental conditions. Despite the signif-
icant limitations of epidemiologic and clinical data sets in defining causality or mechanism, these
preliminary data demonstrate the potential for prenatal SARS-CoV-2 exposure to impact early
neurodevelopmental outcomes.

MIA and placental immune activation in response to SARS-CoV-2 infection in
pregnancy
MIA is a primary link betweenmaternal viral infection and offspring neurodevelopmental disorders
Convergent data from animal models have demonstrated that MIA, rather than a specific virus or
bacterial infection, is likely the final common pathway by which most maternal infections confer off-
spring neurodevelopmental morbidity [42,43]. Rodent and non-human primate models have uti-
lized multiple techniques to activate the maternal immune system, including the viral mimic
polyinosinic:polycytidylic (poly[I:C]), a synthetic double-stranded RNA, demonstrating alter-
ations in offspring brain immune function, and behavioral and neuroimaging correlates of ASD
and schizophrenia [42,44–53]. Rodent models of maternal influenza infection resulted in offspring
behavioral phenotypes consistent with ASD and psychosis [54], but many of the same behavioral
abnormalities were present when uninfected rodent mothers were injected with poly[I:C] [54],
suggesting thatMIA rather than any specific pathogenmediates the neurodevelopmental morbidity
in offspring [53,55]. Immune cell populations, effector cytokines, and inflammatory markers critical
in mediating abnormal offspring behavioral phenotypes in models of MIA include T helper 17 cells/
interleukin (IL)-17α, IL-6, IL-1Rα, tumor necrosis factor-alpha (TNF-α), IL-10, C-reactive protein,
and the complement system, among others [10,56–68]. Many of these same cytokines and inflam-
matory markers are also dysregulated in COVID-19 infection in the non-pregnant population [69–76].

Immune activation at the maternal–fetal interface and in fetal cord blood has been observed in
prenatal SARS-CoV-2 infection
Although the immune and inflammatory response to SARS-CoV-2 in pregnancy is only beginning
to be characterized, early data show a proinflammatory cytokine phenotype in pregnant women
with active SARS-CoV-2, with interferon-gamma (IFN-γ), IL-1β, and IL-6 most implicated, partic-
ularly in cases of severe COVID-19 disease [77,78]. Several studies have demonstrated the po-
tential for maternal SARS-CoV-2 infection to stimulate an intense placental immune and
inflammatory response [79–81], both in the presence (rare) [81] and absence (more common)
[80,82,83] of direct SARS-CoV-2 infection of the placenta. Substantial infiltration of maternal im-
mune cells into the placenta has been observed in cases of severe maternal COVID-19 disease,
adverse neonatal outcomes, and heavy placental SARS-CoV-2 viral burden [81]. In addition, ma-
ternal SARS-CoV-2 infection is associated with hyperplasia and/or increased density of fetal pla-
cental macrophages or Hofbauer cells, typically in the absence of Hofbauer cell infection
[80,84]. In placental samples without evidence of direct SARS-CoV-2 infection, transcriptomic
analysis has demonstrated upregulation of inflammatory pathways of maternal decidual natural
killer and T cells and upregulation of interferon-stimulated genes (ISGs) in placental villous tis-
sue [79,80]. Notable sex differences have been observed in the placental immune response to
maternal SARS-CoV-2 [80], which suggests that sex plays an important role in fetal and offspring
vulnerability to maternal SARS-CoV-2 infection.

Increased cord blood cytokine levels and altered cord blood immune cell profiles including in-
creased proportion of natural killer cells, Vδ2+ γδ T cells, and regulatory T cells have been ob-
served in maternal SARS-CoV-2 infection in the absence of fetal infection [85,86], pointing to
the potential for MIA itself to generate a proinflammatory fetal response. Single-cell RNA sequenc-
ing of cord blood mononuclear cells demonstrates a significant impact of maternal SARS-CoV-2
on cord bloodmonocyte programs, with ISGs upregulated in CD14+ and CD16+ monocytes [87].
Trends in Molecular Medicine, April 2022, Vol. 28, No. 4 321
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Villous trophoblastic necrosis:
necrotic trophoblasts identified in the
chorionic villous on placental
histopathology.
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Importantly, observed fetal immune imprinting to date has been nonspecific to SARS-CoV-2, oc-
curring in the absence of vertical transmission [86,87].

