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COVID-19 has impacted the health and livelihoods of billions of people since it emerged in 2019.
Vaccination for COVID-19 is a critical intervention that is being rolled out globally to end the pandemic.
Understanding the spatial inequalities in vaccination coverage and access to vaccination centres is impor-
tant for planning this intervention nationally. Here, COVID-19 vaccination data, representing the number
of people given at least one dose of vaccine, a list of the approved vaccination sites, population data and
ancillary GIS data were used to assess vaccination coverage, using Kenya as an example. Firstly, physical
access was modelled using travel time to estimate the proportion of population within 1 hour of a vac-
cination site. Secondly, a Bayesian conditional autoregressive (CAR) model was used to estimate the
COVID-19 vaccination coverage and the same framework used to forecast coverage rates for the first
quarter of 2022. Nationally, the average travel time to a designated COVID-19 vaccination site
(n = 622) was 75.5 min (Range: 62.9 – 94.5 min) and over 87% of the population >18 years reside within
1 hour to a vaccination site. The COVID-19 vaccination coverage in December 2021 was 16.70% (95% CI:
16.66 – 16.74) – 4.4 million people and was forecasted to be 30.75% (95% CI: 25.04 – 36.96) – 8.1 million
people by the end of March 2022. Approximately 21 million adults were still unvaccinated in December
2021 and, in the absence of accelerated vaccine uptake, over 17.2 million adults may not be vaccinated by
end March 2022 nationally. Our results highlight geographic inequalities at sub-national level and are
important in targeting and improving vaccination coverage in hard-to-reach populations. Similar map-
ping efforts could help other countries identify and increase vaccination coverage for such populations.
� 2022 The Authors. Published by Elsevier Ltd. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

The World Health Organization (WHO) declared the coron-
avirus disease (COVID-19) a pandemic on 11th March 2020 [1],
with the first case in Kenya confirmed on 12th March 2020 [2].
Since then, 295,028 cases and 5,378 fatalities had been reported
by 31st December 2021 [2,3]. Kenya has experienced four COVID-
19 epidemic waves since March 2020, with a fifth underway at
the time of preparation of this manuscript [3]. Various non-
pharmaceutical interventions (NPIs) have been implemented at
different timepoints to slow down the spread of the virus so that
health systems can cope with demand for illness management.
These include mandatory wearing of masks in public places, a
dawn-to-dusk curfew, physical distancing guidelines, closure of
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bars, restaurants and places of worship, restriction of movement in
and out of counties with high infection rates, closure of schools and
institutions and a ban on social gathering and meetings [4,5]. Var-
ious pharmaceutical interventions have been trialed for treatment
of COVID-19, and several are under investigation. These include
anti-viral treatments, corticosteroids, and biological therapeutics
[6–13]. However, for sustainable control of the COVID-19 pan-
demic, vaccinations are required to be provided to all sections of
the population [14,15]. Knowledge of vaccination coverage gaps
at national and sub-national levels is, thus, important for planning
vaccination campaigns, targeting hard-to-reach populations and
increasing access to vaccines in marginalized areas.

There are eight vaccines approved so far for emergency use by
WHO [16], five of which are available in Kenya as of December
2021 [2,17]. Their efficacies range from 66.7% to 95% [18,19] with
all demonstrating high degrees of protection from severe disease
or death [20]. Kenya is one of the countries globally that is eligible
for subsidized access to vaccines through the COVID-19 Vaccines
Global Access facility (COVAX) [21]. The Government of Kenya
has targeted to vaccinate 10 million people (38% coverage) aged
18 years and above by December 2021 [22], and 26 million people
(99% coverage) by December 2022 [17].

Understanding geographical access to COVID-19 vaccination
sites and coverage is important for effective planning of vaccina-
tion programmes. Beyond geographical access, other factors that
may affect COVID-19 vaccination coverage at population level
including vaccine availability and, individual factors such as liter-
acy, vaccination perception and acceptability, and, household level
factors including location (urban or rural) [23–26]. To model the
spatial inequalities in COVID-19 vaccination coverage, statistical
approaches can be used which incorporate other geographic data.
Such approaches have been applied previously in childhood vacci-
nation for measles [27–31] and diphtheria-tetanus-pertussis (DTP)
[27,31,32] vaccines. The use of small area estimation (SAE) meth-
ods [33–35], combined with population data [36], can estimate
vaccination coverage at sub-national level to compare with
national set targets as well as forecast these coverage estimates
and associated uncertainties [37–39]. SAE and spatial statistical
methods have been used in similar contexts to model malaria inci-
dence in northern Namibia [40], lung cancer risk in Pennsylvania,
the United States [41] and measles and DTP vaccination coverage
in Afghanistan and Pakistan [29].

Here, the main objective was to estimate current (first
9 months) and future (forecast to March 2022 - the following
3 months) COVID-19 vaccination coverages at national and sub-
national levels in Kenya since the start of the vaccination campaign
in March 2021. This was undertaken using data assembled at the
sub-national level on vaccination sites, number of people vacci-
nated and the eligible population over the age of 18 years. A sec-
ondary objective was to assess geographic accessibility to COVID-
19 vaccination sites and evaluate the association between travel
time, rurality, and age with vaccination coverage.
2. Methods

2.1. COVID-19 data

Vaccination data were assembled from the Kenya Ministry of
Health (MoH) daily vaccination bulletins [2]. These data comprised
the number of vaccinations primarily targeting priority groups rep-
resenting health workers, security personnel, teachers, and vulner-
able populations over 58 years [42,43]. In Kenya, the first dose of
the Oxford-AstraZeneca and the Sputnik V vaccines were adminis-
tered fromMarch 2021 and from September 2021, the Johnson and
Johnson, Pfizer, Sinopharm and Moderna vaccines were included.
2012
Dose 1, therefore, represents the total number of doses adminis-
tered for these five vaccines. These vaccines were issued Emer-
gency Use Authorization (EUA) by the Kenya Pharmacy and
Poisons Board (PBB). The administration of the second dose started
in late May, and data for both the first and second doses were com-
piled separately. The daily bulletins are aggregated weekly at
county level (Administrative level 1). However, it was not possible
to identify individual adult age ranges vaccinated across all the pri-
ority groups. Data on the receipt of the first dose vaccinations were
available from 6th April 2021 and was unavailable from 13th July
2021 onwards. On the other hand, data on the number of dose 2
vaccine administration were available from 9th June onwards.
Due to limitations in dose 1 data for the analysis, dose 1 and dose
2 data were combined to obtain ‘‘any dose” data that was used for
analysis.

