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1  |  INTRODUC TION

Multiple sclerosis (MS) is a disabling autoimmune disease of the cen-
tral nervous system (CNS) characterized by demyelination and neuro-
degeneration.1 It affects approximately 2.5 million people worldwide 
and poses a growing burden to society.2,3 Relapsing-remitting MS 

(RRMS) is the most common initial course featuring alternate relapse 
and remission, and disability is aggravated gradually with illness de-
velopment.4 After approximately 20 years, around 90% of RRMS pa-
tients will develop secondary progressive MS (SPMS) characterized 
by progressive neurodegeneration without any definite remission 
periods.5,6 In addition to SPMS, progressive MS (PMS) also includes 
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Abstract
Lipoic acid (LA) is an endogenous antioxidant that exists widely in nature. 
Supplementation with LA is a promising approach to improve the outcomes of pa-
tients with multiple sclerosis (MS). This systematic review aimed to provide a compre-
hensive overview of both in vitro and in vivo studies describing the pharmacokinetics, 
efficacy, safety, and mechanism of LA in MS-related experiments and clinical trials. A 
total of 516 records were identified by searching five databases, including PubMed, 
Web of Science, Embase, Scopus, and Cochrane Library. Overall, we included 20 stud-
ies reporting LA effects in cell and mouse models of MS and 12 studies reporting LA 
effects in patients with MS. Briefly, cell experiments revealed that LA protected neu-
rons by inhibiting the expression of inflammatory mediators and activities of immune 
cells. Experimental autoimmune encephalomyelitis mouse experiments demonstrated 
that LA consistently reduced the number of infiltrating immune cells in the central 
nervous system and decreased the clinical disability scores. Patients with MS showed 
relatively stable Expanded Disability Status Scale scores and better walking perfor-
mance with few adverse events after the oral administration of LA. Notably, hetero-
geneity of this evidence existed among modeling methods, LA usage, MS stage, and 
trial duration. In conclusion, this review provides evidence for the anti-inflammatory 
and antioxidative effects of LA in both in vitro and in vivo experiments; therefore, 
patients with MS may benefit from LA administration. Whether LA can be a routine 
supplementary therapy warrants further study.
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primary progressive MS featuring inapparent clinical relapses from 
the onset. At present, both immune and nonimmune mechanisms 
are believed to be involved in MS pathogenesis.

The “outside-in” hypothesis proposes that the inflammatory de-
myelinating process begins in the subarachnoid space and cortex and 
extends into the white matter.7,8 In this model, the invasion of pe-
ripheral immune cells disrupts the blood-brain barrier (BBB) integrity 
and contributes to the prolonged presence of inflammatory activity. 
In RRMS, the interaction of monocytes and brain endothelial cells 
(ECs) produces massive reactive oxygen species (ROS), leading to 
the loss of tight junctions and migration of monocytes.9 For T cells, 
the mutual recognition of lymphocyte function-associated antigen-1 
(LFA-1), intercellular cell adhesion molecule-1 (ICAM-1), very late 
antigen-4 (VLA-4), and vascular cell adhesion molecule-1 (VCAM-1) 
permits them to cross the BBB. The release of matrix metallopro-
tein-9 (MMP-9) by T cells is also essential for the migration process. 
Notably, infiltrated T cells can recruit macrophages, microglia, and 
astrocytes by secreting mediators, including tumor necrosis factor-α 
(TNF-α), interferon-γ (IFN-γ), and interleukins-17 (IL-17).10,11 These 
abnormally activated immune cells target neurons and the myelin 
sheath and drive MS relapse and progression. Therefore, several 
disease-modifying therapies (DMTs) can decrease relapse rates by 
immunomodulation. However, the potential risks of serious adverse 
events (AEs) and COVID-19 infection limit its clinical use to some 
extent.12,13 In PMS, inflammation is compartmentalized and mainly 
driven by the activities of innate microglia, astrocytes, and B cells.11 
Unfortunately, the efficacy of DMTs for PMS tends to be disappoint-
ing, motivating the search for a new treatment option.14

Oxidative stress is another crucial driver of MS once the auto-
immune system has caused damage to the CNS.10 It occurs when 
an imbalance exists between excessive production of free radicals 
and insufficient biological ability to remove them.15 The CNS is quite 
sensitive and vulnerable to oxidative stress because of its high oxy-
gen consumption and lipid abundance. Oxidizing substances, such as 
ROS and nitrogen species, are usually produced by activated macro-
phage and microglial structures, causing damage to lipids, proteins, 
and DNA. Consequently, the CNS is variously disrupted through 
processes such as increased BBB permeability, myelin phagocytosis, 
and neurodegeneration.16,17 In the plasma of MS patients, the lev-
els of antioxidants and total antioxidant capacity are decreased.18,19 
Autopsy studies have also widely detected the damage induced 
by oxidative stress in cerebrospinal fluid and CNS tissues.20,21 
Therefore, oxidative stress may be another hopeful therapeutic tar-
get of MS. At present, many antioxidant compounds have improved 
serological indicators in MS patients.22 Vitamin D decreased the 
relapse rates as an antioxidant in RRMS patients.23 However, the 
findings of the efficacy of antioxidants tend to be conflicting and 
confusing, strongly suggesting that the effect of using a single anti-
oxidant is limited. Considering the above, an ideally effective medi-
cine must possess the ability to prevent multiple pathogenic factors 
and outstanding BBB permeability.

