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Aims Genome-wide association studies (GWASs) have discovered hundreds of common genetic variants for atherosclerot-
ic disease and cardiovascular risk factors. The translation of susceptibility loci into biological mechanisms and targets
for drug discovery remains challenging. Intersecting genetic and gene expression data has led to the identification of
candidate genes. However, previously studied tissues are often non-diseased and heterogeneous in cell composition,
hindering accurate candidate prioritization. Therefore, we analysed single-cell transcriptomics from atherosclerotic
plaques for cell-type-specific expression to identify atherosclerosis-associated candidate gene–cell pairs.

...................................................................................................................................................................................................
Methods
and results

We applied gene-based analyses using GWAS summary statistics from 46 atherosclerotic and cardiovascular dis-
ease, risk factors, and other traits. We then intersected these candidates with single-cell RNA sequencing (scRNA-
seq) data to identify genes specific for individual cell (sub)populations in atherosclerotic plaques. The coronary
artery disease (CAD) loci demonstrated a prominent signal in plaque smooth muscle cells (SMCs) (SKI, KANK2,
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and SORT1) P-adj. = 0.0012, and endothelial cells (ECs) (SLC44A1, ATP2B1) P-adj. = 0.0011. Finally, we used liver-
derived scRNA-seq data and showed hepatocyte-specific enrichment of genes involved in serum lipid levels.

...................................................................................................................................................................................................
Conclusion We discovered novel and known gene–cell pairs pointing to new biological mechanisms of atherosclerotic disease.

We highlight that loci associated with CAD reveal prominent association levels in mainly plaque SMC and EC pop-
ulations. We present an intuitive single-cell transcriptomics-driven workflow rooted in human large-scale genetic
studies to identify putative candidate genes and affected cells associated with cardiovascular traits. Collectively, our
workflow allows for the identification of cell-specific targets relevant for atherosclerosis and can be universally
applied to other complex genetic diseases and traits.
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Introduction

Since the first publication in 2005 on age-related macular degener-
ation,1 genome-wide association studies (GWAS) soared, and to
date, the GWAS Catalogue2 registered over 5000 publications cov-
ering thousands of genetic associations. These efforts also identified

hundreds of common genetic risk loci for cardiovascular diseases
and traits, including coronary artery disease (CAD),3 ischaemic
stroke subtypes,4 coronary artery calcification,5 and carotid intima
and media thickness.6 Despite tremendous socio-economic and
medical progress, cardiovascular disease remains the leading cause
of death,7 highlighting the need for new biomarkers and
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pharmaceutical targets. Previous studies convincingly show that
GWAS offer a solid foundation for innovative drug development8 as
they agnostically identify genetic relationships with diseases and
point to potential causal mechanisms.9

Identifying the causal genes and underlying pathological mecha-
nisms that drive the signal in genetic risk loci is not straightforward.
One possible approach to narrow down the lists of candidate genes
is to utilize gene expression data, by identifying expression quantita-
tive trait loci (eQTLs) that colocalize with genetic risk loci with
expression changes in relevant tissues.10 Alternatively, transcriptome-
wide association studies estimate genetic correlation between tissue-
specific gene expression and complex traits to predict causal relations
between traits.11 However, these powerful methods take advantage of
whole-tissues collected in large biobanks and the variable cell compos-
ition confounds the resulting signal. Because tissues are composed of
many cell types and tissue expression is averaged across all those cells,
the signal from less prevalent but important cell populations is
obscured. In order to test potential therapeutic targets, one requires
suitable functional assays. This in turn requires an idea of the function
and cellular expression of targets, which is complicated by tissue het-
erogeneity. Single-cell transcriptomics enables measurement of cell-
specific expression, cell-to-cell expression variability, transcriptional
noise, or temporal dynamics.12 Intersecting GWAS data with human
transcriptomic single-cell data would increase the resolution both in
terms of candidate gene and more importantly, it would identify the
cell type most relevant for the given disease.