COVID-19 stringency index data were obtained from Our World
in Data website [44]. The stringency index represents the level of
strictness of the lockdown measures. The index was calculated
using nine NPIs which include school and workplace closures, can-
cellation of public events, restrictions on public gatherings, clo-
sures of public transport, stay-at-home requirements, public
information campaigns, restrictions on internal movements, and
international travel controls. A detailed methodology for con-
structing the stringency index is provided elsewhere [45]. The
national weekly rolling average COVID-19 case number data were
obtained from the Our World in Data website [44].

2.2. COVID-19 vaccination sites

The list of approved COVID-19 vaccination sites was down-
loaded from the Ministry of Health website [2]. This represented
622 health facilities comprising dispensaries (n = 12), health cen-
tres (n = 55) and hospitals (county hospitals (n = 533), county refer-
ral hospitals (n = 15) and national referral hospitals (n = 7). The
vaccination sites were further coded by ownership (Public and mil-
itary, private, Faith-Based Organization (FBO) and Non-
Government Organization (NGO)). Lower-level health facilities
(dispensaries and health centres) have lower capacity to provide
inpatient care for COVID-19 infections but have the capability to
vaccinate due to the availability of cold storage facilities principally
used for childhood immunisation programmes. These health facil-
ities are part of a previously established spatial database of health
facilities [46].

2.3. Population estimates for over 18 years

Fine spatial resolution population data was obtained from
WorldPop [47]. WorldPop provides population estimates adjusted
to match the official UN population estimates for 2020, and this
was projected to 2021 using the UN medium variation national
growth rate [48]. The methodology for modelling population is
described elsewhere [49] and combines data from various popula-
tion and housing censuses, human settlements, and covariates
related to population distribution via machine learning approaches
to generate a gridded prediction of population density at 100 m
spatial resolution [50,51]. The population raster data was then
resampled to 1 � 1 km. It was necessary to define a suitable
denominator population based on the age range of >18 years rep-
resenting the priority groups targeted for vaccination (health
workers, teachers, government officials, security forces, and indi-
viduals aged >58 years). The denominator population representing
the target groups was computed as a product of the total popula-
tion and modelled age proportion at the same spatial scale (1 km
by 1 km). To estimate fine spatial resolution proportion of popula-
tion >18 years, independent nationally representative household
survey data with household census were used. The Kenya
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Demographic and Health Survey (KDHS) data available dates back
seven years [52] and plans to conduct a national survey in 2020
were postponed. However, a new national DHS survey is currently
ongoing which is estimated to be completed in 2022 [53]. The pre-
diction of age proportions for >18 years used DHS cluster level data
adjusting for rural and urban residence. Continuous age data was
assumed to follow a Gamma distribution. These parameters of
the Gamma distribution extracted at cluster level were interpo-
lated spatially, and Monte-Carlo simulations were performed to
draw age distributions at 1 km spatial scale. Further details of
age distribution modelling are presented in the supplementary
information.
2.4. Modelling travel time to COVID-19 vaccination centres

Geographic information system (GIS) data were assembled for
estimating travel time to COVID-19 vaccination centres. These
included roads assembled from the ministry of transport and
updated via OpenStreetMap and Google Map Maker as detailed
elsewhere [54,55], rivers and lakes [56–58], national parks and
reserves [56–58], Copernicus Sentinel-2 landcover at
20 m � 20 m spatial resolution, and digital elevation model
(DEM) data at 30 m spatial resolution available from the Regional
Centre for Mapping of Resources for Development (RCMRD)
GeoPortal [59]. The methodology for estimating theoretical travel
times to vaccination sites has been demonstrated elsewhere
[54,55,60–63] and was adopted in this manuscript. In brief, a cost
distance algorithm based on walking (along footpaths or landcover
classified as bare and agricultural) and motorized travel time
(along major roads) was used. The travel speeds adopted were
based on previous studies [54,55,62]. A correction for slope uphill
or downhill was applied based on Tobler’s formulation [64]. The
analysis was conducted at 1 � 1 km spatial resolution to produce
a gridded surface of travel time to vaccination centres from any
population location. Finally, the modelled travel time surface was
combined with population density to produce a population-
weighted travel time surface which excludes areas with no
population.
2.5. Modelling COVID-19 vaccination coverage at sub-national level

To model the COVID-19 vaccination coverage rates, vaccination
data were combined with a set of covariates to inform our predic-
tion model. These covariates were chosen based on accessibility to
vaccines and priority groups chosen for vaccination. The covariates
used include the mean travel times to COVID-19 vaccination sites,
proportion of the population in urban/rural areas and proportion of
the adult population under 58 years/over 58 years. The mean travel
time covariate used was categorical and was classified into four
classes: 1 (within 1 hr), 2 (1–2 hrs), 3 (2–3 hrs) and 4 (beyond
3hrs), while the remaining covariates were continuous. For contin-
uous covariates, the extracted values were the mean values at sub-
national level, while for the categorical covariate, the extracted val-
ues were the majority classified values within that sub-national
boundary. The covariates were then standardized and matched
with the COVID-19 vaccination data at the county level.

The numerator for the coverage rates comprised the total num-
ber of vaccines administered ðYÞ while the denominator was the
total target population ðPÞ. To model vaccination coverage across
counties, a discrete spatial binomial regression model was imple-
mented in a Bayesian framework using the Integrated Nested
Laplace Approximations in R (R-INLA) [65,66].