Lipoic acid (LA), also known as thioctic acid, has become a hope-
ful complementary therapy in MS to target both inflammation and 

oxidative stress. LA is a double-sulfhydryl natural antioxidant with 
two enantiomers according to optical rotation: R-LA and S-LA. 
Overall, R-LA exists widely in plants and animals, whereas S-LA is ar-
tificially synthesized to compose the racemic mixture (1:1 R/S-LA).24 
In the human body, R-LA is synthesized de novo by cysteine and fatty 
acids in small amounts; thus, it primarily depends on exogenous sup-
plements such as organ meat, broccoli, and fruits.25 For individuals, 
the racemic form can be absorbed rapidly after oral administration 
and participate in various biological metabolic pathways. First, it 
contributes to the synthesis of vitamin C and vitamin E.26 Second, it 
is reduced to dihydro-LA (DHLA), and DHLA is involved in the bio-
synthesis of intracellular glutathione (GSH) and coenzyme Q10.27,28 
Third, R-LA plays a crucial role in mitochondrial energy production as 
a cofactor for some enzymatic complexes in the Krebs cycle.29 When 
other metabolic pathways are saturated, redundant LA (nearly 10%) 
will be excreted through the kidneys.30 Over the past two decades, 
whether LA improves the quality of life of patients with MS has been 
intensively studied.31 In mouse models of experimental autoimmune 
encephalomyelitis (EAE), LA increased the population of mature oli-
godendrocytes and alleviated neurological symptoms, suggesting that 
LA might protect and promote neuronal regeneration.32,33 However, 
the results of alleviated neurological symptoms were inconsistent 
for different administration pathways, timing, and dosage, making 
the evidence somewhat fragile. In patients with MS, LA reduced the 
Expanded Disability Status Scale (EDSS), although the between-group 
difference was not statistically significant.34,35 The confusing result 
regarding whether LA could improve patient outcomes probably re-
sulted from the short trial duration. Additionally, the annualized per-
cent brain volume change was less after 2 years of supplementation 
in the LA group, indicating that LA might prevent neuronal death and 
reduction.36 More importantly, few AEs were reported when using 
LA as an oral preparation for 2 years. In summary, LA shows strong 
antioxidative and anti-inflammatory effects in MS, which makes it a 
potential candidate for complementary and long-term therapy.

To date, no study has systematically summarized the current 
findings of LA in MS, and some results appear to be controversial. A 
good review of both achievements and limitations will contribute to 
determining reliable evidence and research trends for future studies. 
In this review, we aimed to provide comprehensive insight into the 
role of LA in MS, including the aspects of pharmacokinetics, efficacy, 
safety, and mechanism, in both in vitro and in vivo experiments. We 
hope that our work will contribute to the development of new drugs 
and combination therapy for patients with MS.

2  |  METHODS

2.1  |  Search strategy

According to the guidelines of the 2009 Preferred Reporting 
Items for Systematic Reviews and Meta-Analysis (PRISMA) state-
ment,37 English-language studies published from inception up to 
July 1, 2021, were collected by searching five databases: PubMed 
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(Medline), EMBASE, Web of Science, Scopus, and Cochrane Library. 
Identified search terms included (“multiple sclerosis” OR “MS”) AND 
(“lipoic acid” OR “Thioctacid” OR “LA”). Additional records were 
identified manually through other sources, such as any related re-
view papers and reference lists of all included studies to avoid miss-
ing relevant studies in the initial search. The whole search process 
was conducted by two authors independently (H.S.X. & X.F.Y.).

2.2  |  Study selection

After removing duplicates, all the studies were screened for eligibility 
by two independent authors (H.S.X. & X.F.Y.). The inclusion criteria in 
this systematic review included the following: (1) randomized inter-
vention study in patients meeting the McDonald criteria for MS38,39; 
(2) preclinical experiments based on the mouse and cell models of MS; 
and (3) publications in peer-reviewed journals. The exclusion criteria 
included the following: (1) combined other antioxidants; (2) irrelevant 
endpoints such as biochemical metabolism and visual changes; and 
(3) nonoriginal studies. All the included studies were cross-checked, 
and in-depth discussions were required to resolve disagreements and 
make the ultimate decision with the senior author (Z.Y.J.).

2.3  |  Data extraction

For the included studies, we collected the following information into 
a spreadsheet in Excel: (1) subject characteristics including age, sex, 

EDSS score, and MS duration; (2) MS-related model establishment 
in the preclinical experiments; (3) LA dosage (4) endpoints including 
efficacy, safety, pharmacokinetics, and mechanism; and (5) first au-
thor's name, publication date, study design, and follow-up duration. 
For detailed data not shown in the full text, the e-mails were sent to 
the corresponding authors for help.