How can maternal and placental immune activation and inflammation impact the developing fetal
brain?
Several candidate mechanisms have been proposed in models of MIA whichmay apply to mater-
nal SARS-CoV-2 infection as well (Figure 1).

(i) MIA is associated with rapid induction of immune (e.g., type I–III IFN pathways) and proinflam-
matory responses (e.g., TNF-α, IL-6, IL-1β) in the placenta and the developing fetal brain,
TrendsTrends inin MolecularMolecular MedicineMedicine

Figure 1. Coronavirus disease 2019 (COVID-19) in pregnancy and implications for offspring neurodevelopment. (A) Maternal severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) infection results in maternal immune activation (MIA) and increased proinflammatory cytokines in the maternal periphery. (B)
Maternal SARS-CoV-2 infection can impact the placenta via two mechanisms: (i) placental immune activation and inflammation resulting from MIA (likely most common)
or (ii) direct placental infection with SARS-CoV-2 (rare per the current literature). Placental immune activation and inflammation are associated with placental Hofbauer
cell activation or priming, increased natural killer (NK) and T-helper 1 (Th1) cells at the maternal–fetal interface, increased proinflammatory cytokine production,
upregulation of interferon-stimulated genes (ISGs), placental serotonin dysregulation, and increased oxidative stress. When direct placental infection with SARS-CoV-2
occurs (which is rare with the ancestral and other pre-Delta strains), the syncytiotrophoblast and cytotrophoblast layers are most commonly infected, and once the
virus gains access to the intervillous space, it can theoretically gain access to the fetal circulation. (C) Both MIA and placental immune activation can lead to fetal brain
immune activation, inflammation, and altered neurotransmitter signaling, including the serotonergic, dopaminergic, melanocortinergic, GABAergic, and glutamatergic
systems. Fetal brain immune responses are associated with microglial priming, altered neural progenitor cell proliferation, impaired neuronal migration, synaptogenesis,
and axonal targeting, all of which can result in altered offspring neurodevelopment. (D) Offspring affected by MIA are at increased risk for attention hyperactivity deficit
disorder, autism spectrum disorder, anxiety, depression, impaired cognition, learning disabilities, and schizophrenia.
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particularly in the setting of activation via Toll-like receptor (TLR) 7/8 signaling pathways, and
to a lesser extent for immune activation via TLR3/TLR4 signaling pathways [42,88–91].

(ii) Dysregulated placental serotonin signaling, as the placenta is the primary source of serotonin
for the developing fetal brain [92,93]. Both maternal and placental immune activation and in-
flammation alter placental serotonin signaling, which in turn influences fetal brain development
via impaired synaptogenesis, neuronal migration, and axonal targeting [93–97].

(iii) Maternal and placental immune activation are also associated with other alterations in fetal
brain neurotransmitter signaling, including the dopaminergic, cholinergic, GABAergic, gluta-
matergic, and melanocortinergic systems (the latter mediated primarily by dysregulated leptin
signaling) that influence fetal brain development and future risk for conditions such as schizo-
phrenia, addiction, and disordered eating [49,98–103].

(iv) Maternal and placental immune activation are associated with placental and fetal brain mito-
chondrial dysfunction, oxidative stress, and disrupted protein homeostasis [88,91,104,105].
The maternal and offspring gut microbiome may also be important modifiers of the impact of
MIA on the developing brain and offspring outcomes [56,105,106].

MIAmodels have pointed to aberrant programming of fetalmicroglia and dysregulation of cytokine
networks as key mechanisms underlying abnormal fetal brain development, with microglia primed
toward a proinflammatory phenotype and altered synaptic pruning implicated in offspring morbidity
[59,107–110]. Given the extent of synapse formation and pruning that occurs in fetal and neonatal
life [111–114], developmental microglial function represents a critical target for investigation to better
understand the impact of SARS-CoV-2-driven immune activation on the developing fetal brain. MIA
has also been associated with abnormalities of offspring neural progenitor cell proliferation; impaired
neuronal migration; alterations in neuronal density and perineuronal nets; altered dendrite structure,
synaptogenesis, and synaptic function and plasticity; and changes in interhemispheric and
corticolimbic connectivity [49,66,105,115]. Thus, in utero exposure to SARS-CoV-2-related MIA
may be associated with altered development of multiple brain cell types and functions, with the
timing of the insult, presence or absence of other exposures, and intrinsic fetal characteristics
such as fetal sex or genetic susceptibility dictating fetal resilience or vulnerability.