Let tðt ¼ 1; :::; TÞ represent time in weeks, mðm ¼ 1; � � � :12Þ rep-
resent time in months and i ¼ 1; � � � ;N represent the sub-national
2013
areas/counties. Denoting Yt;i as the number of vaccines adminis-
tered in area i at time t, the model is given by:

Yt;i � Binomial lt;i

� �
log lt;i

� �
¼ log Pt;i

� �þ ht;i ¼ log Pt;i
� �þ Xt;ibþ atðmÞ þxi;

where Pt;i is the population count corresponding to Yt;i tð Þ, Xt;i

represents a vector of covariates and b, the corresponding
regression coefficients. atðmÞ is a monthly temporal random effect
modelled as a first-order autoregressive process, that is,
atðmÞ NðqatðmÞ�1;1=sÞ, where q is an autoregressive parameter and
s is a precision parameter. xi is a spatial random effect modelled
as xi � Nð0;1=sxÞ, which was used to capture random spatial vari-
ation between the counties. Further, ht;i=Xt;ibþ atðmÞ þxi is the log
rate of vaccination (i.e. log of the average number of individuals
vaccinated divided by the target population) for area i at time t.
The Bayesian specification was completed by assigning zero-mean
Gaussian prior distributions to the regression coefficients, the pena-
lised complexity (PC) priors to the AR 1ð Þ parameters [67,68], and
using a non-informative log-gamma prior on the precision parame-
ter of the county-level random effect.

Model selection was conducted by comparing two models:
Model 1 with covariates and temporal adjustments, but no spatial
random effect and Model 2, which included the spatial random
effect. Sensitivity analysis was conducted to select the best model.
Model goodness of fit was assessed using deviance information cri-
terion (DIC), Watanabe-Akaike information criterion (WAIC) and
other INLA internal model evaluation metrics; the conditional pre-
dictive ordinate (CPO) and the probability integral transform (PIT)
[69,70]. The model predicted the vaccination coverage rates (pos-
terior means) for the first nine months (i.e. April to December
2021) with 95% credible intervals, and, this was used as the basis
for forecasting the coverage rates to the next three months (i.e.
from January 2022 to March 2022).

For validation, cross-validation techniques were used to evalu-
ate the predictive performance of the model. This was based on a
20% sub-set of data selected randomly and was used to compute
the root mean square error (RMSE) which assesses the overall per-
formance and accuracy of the model, the mean absolute error
(MAE) which assesses the model bias, and the Pearson’s correlation
co-efficient which evaluates the association between predicted and
observed values. The closer the RMSE value is to zero, the better
the prediction.
3. Results

3.1. Summary of the COVID-19 vaccination sites.

Fig. 1A shows the spatial distribution of the 622 COVID-19 vac-
cination sites categorized according to the Kenya Essential Package
for Health (KEPH) levels. In terms of ownership, 448 (72.0%) were
public and 173 (27.8%) were private facilities. Majority of the
COVID-19 vaccination sites are in areas of high population densi-
ties (Fig. 1A and B). Most of these vaccination sites were located
around the Lake Victoria basin and the western, central, and
coastal regions of Kenya. The Northern part of the country has a
few scattered vaccination sites (Fig. 1B). The number of vaccination
sites per county ranged from one in Bomet, Samburu and Elgeyo-
Marakwet to 64 in Nairobi. With an average of 13 vaccination sites
per county, 17 counties contained more than the average number
nationally and accounted for 47.3% of the denominator population.
In contrast, the arid counties which include Garissa, Isiolo, Man-
dera, Marsabit, Samburu, Tana River, Turkana and Wajir [71]



Fig. 1. (A) Distribution of the approved vaccination sites categorized according to their KEPH levels (n = 622). (B) Population density distribution for >18 years per 1 km2.
(C) Spatial accessibility to the COVID-19 vaccination sites.
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hosted a total of 53 (8.5%) vaccination sites and accounted for
13.7% of the denominator population (Table SI 2).

3.2. Travel time to COVID-19 vaccination sites

Spatial access to vaccination sites varied across each of the 47
counties and was highly heterogeneous (Fig. 1C). Overall, the mean
travel time to the nearest vaccination site was 75.5 min (Range:
62.9–94.5 min), which ranged from 5.9 min (Range: 4.8–7.4 min)
in Nairobi to 294.0 min (Range: 244.9–367.7 min) in Marsabit
counties. 11 (23.4%) counties had a mean travel time of over
2 hrs which include Garissa, Isiolo, Kajiado, Lamu, Mandera, Marsa-
bit, Samburu, Tana River, Turkana, Wajir and West Pokot. These
counties were the most marginalized with average travel times
ranging from 137.3 min to 294.0 min. In Kenya, approximately
22.8 million of the adult population or 87.2% (Range: 84.4–89.0)
reside within 1 hr to a COVID-19 vaccination site ranging from
22.5% (Range: 18.4– 28.2) in Marsabit county to 100% in Kakamega,
Kiambu, Kirinyaga, Kisii, Mombasa, Nairobi, Nyamira and Vihiga
counties. Five counties had less than 50% of their adult population
within 1 hr of a vaccination site: Mandera, Marsabit, Samburu, Tur-
kana and Wajir. It is notable that several large counties such as
Turkana, Wajir, Tana River, West Pokot, Marsabit, Mandera, Isiolo
and Garissa have very poor access as compared to several smaller
counties such as Nairobi, Vihiga, Mombasa and Nyamira with all
their population residing within 1hr of a vaccination site. However,
exceptions were observed in large counties such as Nakuru,
Makueni, Meru and Machakos with over 90% of their adult popula-
tion within 1hr of a vaccination site. Fifteen (31.9%) counties were
below the national average of proportion of population within 1hr
of a COVID-19 vaccination site (Fig. 2).

3.3. Model results and validation

Table SI 1 compares the two models based on their DIC, WAIC
and marginal log-likelihood. For any-dose vaccination coverage
modelling, Model 2 performed better as indicated by the lower
DIC and WAIC values and hence was selected for the subsequent
modelling and forecasting of COVID-19 vaccination coverages.
For model 2, the spatial random effect had a small variation at
the county level of 3.703 (95% CI: 2.344–5.465) (Table 1). The
model prediction performance was assessed based on the 20%
2014
sub-set data. The RMSE value was 1.123 and MAE value of 0.700.
The Pearson’s correlation co-efficient was 0.965 indicating a very
strong linear relationship between the observed and the predicted
vaccination coverages. The scatter plot is shown in Fig. SI 1 (sup-
plementary information).