3  |  DISCUSSION

We obtained 516 potential records in the initial systematic search. 
After the removal of duplicates, 143 studies were screened based 
on the title and abstract, leading to 59 full-text studies screened 
for eligibility. In this process, 27 articles were excluded because 
of irrelevant endpoints, nonoriginal studies, and combined antioxi-
dant supplements. Finally, 32 intervention studies were included in 
this systematic review to investigate the effects of LA on efficacy, 
safety, pharmacokinetics, and mechanism. An overview of the study 
selection is presented in Figure 1.

3.1  |  LA pharmacokinetics and transportation 
to the brain

A rat experiment found that the duodenum was the best portion of 
the intestine for LA absorption and that R-LA showed a higher absorp-
tion percentage than S-LA.40 Notably, two vital pathways are involved 
in the process of LA crossing the intestinal barrier: Na+/multivitamin 

F I G U R E  1  Preferred Reporting Items 
for Systematic Reviews flowchart
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(SMVT) and monocarboxylic acid (MCT) transporters.41,42 Under equi-
librium conditions, human SMVT can simultaneously bind and trans-
port two LA molecules into the mesenteric vein, and human MCT 
transports LA in an energy- and low-pH-dependent manner. In the 
patients with RRMS/SPMS and healthy volunteers, the pharmacoki-
netic parameters showed no significant difference, suggesting that 
the MS status did not influence LA metabolism.43 In 54 patients with 
SPMS, pharmacokinetics showed no significant difference between 
the baseline and 1 year later, suggesting that the oral administration 
of LA was stable for long-term use.44 In patients with MS, three stud-
ies found that the time to reach the peak concentration of R-LA was 
much shorter than that of the racemic form, indicating the quicker 
absorption of the R-configuration.33,45 Additionally, R-LA showed a 
much larger area under the curve than the racemic form under the 
same dosage, indicating the better utilization of the R-configuration. In 
summary, R-LA showed quicker and better utilization than the racemic 
form, emphasizing the necessity of unified formulations and encapsu-
lations if considering it as a supplementary therapy.

Notably, human SMVT and MCT are also expressed in brain 
microvessels and contribute to the transportation of LA across the 
BBB.46,47 In an in vitro experiment, LA showed the ability to cross 
the BBB and exert beneficial effects on the viability of astrocytes.48 
Besides, a rat experiment found that14C-labeled LA reached peak 
levels in the cortex, spinal cord, and sciatic nerve after one-half hour 
of oral administration, indicating that LA was taken up by both the 
CNS and peripheral nerves.49 LA was also measured in the rat brain 
cortex, cerebellum, striatum, and hippocampus after intravenous 
and intraperitoneal administration.50,51 Notably, a recent rat experi-
ment found that the LA did not cross the BBB as easily as supposed 
after the correction for blood volume, which emphasized that the 
permeability of the BBB might be greatly influenced by cerebral 
blood flow.52

3.2  |  Role of LA in cell experiments

Human peripheral blood mononuclear cells (PBMCs) are isolated 
from peripheral blood and feature round nuclei. They mainly com-
prise lymphocytes, monocytes, and NK cells.53 Most PBMCs are 
naïve without immune effects. Importantly, the largest fraction, T 
cells, will develop into diverse subsets of Th1, Th2, Th17, or regula-
tory T cells (Treg cells) after activation by different cytokines.54,55 
Monocytes in PBMCs can also be activated by proinflammatory 
factors to simulate the immune status of MS. These make human 
PBMCs a suitable model of MS and provide an opportunity to mir-
ror the autoimmune response in the CNS. Additionally, murine cell 
models of MS are established directly by isolating and culturing brain 
cells, including primary microglial cells stimulated with lipopolysac-
charide/IFN-γ and primary cortical neurons treated with H2O2. We 
included nine studies based on human PBMCs or murine cells, which 
were treated with 10–100 μg/ml LA (Table 1). No study reported the 
specific form of LA, and only one study indicated the usage of both 
LA and DHLA.

Overall, LA inhibited the expression of various inflammatory 
mediators and the activities of immune cells in human PBMCs. In 
human T cells, LA inhibited cellular transmigration across a fibronec-
tin barrier in a dose-dependent manner, likely because LA could 
downregulate the surface expression of VLA-4 and decrease the 
MMP-9 content in culture supernatants.56 Additionally, the oral ad-
ministration of LA inhibited T-cell proliferation and activation en-
riched from the PBMCs of MS patients, which might be related to 
elevated intracellular cyclic adenosine monophosphate (cAMP).57 
Further investigation demonstrated a lower content of IL-6 and IL-
17 in culture supernatants than that in the non-LA group. In human 
monocytes, LA inhibited cellular migration in a dose-dependent 
manner.58,59 Importantly, this effect might be related to the reduced 
activity of nuclear transcription factor-kappa B (NF-KB), leading to 
the decreased expression of TNF-α, MMP-9, and ICAM-1.31 LA also 
lowered the percentage of phagocytic cells in a dose-dependent 
manner in monocytes from both healthy controls and patients with 
RRMS. In human PBMCs, LA decreased the expression of various 
proinflammatory cytokines, including IL-1β, IL-6, IL-17, and IFN-
γ.60,61 However, some studies reported no difference in expression 
of TNF-α and IL-1β between the LA and non-LA groups, which may 
be explained by the modeling approach of lipopolysaccharides and 
the relatively small sample size. Notably, three studies revealed that 
the above anti-inflammatory and neuroprotective effects might be 
closely associated with elevated intracellular cAMP expression.62 
Notably, the above outcomes based on PBMCs should be inter-
preted carefully because they lack in vivo environmental stimuli.