We hypothesized that genetic drivers for atherosclerotic disease
can be found in plaque tissue. We aimed to project GWAS signals for
46 traits directly into a cell-type-specific expression using single-cell
RNA sequencing (scRNA-seq) data derived from atherosclerotic pla-
ques. To this end, we devised a workflow that utilized gene-based
testing to identify candidate genes from GWAS summary statistics
and calculated an enrichment score for each candidate list using ex-
pression profiles from scRNA-seq driven cell populations. This ap-
proach allows us to find the enrichment in expression patterns that
point to specific, and potentially causal, cell populations. We report
that loci associated with CAD reveal prominent association in mainly
plaque smooth muscle cells (SMCs) and endothelial cells (ECs).

Methods

Single-cell sequencing: carotid artery

plaques
Atherosclerotic lesions were collected from 12 female and 26 male
patients undergoing a carotid endarterectomy procedure. All patho-
logical tissue was included in the Athero-Express Biobank Study bio-
bank (AE, www.atheroexpress.nl) at the University Medical Centre
Utrecht (UMCU).13 Plaque processing for single-cell sequencing is
described elsewhere.14 After sequencing, data were processed in an R
3.5 and 4.0 environment15 using Seurat version 3.2.2.16 Mitochondrial
genes were excluded and doublets were omitted by gating for unique
reads per cell (between 400 and 10 000) and total reads per cell (be-
tween 700 and 30 000). Data were corrected for sequencing batches
using the function SCTransform. Clusters were created with 30 prin-
cipal components at resolution 0.8. Multiple iterations of clustering
were used to determine optimal clustering parameters. Population
identities were assigned by evaluating gene expression per individual

cell clusters. Sub-populations of SMCs were determined by isolating
the SMC and EC populations from the complete population of cells
mentioned above and re-assigned clusters. Clusters were created
with 10 principal components at resolution 1.4. New subpopulation
identities were assigned by evaluating gene expression per individual
cell clusters. The newly defined SMC subpopulation identities were
projected onto the SMC populations in the complete scRNA-seq
dataset of atherosclerotic lesions for downstream processing.

Genome-wide association studies summary

statistics
Genome-wide association studies summary statistics were leveraged
from publicly available datasets. Mining these datasets uncovered a pleth-
ora of challenges. Not all GWAS summary statistics are available for
download, can be requested by the authors, and/or only provide the lead
single nucleotide nucleotide polymorphisms (SNPs). Other issues
included ambiguous reports of sample size, genome build, or missing in-
formation such as standard errors and effect sizes. We were able to part-
ly resolve these issues by using a custom pipeline, which automates tasks
such as genome build liftover and SNP alignment and provides a uniform
file format (Supplementary material online, Figure S2A). This significantly
decreased workload and improved downstream applications.

Genome-wide association studies summary statistics were selected by
means of relevance, ‘latest and the largest’ and publicly available, easily ac-
cessible and/or open-source data was given priority. Incomplete sum-
mary statistics were omitted during this phase (Supplementary material
online, Figure S2A). A custom Python17 pipeline (see Data availability) was
used to pre-process GWAS summary statistics and primary quality con-
trol. This primary control step was used to uniformly transform GWAS
summary statistics because of a lack of a standardized format. In short,
our custom pipeline was built to automate effect/other allele alignment
with 1000 Genomes phase 318 release with a maximum frequency dis-
tance of 25%, maximum minor allele frequency (MAF) of 45% for ambiva-
lent variants and lifting genomic positions to hg19 where needed. In
preparation for GWAS alignment, dbSNP153 (GCF1405) was refer-
enced to translate MEGASTROKE rs-ids to genetic positions and to aug-
ment AF, ASD, NICM, and TAGC (GWAS abbreviations are listed in
Supplemental Table 1) with allele frequency information. Standard errors
for HF and NICM were recovered as follows:

Z ¼ signðbetaÞ � abs
�

qnormðp=2Þ
�

SE ¼ beta=Z

Where beta is the effect size, P is the P-value of association which is
quantile normalized using the qnorm-function in R. SE is the standard
error calculated by dividing the beta by Z. Effect sizes were calculated
from odds ratios as beta = log(OR) for BIP, insomnia, IBD, and MDD be-
fore entering our custom pipeline.