Table 1 shows the posterior means and the 95% credible inter-
vals of the fitted model parameters for the fixed effects and ran-
dom effects (hyperparameters) respectively. For any dose
vaccination coverage, there was generally an increase in the vacci-
nation coverage through the weeks in that a 7.0% increase in vac-
cination coverage was observed. The probability of being
vaccinated generally decreased with increase in mean travel times
to the COVID-19 vaccination sites. For example, there is a 68.1%
decrease in vaccination coverage for people residing in areas over
3 h travel time from a site. There was a negative association
between the vaccination coverage and the proportion of popula-
tion residing in rural areas with a 27.8% decline. There was a
37.6% increase in vaccination coverage among the population over
58 years.

3.4. Predicting the vaccination coverage rates at sub-national level

Fig. 3A shows the number of SARS CoV-2 cases superimposed
with the COVID-19 stringency index which represents the NPIs
employed. Fig. 3B shows the number of COVID-19 cases overlaid
with the predicted any dose vaccination coverages. Nationally,
the vaccination coverage rate rose from 1.90% (95% CI: 1.89–
1.91) – approximately 497,510 people in April to 16.70% (95% CI:
16.66–16.74) – approximately 4.4 million people in December
2021. The vaccination coverage forecast, which began on 1st

January 2022, shows a continued increase in coverage from
17.56% (95% CI: 17.52–17.60) – approximately 4.6 million people
to 30.75% (95% CI: 25.04–36.96) – approximately 8.1 million
people at the end of the forecasting period (End of March 2022).
The coverages at county level are shown in Fig. 4 with (A) showing
the coverage before the forecast period and (B) at the end of the
forecast period. At sub-national level, the vaccination coverage
ranged from 1.51% (95% CI: 1.51–1.52) – approx. 17,000 people
to 54.28% (95% CI: 54.24–54.32) – approx. 1.3 million people before
forecast and 3.59% (95% CI: 2.62–4.83) – approx. 40,000 people to
73.75% (95% CI: 67.35–79.53) – approx. 1.8 million people after
forecast periods, both in Mandera and Nairobi counties



Fig. 2. Proportion of population living within 1hr travel time to a COVID-19 vaccination site. The error bars represent the uncertainty intervals, derived by varying the mean
speeds by ±20%. The dotted line represents the national average percentage of population living within 1 hr to a COVID-19 vaccination site.

Table 1
Estimates of the parameters of the fitted model for COVID-19 vaccination coverages.
Reported are the posterior means and the 95% credible intervals (CI) of the
exponentiated regression coefficients and other parameters. The categories - travel
time within 1 hr, percentage population in urban areas and percentage population
under 58 years - were the reference parameters for mean travel time, Rural/Urban
and age covariates, respectively.

Parameter Mean Credible Intervals
(5%, 95%)

Intercept 0.015 (0.010, 0.021)
Week 1.070 (1.070, 1.070)
Mean travel time
<1 hr 1.000 –
1–2 hrs 0.935 (0.586, 1.417)
2–3 hrs 0.502 (0.274, 0.845)
>3 hrs 0.319 (0.180, 0.526)
Rural/Urban
% of population in Urban 1.000 –
% of population in Rural 0.722 (0.616, 0.842)
Age
% of population under 58 years 1.000 –
% of population over 58 years 1.376 (1.135, 1.652)
Random effects (Hyperparameters)
Precision for Month (s) 38.441 (9.298, 87.099)
Autocorrelation parameter for Month (q) 0.742 (0.461, 0.806)
Precision for County (sx) 3.703 (2.344, 5.465)
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respectively (Table SI 2). As of December 2021, six counties had a
vaccination coverage of less than 5%. These counties include
Garissa, Mandera, Marsabit, Tana River, Turkana, and Wajir. 13
counties had a coverage of more than 20% in this period including
Embu, Kajiado, Kirinyaga, Kisumu, Laikipia, Mombasa, Murang’a,
Nairobi, Nakuru, Nyandarua, Nyeri, Taita Taveta and Uasin Gishu.
At the end of the forecast period, only one county, Mandera, will
have a vaccination coverage of less than 5% and 35 counties will
have a coverage of more than 20%.
3.5. Unmet need for COVID-19 vaccination coverage

The difference in the number of people given the vaccine and
the target population in the different counties suggests an unmet
need in vaccination coverage. The population of people unvacci-
nated at county level is shown in Fig. 4 with (C) showing the num-
2015
bers before the forecast period and (D) at the end of the forecast
period. Nationally, approximately 21 million people are still unvac-
cinated as of December 2021 and, in the absence of accelerated
vaccine uptake, over 17.2 million people may not be vaccinated
by end March 2022. At the sub-national level, the population not
vaccinated ranges from over 59,000 people in Lamu county to over
1.1 million people in Nairobi before forecast and over 51,000 peo-
ple in Lamu to approximately 1.1 million people in Mandera
county after forecast. For the 15 counties with the proportion of
population within 1hr of a COVID-19 vaccination centre was below
the national average (Fig. 2), the coverage ranged from 1.51% to
32.68% before the forecast period and from 3.59% to 53.88% at
the end of the forecast.
4. Discussion

This study estimated physical accessibility and coverage of
COVID-19 vaccinations at sub-national level using a statistical
approach. Nationally, the average travel time to a designated
COVID-19 vaccination site (n = 622) was 75.5 min (Range: 62.9–
94.5 min) and over 87% of the population >18 years reside within
1 hr of a vaccination site. At national level, the COVID-19 vaccina-
tion coverage rate in December 2021 was 16.70% (95% CI: 16.66–
16.74) – approx. 4.4 million but was lower in rural areas by
27.8%. Vaccination rate was higher amongst population >58 years
by 37.6% (Table 1). Based on the current vaccination rate, it was
estimated that the vaccination coverage amongst people >18 years
is likely to increase to 30.75% (95% CI: 25.04–36.96) – approx. 8.1
million by end of March 2022. However, this is likely to vary at
sub-national level with 12 counties not likely to achieve 20% cov-
erage by March 2022 (Table SI 2). For urban counties (Nairobi and
Mombasa), coverage estimates are likely to increase to 67.54%
(approx. 2.1 million people) by end of March 2022. These results
highlight sub-national level inequalities and are, thus, important
in targeting and improving vaccination coverage in marginalized
populations.