In murine cell models of MS, LA protected neurons and disturbed 
the activities of immune cells. In murine IFN-γ-activated microglia, 
LA disorganized the actin protein and disturbed the formation of 
membrane blebs, likely leading to alterations in cellular mobility 
and phagocytosis.63 In murine H2O2-treated cortical neurons, oxi-
dative stress led to a marked increase in axoplasmic Ca2+ and the 
formation of the axonal spheroid, where axonal severing occurred. 
Interestingly, pretreatment with LA completely prevented spheroid 
formation and maintained axonal integrity by increasing the levels of 
cAMP.64 Presently, the main limitation of cell experiments resides in 
the nonunified methods of establishing the MS model. CNS cells of 
EAE mice are likely the most appropriate and convincing model for 
the double hit of autoimmunity and oxidative stress.

3.3  |  Role of LA in animal experiments

EAE is a reliable murine model that can well simulate the occurrence 
and development of MS.65 In the 11 included studies, EAE induc-
tion was accomplished using three methods (Table 1). Five studies 
indicated that the mice were immunized according to the standard 
protocol with complete Freund's adjuvant (CFA) containing oligo-
dendrocyte glycoprotein fragment 35–55 or guinea pig myelin basic 
protein. Four studies indicated that the mice were immunized using 
CFA containing proteolipid protein (PLP) 139–151 peptide. PLP is a 
hydrophobic integral membrane protein accounting for half of the 
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protein content of CNS myelin and was recently proven to cor-
relate with the severity of disease in MS patients.66 In addition to 
the autoimmune component, the oral administration of cuprizone 
can cause whole-brain demyelination and gliosis and was used to 
establish the murine model in one study. Compared with the two 

previous methods, cuprizone induction is easier to operate but 
time-consuming (5 vs. 2 weeks). More importantly, female mice are 
more resistant to cuprizone induction, and estradiol/progesterone 
can protect against cuprizone-induced demyelination.67,68 The LA 
dosage was 5–100 mg/kg per day, and the mode of administration 

F I G U R E  2  Lipoic acid protects 
the central nervous system by 
immunomodulation and antioxidation. In 
the periphery, LA prevents inflammatory 
cells from crossing the BBB by inhibiting 
the expression of LFA-1, ICAM-1, VLA-
4, VCAM-1, and MMP-9 and protects 
brain endothelial cells. In the CNS, LA 
modulates autoimmunity by inhibiting 
the activity of T cells/microglia and 
decreasing the expression of TNF-α and 
IFN-γ, and LA reduces oxidative stress by 
neutralizing ROS and NO

TA B L E  2  Effects of LA on MS in the clinical studies

Study Patients
Illness duration 
(years ± SD) LA dosage (orally/day) Serious adverse events Topic Study design Trial Duration Main findings

Yadav et al33 12 RRMS 12 PMS 12.5 (1.0–35.0) 1200 mg R/S-LA NA PK Open label, RCT NA 1200mg oral lipoic acid can achieve therapeutic 
serum levels.

Khalili, et al34 24 RRMS 5.2 ± 4.9 1200 mg LA NA Mechanism Efficacy Double-blind, placebo-controlled, RCT 12 weeks ADMA (–) EDSS, new enhanced plaque (=)

Khalili, et al35 46 RRMS 4.9 ± 3.8 1200 mg LA NA Mechanism Efficacy Double-blind, placebo-controlled, RCT 12 weeks INF-γ, IL−4, ICAM−1, TGF-β (–) TNF-α, IL−6, 
MMP−9, EDSS (=)

Spain, et al36 51 SPMS 29.4 ± 9.6 1200 mg R/S-LA 2 Gastrointestinal disorders 2 Renal 
disorders 1 Rash 1 NA

Efficacy Safety Double-blind, placebo-controlled, RCT 96 weeks Brain atrophy rate (–) T25FW (=) Safe and high 
compliance

Fiedler et al. 2018 43 21 RRMS 16 SPMS 
20 HC

NA 1200 mg R/S-LA NA PK Mechanism Phase I, open label NA PK parameters showed no statistical difference 
in 3 groups. cAMP: RRMS (–); SPMS, HC (+)

Bittner, et al44 54 SPMS 30.9 ± 9.3 1200 mg R/S-LA 2 Renal disorders 1 Gastrointestinal 
disorder 1 Testicular cancer

Safety PK Placebo-controlled RCT 48 weeks Fall events (–) Stable PK parameters

Salinthone et al45 28 MS NA 1200 mg R-LA, R/S-LA NA PK Mechanism RCT NA R-LA vs R/S-LA: AUC (+), Tmax, cAMP (–)

Loy et al95 21 SPMS 25.9 ± 8.9 1200 mg LA NA Efficacy Double-blind, placebo-controlled, RCT 96 weeks Walking performance (+)

NCT03161028 
Recruiting, 97

118 PMS 1200 mg LA NA Efficacy Safety Phase II placebo-controlled, RCT 96 weeks Endpoints: T25FW, fall count, brain atrophy, and 
adverse events.