The final selection was grouped into one of three categories: athero-
sclerotic disease and other cardiovascular disease (12), risk factors (14),
and other (20). Data were further processed with MAGMA19 (version
1.07) for genome-wide analysis, annotation and characterization of signifi-
cant hits via the FUMA20 web platform (version 1.3.6, accessed June
2020, https://fuma.ctglab.nl/). We applied genome-wide significance
(P < 5� 10-8) and linkage disequilibrium (r2 > 0.05) filtering for clumping
of independent loci within 1000 kb of the lead variant, and included only
variants with MAF >1%. For SVS, logOnset, EvrSmk and SVD no SNP
associations below the genome-wide significance threshold we found.

Intersecting single-cell transcriptomics and GWAS 3
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Therefore lead variant discovery was performed with a relaxed threshold
of 5� 10-6.

Selecting cell population-specific genes
Differentially expressed genes (DEGs) were selected via the Wilcoxon
sum rank test. A gene was considered a DEG if (i) 10% of cells within a
cluster expressed the gene with log2 fold change of at least 0.25; (ii) the
gene passed the Bonferroni adjusted significance threshold of P < 0.05 for
this test. Differentially expressed genes were determined via a ‘one cluster
vs. one cluster’ and ‘one cluster vs. remaining clusters’5 (Supplementary
material online, Figure S2B). This method results in genes specific for a
cluster compared to every other single cluster and genes specific for a
cluster compared to the whole single-cell reference set.

Gene score calculation
Fully processed summary statistics and cell population-specific DEG were
used for calculating gene scores. The background gene set (n = 20 112
genes) was defined as all the genes that are reported and annotated by
MAGMA, regardless of their respective P-value or Z score with
duplicates excluded. We calculated the random gene score per cell-
population by overlapping the genes in this background set with the cell-
population-specific DEG. For every anaysis, the background genes are the
same per GWAS. Z-score threshold for the P-values from MAGMA was
set at 3 and we included a maximum of 150 candidate genes meeting this
threshold (Supplementary material online, Figure S1B). If there were
more than 150 genes meeting the threshold, we only used the first 150.
Calculations were made as follows: (i) per cell population, determine the
overlap of the candidate genes of a GWAS with the cell population-spe-
cific DEG. (ii) Score each of these genes according to average cell popula-
tion expression: assign one point for expression between 1 and 2, and
two points for expression >2 and 0 points for expression <1. Only genes
that are cell population-specific receive a score. Assign the points to the
genes from the random candidate gene list in the same way
(Supplementary material online, Figure S2Cii). (iii) Compare the scores
from the candidate genes with the scores of the random genes via one-
tailed Wilcoxon Rank sum test in R and adjust the results per GWAS for
multiple testing using the Benjamini–Hochberg method. Adjusted P-val-
ues smaller than 0.1 (10% false discovery rate) were considered signifi-
cant (Supplementary material online, Figure S2Ciii). Enrichment was
defined as the fold change of the mean of the gene scores divided over
the mean of the gene scores in the random set. All scripts are available on
GitHub (see Data availability).

Results

Single-cell RNA-seq of atherosclerotic
plaques reveals 18 cell populations
We have expanded our previously published14 scRNA-seq datasets
of human atherosclerotic plaque cells in a cohort which now includes
38 patients and identified 18 cell populations amongst 6191 cells.
These expanded datasets allowed us to map the genetic loci not only
to main cell types (e.g. SMCs) but also to more specific cell subtypes
(e.g. synthetic, contractile or transitioning SMCs)—increasing reso-
lution compared to the previous dataset. By combining known and
recently published sets of markers we identified clusters of lympho-
cytes, macrophages, mast cells, ECs, and SMCs (Figure 1A). This data
is available for interactive exploration via the online tool Plaqview21

accessible on www.plaqview.com. Notably, the expression of
selected, widely studied GWAS targets for CAD (EDN1, HDAC9,

NOS3, VEGFA, FN1, APOE, APOB, SMAD3, PCSK9, and LDLR) clearly
demonstrates cell-specific patterns (Figure 1B). This underscores the
need for a systematic analysis using large-scale GWAS summary sta-
tistics and motivated us to devise an intuitive two-stage approach.