Increasing the number and availability of vaccination sites is
one possible way of increasing vaccination coverage [17]. Other
methods of increasing vaccination coverage include implementing
school/institutional based vaccination programmes [73,74], and



Fig. 3. Weekly average SARS CoV-2 cases superimposed with (A) COVID-19 stringency index (NPI) and (B) the predicted (red solid line) and the forecasted (red dashed line)
any dose COVID-19 vaccination coverage rates with 95% Bayesian credible intervals (shaded grey region) (pharmaceutical interventions). The black dashed lines show the
beginning (1st January 2022) and the end (31st March 2022) of the forecast period. The red horizontal dot-dashed line indicates the 70% COVID-19 vaccination coverage
required to achieve herd immunity [72].
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adopting effective mandatory vaccinations among the priority
groups. Counties in Kenya that would benefit from this strategy
(increase in the number of vaccination sites) through permanent
or mobile units include Garissa, Isiolo, Kilifi, Lamu, Mandera, Mar-
sabit, Narok, Samburu, Tana River, Turkana, Wajir and West Pokot.
These counties account for 19.8% of the population >18 years with
average travel times to vaccination sites of 194.9 min. Seven coun-
ties (Mandera, Marsabit, Samburu, Tana River, Turkana, Wajir and
West Pokot) had significant percentage of population residing
more than 1 hr to a vaccination site ranging from 48.1% in West
Pokot to 77.5% in Marsabit and translates to 67.29% of their popu-
lation (Fig. 2). These mentioned counties have also been previously
identified as marginalized through a 2014 report published by the
Commission on Resource Allocation (CRA) [75]. The coverages in
these marginalized counties are unlikely to reach 20% at the end
of the forecast period except for Samburu, and the intervention
measures and resource allocation should, therefore, be prioritized
in these areas. However, efforts that focus on increasing supply
alone are unlikely to be effective. Vaccine hesitancy remains a
major barrier to COVID-19 vaccination uptake [5,76–78]. Methods
of reducing vaccine hesitancy include providing sensitization cam-
paigns on the disease risk and importance of vaccinations through
posters and media advertisements [74,79].

Vaccination coverage in urban areas was higher by 27.8% as
compared to rural areas. There are several reasons for higher cov-
erages in urban areas, including but not limited to shorter travel
times also reported in other studies [54,55], increased availability
of vaccines, higher literacy [23,24], occupation [23–26], and low
hesitancy rates [5]. Despite the higher rates of vaccination cover-
age in urban areas, it is projected to reach 73.75% in Nairobi and
44.56% in Mombasa by March 2022. The high coverage rates in
the urban counties is mainly attributed to the high density of vac-
cination sites portraying an ‘urban advantage’. However, the urban
2016
averages in coverage can mask inequalities within urban areas
which are minimized after adjusting for wealth [80].

The methodology for estimating coverage rates at sub-national
level used aggregated data from vaccination sites within the
county. Data was not available from each vaccination site due to
data protection reasons and confidentiality, and data governance.
The issue that affect routine data in sub-Saharan Africa (SSA) for
diseases [81] also impacts COVID-19 data. Fine-scale mapping of
vaccination coverage could be explored once data is anonymized
and is available for each vaccination site. Such approaches have
been used for the estimation of childhood vaccination coverages
such as for measles and DTP [27,28,82,83]. Fine-scale mapping
could refine geographical targeting to reach physically marginal-
ized population. The effect of travel time to the nearest vaccination
site was not assessed for changing road conditions in rural areas,
effects of by-passing due to vaccine stock-outs [54,55] and per-
ceived quality of services offered by the vaccination site [84]. Pre-
vious studies that examined changing road conditions showed
longer journeys during wet seasons as compared to drier seasons
[62,85]. This suggests that the computed travel times could under-
estimate travel times in rural areas with unpaved roads affected by
changing road conditions. Empirical data to test these assumptions
further were not available.

The present analysis identifies gaps in COVID-19 vaccination
coverage at the population level amongst >18 years. Since Kenya
recorded its first COVID-19 case in March 2020, several control
measures have been implemented at an enormous cost to society.
Vaccination is one key pharmaceutical intervention to combat the
pandemic, and while there has been increasing vaccination cover-
age since March 2021, it is projected to reach 31% if the current
rate is sustained. At sub-national level, a targeted strategy priori-
tizing geographically marginalized communities is necessary to
achieve national targets for vaccination.



Fig. 4. Modelled mean COVID-19 vaccination coverage at sub-national level; (A) before the forecast period and (B) at the end of the forecast period. The population
unvaccinated (unmet need) (C) before forecast and (D) after forecast.

S.K. Muchiri, R. Muthee, H. Kiarie et al. Vaccine 40 (2022) 2011–2019

2017



S.K. Muchiri, R. Muthee, H. Kiarie et al. Vaccine 40 (2022) 2011–2019
5. Ethics statement

The study involved the assembly of secondary data, previously
published or part of national surveys. Ethical approvals for all sur-
vey data assembled was presumed sought by national
investigators.

CRediT authorship contribution statement

Samuel K. Muchiri: Conceptualization, Data curation, Method-
ology, Writing – original draft, Writing – review & editing. Rose
Muthee: Writing – review & editing. Hellen Kiarie: Data curation,
Writing – review & editing. Joseph Sitienei: Data curation, Writing
– review & editing. Ambrose Agweyu: Supervision, Writing –
review & editing. Peter M. Atkinson: Supervision, Writing –
review & editing. C. Edson Utazi: Methodology, Supervision,
Writing – review & editing. Andrew J. Tatem: Supervision,
Writing – review & editing. Victor A. Alegana: Conceptualization,
Data curation, Funding acquisition, Methodology, Supervision, Pro-
ject administration, Writing – original draft, Writing – review &
editing.

Data availability statement

COVID-19 vaccination data are available with open access pro-
vided by the Ministry of Heath Kenya (https://www.health.go.ke/
#1621663315215-d6245403-4901).

Declaration of Competing Interest

All authors declare no competing interests.