Cameron, et al98 15 SPMS 5 PMS 26.0 ± 10.3 600 mg R-LA 1200mg R/S-LA None Safety PK Double-blind, cross-over 3 weeks R-LA showed better gastrointestinal tolerability 
and serum absorption.

Yadav, et al100 33 MS 4.0 (0.0–6.5) 1200 mg LA 2400 mg LA 3 Nausea 1 Allergic rash Safety Mechanism Double-blind, placebo-controlled, RCT 2 weeks MMP−9, ICAM−1 (–) Well-tolerated

Khalili, et al106 52 RRMS 4.9 ± 3.8 1200 mg R/S-LA NA Mechanism Double-blind, placebo-controlled, RCT 12 weeks TAC (+) SOD, GPX, MAD (=)

Waslo et al107 20 MS NA LA NA Mechanism Efficacy Placebo-controlled 48 weeks GSH/GSSG ratio (=)

Note: “-” indicates decreased expression or event compared with non-LA group, “+” indicates increased expression or enhanced activity, and “=” 
indicates no statistical difference.
Abbreviations: ADMA, asymmetric dimethylarginine; cAMP, cyclic adenosine monophosphate; EDSS, Expanded Disability Status Scale; 
GPX, glutathione peroxidase; HC, healthy control; ICAM-1, intercellular cell adhesion molecule-1; IL-, interleukin-; INF-γ, interferon-γ; MAD, 
malondialdehyde; MMP-9, matrix metalloprotein-9; NA, not available; PK, pharmacokinetics; SOD, superoxide dismutase; T25FW, Timed 25-Foot 
Walk; TAC, total antioxidant capacity; TGF-β, transforming growth factor-β; TNF-α, tumor necrosis factor-α.
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included intramuscular injection (n  =  5), intraperitoneal injection 
(n = 3), subcutaneous injection (n = 1), oral administration (n = 1), 
and general injection (n  =  1). Only three studies indicated that a 
racemic form of LA was used, and the remaining eight studies did 
not report the specific form. The range of the experiment duration 
was from 3 to 26 weeks. Notably, by comparing the serum pharma-
cokinetic parameters, a 50 mg/kg subcutaneous dose in symptom-
remitted mice was considered equal to a dose of 1200 mg of LA in 
patients with MS.33

3.3.1  |  LA efficacy in EAE mice

Overall, seven studies revealed that LA reduced the MS-related neu-
rological scores focusing on the weak/spastic tail and limb paralysis, 
and symptomatic relief emerged approximately one week after the 
onset.33,69–74 Notably, three studies indicated that the improvement 
was dose-dependent.33,69,70 More importantly, two studies pointed 
out that only preventive usage of LA could alleviate the clinical 
signs, whereas the oral supplement after the onset did not function 
well in mice.70,74 One possible explanation might be the low dose 
of 5 mg/kg orally. Therefore, demonstrating the efficacy of oral ad-
ministration should be highlighted in future as the target mode in 

MS patients. Additionally, LA was also effective in alleviating MS-
associated neuropathic pain.75 Consistent with our results, a system-
atic review evaluated LA as effective in improving demyelination and 
neurobehaviors in large animal numbers.76 In summary, EAE mouse 
experiments demonstrated that LA effectively improved neurologi-
cal outcomes when the injection was at relatively high doses.

3.3.2  |  LA mechanisms in EAE mice

Nuclear factor erythroid-2 related factor 2 (Nrf2) is a redox-sensitive 
transcription factor existing in the cytoplasm, and it will translocate 
to the nucleus when oxidative stress occurs.77 In the nucleus, it binds 
to antioxidant response elements and initiates the transcription of 
over 200 detoxification genes.78 In the rat brain, LA promoted Nrf2 
translocation and the superoxide dismutase (SOD) activity to defend 
against oxidative stress.79 Besides, LA upregulated the expression of 
Nrf2 and its downstream hemeoxygenase-1 to alleviate neuronal cell 
apoptosis.80 In EAE mice, LA increased the expression of GSH and 
SOD to enhance antioxidant system activity (Figure 2). Meanwhile, 
LA decreased the levels of ROS and lipid peroxidation in EAE mice.32 
These findings suggested that the LA-Nrf2-antioxidative system 
pathway might be involved in neurological improvement in EAE mice.