Transplacental transmission of SARS-CoV-2 and direct fetal infection:
uncommon in observations to date
Transplacental transmission of virus capable of infecting neural tissue can have lasting and dev-
astating consequences on the developing fetal brain. A key factor in understanding potential fetal
infection risk is whether maternally acquired SARS-CoV-2 can transmit across the placenta, the
primary physiological and immunological barrier preventing viral transmission from thematernal to
fetal circulation [116–118]. The preponderance of evidence to date suggests that adverse
neurodevelopmental effects of SARS-CoV-2 infection, at least with the ancestral strain and
strains preceding the B.1.617.2 (Delta) variant, are more likely to occur via maternal and placental
immune activation and downstream impact on the developing fetal brain, rather than via direct fetal
infection with SARS-CoV-2 in utero [28,119]. Population-level data suggest that rates of SARS-
CoV-2 positivity among newborns in SARS-CoV-2-exposed pregnancies range from 1% to 3%
[83,120–124], with placental infection being a relatively rare event. One meta-analysis of case re-
ports and case series estimated the rate of placental infection as 7% [125], although prospective
studies have identified even lower rates of placental infection [83,84,126,127]. Protective mecha-
nisms against placental infection include low rates of maternal SARS-CoV-2 viremia, preserved im-
mune defenses at the syncytiotrophoblast border, and the lack of coordinated expression of
molecules required for SARS-CoV-2 attachment and entry (ACE2 and TMPRSS2) into the
syncytiotrophoblast [80,83,128]. Evidence supporting fetal infection – that is, documented viral
particles in the sterile amniotic space or fetal tissue – has been limited to case reports [129].
Trends in Molecular Medicine, April 2022, Vol. 28, No. 4 323
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Consistent with the observed low rate of placental infection and vertical transmission, data are
now available from completed pregnancies exposed to SARS-CoV-2 during all developmental
windows (first through third trimesters). To date, no characteristic congenital syndrome has
emerged after prenatal SARS-CoV-2 exposure that would suggest direct fetal infection
[122,123,130,131]. Prenatal neuroimaging studies in pregnant cohorts have similarly failed to
identify evidence of grossly visible fetal intracranial pathology associated with maternal SARS-
CoV-2 infection, though the small number of women included with severe or critical illness versus
mild disease may limit generalizability of these findings [132,133]. All these data point to maternal
and placental immune activation and consequent fetal neuroimmune activation as primary drivers
of neurodevelopmental morbidity in SARS-CoV-2-exposed offspring, rather than direct placental
and fetal brain infection as has been observed with Zika virus or maternal cytomegalovirus
infection [1,2].

Potential vulnerability of the fetal brain to SARS-CoV-2 infection
Despite the aforementioned observational data against direct fetal infection as a major mechanism
of risk to the developing fetal brain, animal and cellular models have demonstrated the potential for
SARS-CoV-2 to directly infect fetal brain tissue, should the placental barrier be broached. A com-
prehensive analysis of fetal brain sequencing data from publicly available data sets identified low
expression of canonical spike (S) protein interactors ACE2 and TMPRSS2, but high expression
of novel S protein interactors throughout gestation, with highest expression occurring in the sec-
ond and third trimesters, suggestive of increased vulnerability during this window of gestation
[134]. Limited evidence from adult human and animal models suggest that the SARS-CoV-2
virus can bypass or disrupt the blood–brain barrier and gain access to neurological tissue
[135–137]. Models using cerebral organoids with proteomic signatures similar to fetal brain tissue
[138] have provided evidence of SARS-CoV-2 capability of neuroinvasion and neurotropism for the
choroid plexus, cortical neurons, and glial cells [137,139–141]. Taken together, these data raise the
possibility that neurodevelopment at the cellular level could be directly impacted by prenatal infec-
tion with SARS-CoV-2, if viral particles gain access to the fetal circulation.

SARS-CoV-2 variants of concern and potential fetal risk
A key caveat in interpreting the available data is that observations primarily reflect the effects of
ancestral viral strains, while less is known about placental and fetal effects of recent variants of
concern, in particular the Delta and Omicron variants. It is plausible that mutations associated
with enhanced immune escape or transmissibility could impact the risk for transplacental infec-
tion. Unfortunately, detecting anything other than a large or abrupt increase in vertical transmis-
sion will require the accumulation of data over time.