Acknowledgments

The authors are grateful to Anitah Cherono, Angela Moturi and
Eda Mumo for providing spatial data and proof-reading early drafts
of the manuscript. We would like to thank Dr. Joseph Sitienei and
Rose Muthee for their support in providing the COVID-19 vaccina-
tion data used in this study.

Funding

VAA is funded as a Wellcome Trust Training fellow (number
211208) which also provides support to SKM. SKM, AA and VAA
are grateful to the support of the Wellcome Trust to the Kenya
Major Oversees Programme (number 203077). The funders had
no role in the study design, data collection and analysis, decision
to publish, or preparation of the manuscript.

Appendix A. Supplementary material

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.vaccine.2022.02.035.

References

[1] World Health Organization. WHO Director-General’s opening remarks at the
media briefing on COVID-19-11 March 2020. Geneva, Switzerland; 2020.

[2] Ministry of Health. Ministry of Health; 2021.
[3] Coronavirus W. Dashboard| WHO Coronavirus (COVID-19) Dashboard With

Vaccination Data; 2021.
[4] Barasa E, Kazungu J, Orangi S, Kabia E, Ogero M, Kasera K. Assessing the

Indirect Health Effects of the COVID-19 Pandemic in Kenya. CGD Work Pap.
2021;570.

[5] Orangi S, Pinchoff J, Mwanga D, Abuya T, Hamaluba M, Warimwe G, et al.
Assessing the level and determinants of COVID-19 Vaccine Confidence in
Kenya. medRxiv. 2021.
2018
[6] Alvi MM, Sivasankaran S, Singh M. Pharmacological and non-pharmacological
efforts at prevention, mitigation, and treatment for COVID-19. J Drug Target
2020;28:742–54.

[7] Bokharee N, Khan YH, Khokhar A, Mallhi TH, Alotaibi NH, Rasheed M.
Pharmacological interventions for COVID-19: a systematic review of
observational studies and clinical trials. Expert Rev Anti-infective Therapy
2021.

[8] Chakraborty R, Parvez S. COVID-19: An overview of the current
pharmacological interventions, vaccines, and clinical trials. Biochem
Pharmacol 2020:114184.

[9] D’Souza R, Ashraf R, Rowe H, Zipursky J, Clarfield L, Maxwell C, et al. Pregnancy
and COVID-19: pharmacologic considerations. Ultrasound Obstet Gynecol
2021;57:195–203.

[10] Khalili M, Chegeni M, Javadi S, Farokhnia M, Sharifi H, Karamouzian M.
Therapeutic interventions for COVID-19: a living overview of reviews.
Therapeutic Adv Respiratory Dis. 2020;14. 1753466620976021.

[11] Kim MS, An MH, Kim WJ, Hwang T-H. Comparative efficacy and safety of
pharmacological interventions for the treatment of COVID-19: A systematic
review and network meta-analysis. PLoS Med 2020;17:e1003501.

[12] Ostuzzi G, Gastaldon C, Papola D, Fagiolini A, Dursun S, Taylor D, et al.
Pharmacological treatment of hyperactive delirium in people with COVID-19:
rethinking conventional approaches. Therapeutic Adv Psychopharmacol.
2020;10. 2045125320942703.

[13] World Health Organization. Therapeutics and COVID-19: living guideline. In:
Organization WH, editor.; 2022.

[14] World Health Organization. COVID-19 advice for the public: Getting
vaccinated; 2021.

[15] Geldsetzer P, Reinmuth M, Ouma PO, Lautenbach S, Okiro EA, Bärnighausen T,
et al. Mapping physical access to health care for older adults in sub-Saharan
Africa and implications for the COVID-19 response: A cross-sectional analysis.
The Lancet Healthy Longevity. 2020;1:e32–42.

[16] World Health Organization. Status of COVID-19 Vaccines within WHO EUL/PQ
evaluation process; 2021.

[17] Ministry of Health. National COVID-19 Vaccine Deployment Plan; 2021.
[18] Deplanque D, Launay O. Efficacy of Covid-19 vaccines: from clinical trials to

real life. Therapies. 2021.
[19] Institute of Health Metrics and Evaluation (IHME). COVID-19 vaccine efficacy

summary; 2021.
[20] Centres for Disease Control and Prevention. Benefits of getting a COVID-19

vaccine.
[21] GAVI The vaccination alliance. COVAX; 2021.
[22] John Muchangi. Kenya on course to hit 10 million vaccination target by

December. The Star; 2021.
[23] Elizabeth K, George K, Raphael N, Moses E. Factors influencing low

immunization coverage among children between 12–23 months in East
Pokot, Baringo Country, Kenya. Int J Vaccines. 2015;1:00012.

[24] Galadima AN, Zulkefli NAM, Said SM, Ahmad N. Factors influencing childhood
immunisation uptake in Africa: a systematic review. BMC Public Health.
2021;21:1–20.

[25] Legesse E, Dechasa W. An assessment of child immunization coverage and its
determinants in Sinana District, Southeast Ethiopia. BMC Pediatrics.
2015;15:1–14.

[26] Al-Mohaithef M, Padhi BK. Determinants of COVID-19 vaccine acceptance in
Saudi Arabia: a web-based national survey. J Multidisciplinary Healthcare
2020;13:1657.

[27] Utazi CE, Nilsen K, Pannell O, Dotse-Gborgbortsi W, Tatem AJ. District-level
estimation of vaccination coverage: discrete vs continuous spatial models. Stat
Med 2021;40:2197–211.

[28] Utazi CE, Wagai J, Pannell O, Cutts FT, Rhoda DA, Ferrari MJ, et al. Geospatial
variation in measles vaccine coverage through routine and campaign
strategies in Nigeria: Analysis of recent household surveys. Vaccine.
2020;38:3062–71.

[29] Utazi C, Thorley J, Alegana V, Ferrari M, Nilsen K, Takahashi S, et al. A spatial
regression model for the disaggregation of areal unit based data to high-
resolution grids with application to vaccination coverage mapping. Stat
Methods Med Res 2019;28:3226–41.

[30] Collaborators LBoDVC. Mapping routine measles vaccination in low-and
middle-income countries. Nature 2021;589:415.