TA B L E  2  Effects of LA on MS in the clinical studies

Study Patients
Illness duration 
(years ± SD) LA dosage (orally/day) Serious adverse events Topic Study design Trial Duration Main findings

Yadav et al33 12 RRMS 12 PMS 12.5 (1.0–35.0) 1200 mg R/S-LA NA PK Open label, RCT NA 1200mg oral lipoic acid can achieve therapeutic 
serum levels.

Khalili, et al34 24 RRMS 5.2 ± 4.9 1200 mg LA NA Mechanism Efficacy Double-blind, placebo-controlled, RCT 12 weeks ADMA (–) EDSS, new enhanced plaque (=)

Khalili, et al35 46 RRMS 4.9 ± 3.8 1200 mg LA NA Mechanism Efficacy Double-blind, placebo-controlled, RCT 12 weeks INF-γ, IL−4, ICAM−1, TGF-β (–) TNF-α, IL−6, 
MMP−9, EDSS (=)

Spain, et al36 51 SPMS 29.4 ± 9.6 1200 mg R/S-LA 2 Gastrointestinal disorders 2 Renal 
disorders 1 Rash 1 NA

Efficacy Safety Double-blind, placebo-controlled, RCT 96 weeks Brain atrophy rate (–) T25FW (=) Safe and high 
compliance

Fiedler et al. 2018 43 21 RRMS 16 SPMS 
20 HC

NA 1200 mg R/S-LA NA PK Mechanism Phase I, open label NA PK parameters showed no statistical difference 
in 3 groups. cAMP: RRMS (–); SPMS, HC (+)

Bittner, et al44 54 SPMS 30.9 ± 9.3 1200 mg R/S-LA 2 Renal disorders 1 Gastrointestinal 
disorder 1 Testicular cancer

Safety PK Placebo-controlled RCT 48 weeks Fall events (–) Stable PK parameters

Salinthone et al45 28 MS NA 1200 mg R-LA, R/S-LA NA PK Mechanism RCT NA R-LA vs R/S-LA: AUC (+), Tmax, cAMP (–)

Loy et al95 21 SPMS 25.9 ± 8.9 1200 mg LA NA Efficacy Double-blind, placebo-controlled, RCT 96 weeks Walking performance (+)

NCT03161028 
Recruiting, 97

118 PMS 1200 mg LA NA Efficacy Safety Phase II placebo-controlled, RCT 96 weeks Endpoints: T25FW, fall count, brain atrophy, and 
adverse events.

Cameron, et al98 15 SPMS 5 PMS 26.0 ± 10.3 600 mg R-LA 1200mg R/S-LA None Safety PK Double-blind, cross-over 3 weeks R-LA showed better gastrointestinal tolerability 
and serum absorption.

Yadav, et al100 33 MS 4.0 (0.0–6.5) 1200 mg LA 2400 mg LA 3 Nausea 1 Allergic rash Safety Mechanism Double-blind, placebo-controlled, RCT 2 weeks MMP−9, ICAM−1 (–) Well-tolerated

Khalili, et al106 52 RRMS 4.9 ± 3.8 1200 mg R/S-LA NA Mechanism Double-blind, placebo-controlled, RCT 12 weeks TAC (+) SOD, GPX, MAD (=)

Waslo et al107 20 MS NA LA NA Mechanism Efficacy Placebo-controlled 48 weeks GSH/GSSG ratio (=)

Note: “-” indicates decreased expression or event compared with non-LA group, “+” indicates increased expression or enhanced activity, and “=” 
indicates no statistical difference.
Abbreviations: ADMA, asymmetric dimethylarginine; cAMP, cyclic adenosine monophosphate; EDSS, Expanded Disability Status Scale; 
GPX, glutathione peroxidase; HC, healthy control; ICAM-1, intercellular cell adhesion molecule-1; IL-, interleukin-; INF-γ, interferon-γ; MAD, 
malondialdehyde; MMP-9, matrix metalloprotein-9; NA, not available; PK, pharmacokinetics; SOD, superoxide dismutase; T25FW, Timed 25-Foot 
Walk; TAC, total antioxidant capacity; TGF-β, transforming growth factor-β; TNF-α, tumor necrosis factor-α.
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LA inhibited the activity of immune cells and reduced inflam-
matory infiltration in the CNS. In terms of pathological evidence, 
five studies found that LA reduced CD3+/CD4+ T-cell infiltration 
in the brain and spinal cord, and three studies indicated reduced 
macrophage/microglial infiltration in EAE mice.81,82 Above all, LA 
downregulated the expression of ICAM-1 and VCAM-1 in brain en-
dothelial cells by colocalization analysis, contributing to the impair-
ment of peripheral immune cell migration.81 For T cells, two studies 
revealed that LA increased Treg cell levels and decreased encepha-
litogenic T-cell levels, leading to a lower grade of the inflammatory 
response.72,73 LA also inhibited T-cell activities by reducing the ex-
pression of MMP-9 in a dose-dependent manner to protect BBB in-
tegrity.69,70 Furthermore, LA downregulated CD4 from the surface 
of Jurkat cells in a concentration-dependent manner. Interestingly, 
CD4 inhibitors reduced the severity of EAE symptoms in mice.83 
These findings indicated that LA could effectively decrease the in-
vasion of peripheral immune cells and the inflammatory response in 
the CNS.