Prenatal SARS-CoV-2 variant exposure and placental impact
Recent evidence showing a near twofold increased risk of stillbirth associated with maternal
SARS-CoV-2 infection, with a greater magnitude of association during the Delta-predominant pe-
riod of the COVID-19 pandemic [142], has raised concerns that the SARS-CoV-2 virus itself might
be directly responsible for adverse pregnancy outcomes [129]. Of critical importance is whether
Delta-variant SARS-CoV-2 infection may differentially affect either (i) placental function or (ii) the
integrity of the placental barrier to infection and thus the susceptibility for vertical transmission
and/or more direct effects on the developing fetal brain.

As previously noted, the emergence of new strains complicates generalizations about SARS-
CoV-2 mechanisms of risk. Delta variant infections have been linked to higher viral loads [143]
and an increased risk of hospitalizations [144] in non-pregnant individuals compared with prior
variants, as well as increased severity of maternal disease in pregnancy [145–147]. Delta spike
324 Trends in Molecular Medicine, April 2022, Vol. 28, No. 4
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Clinician’s corner
Although placental infection and
vertical transmission after maternal
SARS-CoV-2 infection are rare entities
to date, early studies suggest that
prenatal exposure to SARS-CoV-2 in-
fection is associated with adverse
neurodevelopmental outcomes in
children from 3 months to 1.5 years of
age.

Evaluating neurodevelopmental
outcomes in children exposed to
maternal SARS-CoV-2 infection pre-
natally at 2 years of age and beyond will
be critical to gaining a full understanding
of offspring neurodevelopmental risk.

The impact of additive or synergistic
maternal risk factors such as maternal
obesity, diabetes or hypertension,
maternal substance use disorder, or
other maternal bacterial or viral
infections in pregnancy on offspring
neurodevelopmental outcomes will be
an important area for future study.

The impacts of virus and host factors
such as variant strain, maternal
disease severity, and fetal sex on
offspring neurodevelopmental risk will
be important to parse in future studies.
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P681R mutation may also affect virulence and tissue tropism by enhanced S protein cleavability
by furin [148,149], a transmembrane serine protease that is widely expressed by both the placen-
tal syncytiotrophoblast [150,151] and fetal brain tissue [134]. Although a characteristic histopa-
thological signature associated with maternal SARS-CoV-2 infection was not clearly identified
with the ancestral strain [83,84,152,153], SARS-CoV-2 placentitis – the triad of histiocytic
intervillositis, perivillous fibrin, and villous trophoblastic necrosis in the setting of SARS-
CoV-2 infection – has emerged as a histopathologic entity observed in association with both
Alpha- and Delta-variant maternal SARS-CoV-2 infections, and has been linked to poor preg-
nancy outcomes including stillbirth in case reports [154,168]. Although definitive evidence linking
Delta-variant SARS-CoV-2 placentitis to increased risk for fetal infection is lacking to date, these
observations suggest the biological possibility that prenatal Delta-variant SARS-CoV-2 could lead
to global placental dysfunction, and breach of the placental immune barrier.

SARS-CoV-2-associated preterm birth and neurodevelopmental risk
Prenatal SARS-CoV-2 exposure may also impact offspring neurodevelopment by contributing di-
rectly to adverse pregnancy outcomes. Indeed, SARS-CoV-2 infection acquired during pregnancy
is associated with an increased risk of preeclampsia and preterm birth [25,122,155–158], out-
comes which have independently been associated with offspring neurodevelopmental risk
[159,160]. The association between SARS-CoV-2 and preterm birth complicates studies of
neurodevelopment, because it impacts the ability to understand specificity of virus-associated
risk. If themechanism of action of SARS-CoV-2 is simply to causematernal illness that, in more se-
vere cases, contributes to preterm delivery, then full-term offspring should not experience elevated
rates of neurodevelopmental sequelae, and efforts to investigate specific viral effects are unlikely to
be necessary. By contrast, if this is not the case, it is critically important to understand the additive,
or multiplicative, effect of the virus itself when preterm delivery occurs in the setting of or following
maternal SARS-CoV-2 infection.