[31] Utazi CE, Thorley J, Alegana VA, Ferrari MJ, Takahashi S, Metcalf CJE, et al.
Mapping vaccination coverage to explore the effects of delivery mechanisms
and inform vaccination strategies. Nat Commun 2019;10:1–10.

[32] Mosser JF, Gagne-Maynard W, Rao PC, Osgood-Zimmerman A, Fullman N,
Graetz N, et al. Mapping diphtheria-pertussis-tetanus vaccine coverage in
Africa, 2000–2016: a spatial and temporal modelling study. The Lancet.
2019;393:1843–55.

[33] Pfeffermann D. New important developments in small area estimation.
Statistical Sci. 2013;28:40–68.

[34] Rao JN, Molina I. Small area estimation. John Wiley & Sons; 2015.
[35] Wakefield J, Okonek T, Pedersen J. Small Area Estimation of Health Outcomes.

arXiv preprint arXiv:200610266; 2020.
[36] Tatem AJ. WorldPop, open data for spatial demography. Sci Data 2017;4:1–4.
[37] Besag J, Kooperberg C. On conditional and intrinsic autoregressions.

Biometrika 1995;82:733–46.
[38] Held L, Rue H. Conditional and intrinsic autoregressions. Handbook of spatial

statistics; 2010. p. 201–16.

https://www.health.go.ke/%231621663315215-d6245403-4901
https://www.health.go.ke/%231621663315215-d6245403-4901
https://doi.org/10.1016/j.vaccine.2022.02.035
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0020
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0020
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0020
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0025
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0025
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0025
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0030
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0030
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0030
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0035
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0035
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0035
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0035
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0040
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0040
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0040
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0045
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0045
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0045
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0050
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0050
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0050
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0055
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0055
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0055
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0060
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0060
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0060
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0060
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0075
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0075
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0075
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0075
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0090
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0090
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0115
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0115
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0115
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0120
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0120
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0120
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0125
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0125
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0125
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0130
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0130
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0130
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0135
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0135
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0135
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0140
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0140
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0140
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0140
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0145
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0145
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0145
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0145
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0150
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0150
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0155
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0155
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0155
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0160
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0160
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0160
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0160
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0165
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0165
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0170
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0180
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0185
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0185


S.K. Muchiri, R. Muthee, H. Kiarie et al. Vaccine 40 (2022) 2011–2019
[39] Banerjee S, Carlin BP, Gelfand AE. Hierarchical modeling and analysis for
spatial data. Chapman and Hall/CRC; 2003.

[40] Alegana VA, Atkinson PM, Wright JA, Kamwi R, Uusiku P, Katokele S, et al.
Estimation of malaria incidence in northern Namibia in 2009 using Bayesian
conditional-autoregressive spatial–temporal models. Spatial Spatio-temporal
Epidemiol 2013;7:25–36.

[41] Moraga P. Small Area Disease Risk Estimation and Visualization Using R. R J.
2018;10:495.

[42] Magdalene Saya. Kenya to prioritise Covid-19 vaccination for those aged 58
years and above. The Star; 2021.

[43] Kyobutungi C. The ins and outs of Kenya’s COVID-19 vaccine rollout plan. The
Conversation 2021.

[44] Our world in Data. Our World in Data; 2021.
[45] Hale T, Angrist N, Goldszmidt R, Kira B, Petherick A, Phillips T, et al. A global

panel database of pandemic policies (Oxford COVID-19 Government Response
Tracker). Nat Hum Behav 2021;5:529–38.

[46] Maina J, Ouma PO, Macharia PM, Alegana VA, Mitto B, Fall IS, et al. A spatial
database of health facilities managed by the public health sector in sub
Saharan Africa. Sci Data 2019;6:1–8.

[47] WorldPop S. of G. and ESU of, Department of Geography and Geosciences, U. of
L., Département de Géographie, U. de N. & Center for International Earth
Science Information Network (CIESIN), CU; 2018.

[48] Macrotrends. Kenya Population Growth Rate 1950-2021.
[49] Stevens FR, Gaughan AE, Linard C, Tatem AJ. Disaggregating census data for

population mapping using random forests with remotely-sensed and ancillary
data. PLoS ONE 2015;10:e0107042.

[50] Breiman L. Random forests. Mach Learn 2001;45:5–32.
[51] Bondarenko M, Nieves J, Stevens F, Gaughan A, Tatem A, Sorichetta A.

wpgpRFPMS: Random Forests population modelling R scripts, version 0.1. 0.
Southampton, UK: University of Southampton; 2020.

[52] Kenya National Bureau of Statistics, Ministry of Health/Kenya, National AIDS
Control Council/Kenya, Kenya Medical Research Institute, Population NCf,
Development/Kenya. Kenya Demographic and Health Survey 2014. Rockville,
MD, USA; 2015.

[53] The DHS Program.
[54] Joseph NK, Macharia PM, Ouma PO, Mumo J, Jalang’o R, Wagacha PW, et al.

Spatial access inequities and childhood immunisation uptake in Kenya. BMC
Public Health. 2020;20:1–12.

[55] Macharia PM, Mumo E, Okiro EA. Modelling geographical accessibility to urban
centres in Kenya in 2019. PLoS ONE 2021;16:e0251624.

[56] UNEP-WCMC. The World database on protected areas; 2017.
[57] Kenya Wildlife Service. Overview of national parks and reserves; 2021.
[58] Bingham Heather C, Lewis Edward, Stewart Jessica, Juffe-Bignoli Diego,

MacSharry Brian, Amy Milam NK. User Manual for the World Database on
Protected Areas and world database on other effective area based conservation
measures: 1.6; 2019.

[59] Regional Centre for Mapping of Resources for Development. RCMRD geoportal.
[60] Macharia PM, Ouma PO, Gogo EG, Snow RW, Noor AM. Spatial accessibility to

basic public health services in South Sudan. Geospatial Health 2017;12:510.
[61] Noor AM, Amin AA, Gething PW, Atkinson PM, Hay SI, Snow RW. Modelling

distances travelled to government health services in Kenya. Trop Med Int
Health 2006;11:188–96.