NF-KB is a classical proinflammatory transcription factor ex-
isting in the cytoplasm, and it translocates to the nucleus and 
promotes the transcription of TNF-α and IL-6 during the oxidative 
stress.84 On the other hand, LA could directly inhibit the activity 
of NF-KB and its downstream protein expression.85 On the con-
trary, the enhanced antioxidative capability promoted by Nrf2 
would also suppress the NF-KB activity. Besides, Nrf2 can inhibit 
the transcription of the various inflammatory mediators, including 
TNF-α and IL-6 in microglia and astrocytes.86,87 In EAE mice, two 
studies indicated that LA decreased the expression of MMP-9 to 
protect the BBB from immune disruption.69,70 Additionally, LA also 
decreased the expression of TNF-α, IFN-γ, and IL-4 to reduce the 
level of inflammation in EAE mice.73 In future, it is vital to further 
explore the role of NF-KB and Nrf2 in the anti-inflammatory ef-
fects of LA, and thus develop new potential therapeutic targets 
for MS.

Peroxisome proliferator-activated receptor-γ (PPAR-γ) is a 
ligand-activated transcription factor that widely exists in neu-
rons, astrocytes, and microglia.88 PPAR-γ can promote the expres-
sion of catalase and SOD to enhance the antioxidative capability 
and decrease the NF-KB expression to alleviate the immune re-
sponse.89,90 In EAE mice, LA induced the activation of both en-
dogenous and central PPAR-γ and reduced inflammatory injury.72 
More importantly, PPAR-γ can protect neurons from apoptosis by 
regulating the expression of B-cell lymphoma-2 (Bcl-2) and Bcl-2-
associated X protein (Bax).91 In EAE mice, LA increased the popu-
lation of mature oligodendrocytes and decreased the expression 
of caspase-3 and the Bax/Bcl-2 ratio, indicating that LA might 
contribute to maintaining the integrity of axons.32 Additionally, 
LA contributed to the higher viability of retinal ganglion cells and 
increased myelin basic protein expression after over four months 
of administration.73,74 These findings suggested that the LA-PPAR-
γ-neuroprotection pathway might be involved in neurological im-
provement in EAE mice.

3.4  |  Role of LA in clinical trials

Twelve studies based on clinical trials were included to describe the 
role of LA in patients with MS (Table 2). A total of 410 patients were 
included: 38% with RRMS, 38% with SPMS, 4% with PMS, and 20% 
with MS. The average illness duration was 4–30 years. The LA dos-
age was 600–2400 mg/day orally, and seven studies indicated the 
specific form (racemic form = 5; both R-LA and racemic form = 2). 
The average trial duration was 2–96 weeks.

3.4.1  |  LA efficacy and safety

EDSS is the most common method to evaluate the disability se-
verity of patients with MS and has recently been proven to posi-
tively correlate with the mean volume of T1 hypointense lesions.92 
Specifically, the EDSS score in the LA group was stable or slightly 
reduced after 12 weeks, whereas that in the placebo group was 
slightly increased.34,35 Additionally, both baseline EDSS scores in 
the LA cohort were higher than those in the placebo group. Thus, 
the EDSS improvement by LA might be insufficient to compen-
sate for the initial difference. Similarly, the treatment effects of 
DMTs were reported to be dramatically influenced by the baseline 
EDSS scores.93 Therefore, positive consequences can result if the 
follow-up duration is longer. Another study revealed a dramatic 
decrease in the EDSS score after oral administration for at least 
48  weeks; the improvement in the EDSS score was likely corre-
lated with the lowering of soluble ICAM-1.94 For SPMS patients, 
71% of subjects in the placebo cohort showed stable or improved 
EDSS scores, and 61% of patients in the LA cohort appeared the 
same after the 96  weeks follow-up.36 Thus, exploring the long-
term effect on the EDSS score is meaningful and necessary. In 
addition to the EDSS score, LA contributed to a 68% reduction 
in the annualized percent change in brain volume in SPMS sub-
jects after a 2 years follow-up.36 Additionally, Spain reported that 
LA improved the Timed 25-Foot Walk and reduced falling events 
in SPMS patients. Similar improvements in walking performance 
of SPMS subjects treated with LA were also revealed by another 
2 years, double-blind, placebo-controlled RCT.95 Notably, 39 MS 
patients in the LA group showed fewer new enhanced plaques 
in the magnetic resonance imaging exam, indicating its potential 
antirelapse effects.96 Presently, a multicenter placebo-controlled 
RCT is recruiting patients and sets walking performance as the pri-
mary endpoint with comprehensive clinical evaluations.97 In sum-
mary, pilot studies have demonstrated the efficacy of LA though 
the evidence is imitated.