To date, only one study has addressed this question [25] and found that maternal infection was
still associated with a greater risk for 12-month neurodevelopmental adverse outcomes after ad-
justment for preterm delivery. When analysis was limited to full-term deliveries, the magnitude of
risk was diminished, and the 95% confidence interval included no effect, but risk in numeric terms
remained substantial. While preliminary, this highlights the importance of well-controlled follow-up
studies that evaluate the impact of gestational age at delivery.

The role of cellular models in understanding mechanisms of risk to the fetal brain
To date, efforts to understand MIA have largely focused on either large-scale human epidemio-
logic studies or human biological materials, which may indicate risk but are vulnerable to con-
founding, and animal models of disease, which allow more complete experimental control but
may not recapitulate key elements of brain development. Cellular models can bridge these two
investigative forms, particularly models that make use of primary human cells that may retain
epigenomic effects of environment and infection. For example, in a prior work, patient-derived
microglia-like cells differentiated from peripheral blood monocyte precursors demonstrated
abnormal phagocytosis of synaptic materials, providing a potential mechanism of disease for
schizophrenia or related disorders [161]. More recently, these protocols have been adapted to
generate microglia-like cells from umbilical cord blood [162], providing a more direct means of
characterizing the impact of in utero exposures for a specific individual. Another emerging strat-
egy utilizes Hofbauer cells, fetal placental macrophages which may be isolated from the placenta
after delivery and cultured [116]. An advantage of these cells is that, like microglia, they are yolk
sac-derived, and thus may closely mimic the exposures and developmental processes of brain
microglia [163].
Trends in Molecular Medicine, April 2022, Vol. 28, No. 4 325
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Outstanding questions
What will neurodevelopmental outcomes
be in children exposed to prenatal
SARS-CoV-2 infection at age 2 years
and beyond?

Does trimester of maternal infection
impact offspring neurodevelopmental
outcomes?

Does prenatal SARS-CoV-2 infection
that results in placental infection and/or
vertical transmission have a differential
(e.g., more severe) impact on offspring
neurodevelopmental outcomes? Large,
population-level studies will be needed
to answer this question given the relative
rarity of placental infection and vertical
transmission.

How do variant strain and severity of
maternal illness impact offspring
neurodevelopmental risk?

What is the impact of fetal sex on
offspring neurodevelopmental risk?

How do other pre- and perinatal ex-
posures, and the postnatal environ-
ment, interact with prenatal SARS-
CoV-2 infection to impact offspring
neurodevelopmental risk?

How can cellular models be leveraged
to understand neurodevelopmental
risk at the individual level and guide
precision interventions and/or
therapeutics?
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Multiple published protocols also enable the generation of microglia-like cells from iPSCs. A lim-
itation of this approach, compared with the prior two, is that generation of iPSCs entails disruption
of the epigenome, prohibiting epigenomic investigations [164]. Alternatively, an advantage is that
iPSCs can be expanded, banked, and used for large-scale experiments or screens. Regardless
of source, such models provide an opportunity to conduct mechanistic studies in human cells to
understand SARS-CoV-2-mediated effects.

Concluding remarks
The data presented here demonstrate the potential for maternal SARS-CoV-2 infection to drive ma-
ternal, placental, and fetal immune activation, and thus the potential for adverse fetal
neurodevelopmental programming. Future studies will need to evaluate whether the fetoplacental
immune responses observed in maternal SARS-CoV-2 infection are associated with longer-term
neurodevelopmental and neuropsychiatric morbidity in offspring. While the majority of available
data are for third trimester infections or active infection at the time of delivery, the implications of in-
fection earlier in gestation on offspring outcomes will be critical to a holistic understanding of risk. An
important observation is that immune activation need not impact only fully differentiated cells –

indeed, by impacting yolk sac-derived precursor cells, an early (e.g., first trimester) insult may still im-
pact brain development via the microglial progenitor pool [165–167]. Thus, it is critical to understand
not only direct/immediate effects on cells, but also persistent effects, as a putative mediator of
neurodevelopmental consequences. How the timing of infection, variant strain, fetal sex, other
prenatal exposures (e.g., maternal cardiometabolic conditions, substance use, stress, environmen-
tal or medication exposures, other infections in pregnancy), and perinatal/postnatal exposures
(e.g., subsequent infant or child infection with SARS-CoV-2, breastfeeding status) intersect to
impact offspring neurodevelopment will be important to a comprehensive understanding of the
potential lasting impact of the COVID-19 pandemic on the next generation (Clinician’s corner
and see Outstanding questions).
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