[62] Ouma P, Macharia PM, Okiro E, Alegana V. Methods of Measuring Spatial
Accessibility to Health Care in Uganda. Practicing Health Geogr: African
Context 2021:77.

[63] Ray N, Ebener S. AccessMod 3.0: computing geographic coverage and
accessibility to health care services using anisotropic movement of patients.
Int J Health Geographics 2008;7:63.
2019
[64] Tobler W. Three presentations on geographical analysis and modelling. Santa
Barbara, CA 93106-4060: National Center for Geographic Information and
Analysis, University of California; 1993.

[65] Rue H, Martino S, Chopin N. Approximate Bayesian inference for latent
Gaussian models by using integrated nested Laplace approximations. J Royal
Stat Soc: Series b (Stat Methodol). 2009;71:319–92.

[66] Martins TG, Simpson D, Lindgren F, Rue H. Bayesian computing with INLA:
new features. Comput Stat Data Anal 2013;67:68–83.

[67] Fuglstad G-A, Simpson D, Lindgren F, Rue H. Constructing priors that penalize
the complexity of Gaussian random fields. J Am Stat Assoc 2019;114:445–52.

[68] Blangiardo M, Cameletti M, Baio G, Hv R. Spatial and spatio-temporal models
with R-INLA. Spat Spatio-temporal Epidemiol. 2013;4:33–49.

[69] Czado C, Gneiting T, Held L. Predictive model assessment for count data.
Biometrics. 2009;65:1254–61.

[70] Held L, Schrödle B, Rue H. Posterior and cross-validatory predictive checks: a
comparison of MCMC and INLA. Statistical modelling and regression
structures: Springer; 2010. p. 91–110.

[71] Ministry of Devolution and the ASALS.
[72] Aschwanden C. Five reasons why COVID herd immunity is probably

impossible. Nature 2021:520–2.
[73] Ozawa S, Yemeke TT, Thompson KM. Systematic review of the incremental

costs of interventions that increase immunization coverage. Vaccine.
2018;36:3641–9.

[74] CDC. Examples of Evidence-Based Solutions to Increase Vaccine Confidence
and Uptake.

[75] Commission on Revenue Allocation (CRA). Policy on the criteria for identifying
marginalised areas and sharing of the equalisation fund; 2014.

[76] Dror AA, Eisenbach N, Taiber S, Morozov NG, Mizrachi M, Zigron A, et al.
Vaccine hesitancy: the next challenge in the fight against COVID-19. Eur J
Epidemiol 2020;35:775–9.

[77] Dzinamarira T, Nachipo B, Phiri B, Musuka G. COVID-19 vaccine roll-out in
South Africa and Zimbabwe: urgent need to address community preparedness,
fears and hesitancy. Vaccines 2021;9:250.

[78] Lazarus JV, Ratzan SC, Palayew A, Gostin LO, Larson HJ, Rabin K, et al. A global
survey of potential acceptance of a COVID-19 vaccine. Nat Med
2021;27:225–8.

[79] Acampora A, Grossi A, Barbara A, Colamesta V, Causio FA, Calabrò GE, et al.
Increasing HPV vaccination uptake among adolescents: A systematic review.
Int J Environ Res Public Health 2020;17:7997.

[80] UNICEF. Advantage or paradox? The challenge for children and young people
of growing up urban: United Nations; 2019.

[81] Alegana VA, Okiro EA, Snow RW. Routine data for malaria morbidity
estimation in Africa: challenges and prospects. BMC Med 2020;18:1–13.

[82] Utazi CE, Thorley J, Alegana VA, Ferrari MJ, Takahashi S, Metcalf CJE, et al. High
resolution age-structured mapping of childhood vaccination coverage in low
and middle income countries. Vaccine. 2018;36:1583–91.

[83] Takahashi S, Metcalf CJE, Ferrari MJ, Tatem AJ, Lessler J. The geography of
measles vaccination in the African Great Lakes region. Nat Commun
2017;8:1–9.

[84] Alford-Teaster J, Lange JM, Hubbard RA, Lee CI, Haas JS, Shi X, et al. Is the
closest facility the one actually used? An assessment of travel time estimation
based on mammography facilities. Int J Health Geographics 2016;15:1–10.

[85] Blanford JI, Kumar S, Luo W, MacEachren AM. It’sa long, long walk:
accessibility to hospitals, maternity and integrated health centers in Niger.
Int J Health Geographics 2012;11:1–15.

http://refhub.elsevier.com/S0264-410X(22)00167-0/h0195
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0195
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0200
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0200
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0200
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0200
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0205
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0205
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0215
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0215
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0225
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0225
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0225
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0230
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0230
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0230
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0245
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0245
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0245
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0250
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0270
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0270
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0270
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0275
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0275
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0300
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0300
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0305
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0305
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0305
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0310
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0310
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0310
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0315
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0315
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0315
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0325
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0325
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0325
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0330
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0330
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0335
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0335
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0340
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0340
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0345
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0345
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0360
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0360
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0365
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0365
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0365
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0380
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0380
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0380
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0385
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0385
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0385
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0390
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0390
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0390
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0395
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0395
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0395
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0405
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0405
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0410
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0410
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0410
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0415
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0415
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0415
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0420
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0420
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0420
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0425
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0425
http://refhub.elsevier.com/S0264-410X(22)00167-0/h0425

	Unmet need for COVID-19 vaccination coverage in Kenya
	1 Introduction
	2 Methods
	2.1 COVID-19 data
	2.2 COVID-19 vaccination sites
	2.3 Population estimates for over 18 years
	2.4 Modelling travel time to COVID-19 vaccination centres
	2.5 Modelling COVID-19 vaccination coverage at sub-national level

	3 Results
	3.1 Summary of the COVID-19 vaccination sites.
	3.2 Travel time to COVID-19 vaccination sites
	3.3 Model results and validation
	3.4 Predicting the vaccination coverage rates at sub-national level
	3.5 Unmet need for COVID-19 vaccination coverage

	4 Discussion
	5 Ethics statement
	CRediT authorship contribution statement
	Declaration of Competing Interest
	ack19
	Acknowledgments
	Funding
	Appendix A Supplementary material
	References
	Declaration of Competing Interest
	ack19