LA appears quite safe, with a compliance rate of 80% to 97% in 
MS patients.44 The most common adverse events are gastrointesti-
nal intolerance and rash. Notably, the oral administration of 600 mg 
of R-LA showed approximately half less gastrointestinal discomfort 
than 1200  mg of the racemic form, while the bioavailability was 
nearly equivalent.98 Taking LA after meals and enteric coating can 
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also improve tolerability.99 Furthermore, one case of maculopapular 
rash with fever was reported after 2400  mg/day for 1  week, and 
the symptoms were resolved only by stopping intake.100 The other 
three cases of rash were found in two double-blind RCTs, but they 
seemed to be milder and only affected the skin.36,101 Consistently, 
in patients with diabetic polyneuropathy or other CNS diseases, 
few AEs were found, and some studies did not set AEs as an end-
point.102–104 Consistent with our results, a meta-analysis including 
71 placebo-controlled clinical studies found that LA was associated 
with no increased risk of AEs, even with pregnancy status.105 For 
future studies, seeking the balance of effective dose and fewer AEs 
will be necessary.

3.4.2  |  LA mechanisms in MS patients

LA showed mixed antioxidative and anti-inflammatory effects 
(Figure  2). A 12  weeks double-blind RCT reported an appar-
ent improvement in serum total antioxidant capacity in 52 RRMS 
subjects.106 However, the specific approach remained confusing 
because no difference was found in the serum GSH:GSSG ratio, 
superoxide dismutase, and GSH peroxidase activity.34,107 Notably, 
LA reduced the content of asymmetric dimethylarginine (a major 
endogenous inhibitor of endothelial NO synthase) in the blood of 
MS patients.108 In future, considering that LA can chelate heavy 
metals, including iron and copper, investigating whether LA can 
function to prevent gadolinium-related contrast magnetic reso-
nance imaging (MRI) will be interesting.109 Additionally, another 
key point is whether improved peripheral antioxidant capacity can 
exactly reflect the redox status in the CNS, a topic that warrants 
investigation. In summary, LA is one of the most promising antioxi-
dants to alleviate oxidative stress in the CNS because of its high 
water and fat solubility.

Regarding immunomodulation, LA protects the BBB from dis-
ruption by peripheral inflammatory cells. On the one hand, MMP-9 
released by T cells degrades components of the extracellular ma-
trix,110 and ROS produced during monocyte binding to ECs result in 
the loss of tight junctions.9 On the contrary, when endothelial cells 
are activated by TNF-α/IFN-γ, ICAM-1 is overexpressed and binds 
to LFA-1, initiating cytoskeletal rearrangement in brain ECs.111,112 
These events that disrupt the BBB explain the finding that high lev-
els of MMP-9/ICAM-1 are present before the appearance of new 
MRI-based gadolinium-enhancing lesions in MS patients.113–115 
In response, a two-week LA supplement decreased the levels 
of serum MMP-9 and ICAM-1 in 33 patients.100 Another twelve 
weeks of LA supplementation decreased the levels of serum IFN-γ 
and IL-4 in 46 RRMS patients, but the serum TNF-α and IL-6 levels 
showed no difference.35 Notably, a recent study found that the oral 
administration of meglumine cAMP promoted BBB integrity, sug-
gesting that LA may maintain the normal functioning condition of 
ECs through a similar effect.116 In summary, by stabilizing the BBB, 
LA can disturb inflammation progression in the CNS. Additionally, 

using LA orally appears to benefit MS patients and help to reduce 
relapse tendency. Future studies should note the clinical hetero-
geneity of a relatively short trial duration, LA forms, and different 
MS stages.

4  |  CONCLUSIONS

We comprehensively summarized the current findings of LA re-
garding pharmacokinetics, efficacy, safety, and mechanisms in 
MS while critically proposing deficiencies and improvements for 
future studies. Overall, LA exerted positive neuroprotective ef-
fects by antioxidation and immunomodulation in both in vitro and 
in vivo experiments. LA decreased the clinical disability scores in 
EAE mice and halted the worsening of EDSS scores without any 
serious AEs in MS patients. Notably, R-LA showed better bioavail-
ability and gastrointestinal tolerance than the same dosage of the 
racemic form. Because demyelination, oxidative stress, and auto-
immunity are typical features of MS, using LA as a dietary supple-
ment or in combination therapy is a hopeful and safe strategy in 
future. The limitations of this study are that a certain form of LA is 
not always reported. Although we tried to contact the authors by 
e-mail, only one replied to us patiently. Second, the outcomes of 
mouse experiments may not be generalizable to patients because 
of the injection administration. Finally, and inevitably, the evidence 
might be incomplete because of the subjectivity of search terms 
and combinations.

To date, the achievements of LA supplementation are exciting, 
but the evidence is not sufficiently strong, being limited primarily by 
the short trial duration and insufficient study quantity. Thus, mul-
ticenter and long-term controlled studies are encouraged to deter-
mine the strength of LA orally, an appropriate dose for long-term 
usage, and the most suitable combination therapy. As our under-
standing of the role of LA improves, we hope to uncover the best 
treatment regimens for MS patients.
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