Gene-based analyses of atherosclerotic
diseases and cell population-specific
genes
First, we aimed to identify trait-associated genes using GWAS sum-
mary statistics by aggregating per-variant statistics and to calculate an
empirically derived P-value for a given gene. Thus, gene-trait associa-
tions would be agnostically derived and solely based on genetic sig-
nals. To do this, we collected and partitioned GWAS summary
statistics for 46 traits across 3 categories: atherosclerotic disease and
other cardiovascular disease (12), risk factors (14), and other (20)
(Supplementary material online, Table S1 and Figure S1A). From these
GWASs, 40 were performed on population with European ancestry,
and the remaining 6 had mixed or other ancestries. Next, to identify
genes associated with individual traits we performed gene-based test-
ing using MAGMA19 per individual GWAS. Genes mapped by
gene-based testing are referred to as candidate genes (Supplementary
material online, Figure S2A and Data).

Second, we aimed for an unbiased selection of genes that would
best represent each cell population in a given dataset (Supplementary
material online, Figure S2B). Per tissue, these genes were selected
through differential gene expression and include genes that are over-
expressed in specific cell populations compared to all other cells
(one vs. all) or compared to any individual cell cluster (one vs. one).14

This approach eliminates ubiquitously expressed genes and genes
with low expression without the need of a predefined list
(Supplementary material online, Figure S4) and identifies a similar
number of cell-specific genes in each population. Cell population-
specific genes will be further referred to as differentially expressed
genes (DEGs). For cell populations in the atherosclerotic plaque, the
average number of DEG was 461, with the lowest 307 for B Cells II
and highest 678 DEGs for T Cells III.

Plaque cell populations show specific
enrichment of genome-wide association
studies candidate genes
To test our hypothesis that the genetic drivers for atherosclerotic
disease can be found in plaque tissue, we applied our workflow on
cardiovascular candidate genes and the DEG sets from individual cell
types present in the atherosclerotic plaque (Supplementary material
online, Figures S3A and C, Figure S4, Table S2, and Data). The signals we
observed were independent of the total number of DEGs in each cell
population (Supplementary material online, Figure S3C), and did not
show a bias towards GWAS sample size (Supplementary material on-
line, Figure S1C) or trait heritability (Supplementary material online,
Figure S1D). We found cell-specific enrichment for different GWAS
in the atherosclerotic disease category, which was mainly observed in
ECs and SMCs. Stroke candidate genes were enriched in EC popula-
tions, Regulatory T Cells, and B Cells II (Figure 3A).
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Smooth muscle cells are predominantly
associated with coronary artery disease
genes
By highlighting the overlap between plaque-specific DEGs and candi-
date genes for CAD, we observed a significant enrichment in SMCs
(P-adj. = 0.0012, 3.1 fold enrichment) and ECI (P-adj. = 0.0011, 2.7
fold enrichment) populations (Figure 2A). All P-values and fold enrich-
ment values are listed in Supplementary material online, Table S2. This
uncovered well-studied GWAS loci such as APOE, COL4A1, and
COL4A2. The remainder of the overlap is driven by KANK2 and SORT1
in SMCs, SLC44A1 and ATP2B1 in ECI (Figure 2B). KANK2 belongs to
the KANK protein family which plays a role in cytoskeletal function.
SKI expression was present in both cell populations (Figure 2C). This
proto-oncogene inhibits TGF-beta signalling.22 Interestingly, while
using the single-cell transcriptomics enabled us to pinpoint specific
cell (sub)populations, these potential targets exhibited ubiquitous ex-
pression in bulk transcriptomics data from GTEx tissue samples
(Figure 2D). Notably, CD14þCD68þ Macrophages III showed an en-
richment of 4.3 for CAD with genes APOE, SKI, and HNRNPUL1 but
did not meet the significance threshold (P-adj. = 0.19).

To verify our results we used an independent scRNA-seq dataset
of carotid artery plaques by Pan et al.23 (Supplementary material on-
line, Figure S3B and D). The cell population labels broadly correspond
between datasets (Supplementary material online, Figure S3E).
The patterns for enrichment are similar between datasets

(Supplementary material online, Figure S3A and B). We found that
CAD, coronary artery calcification, and plaque presence candidate
genes were enriched in the fibrochondrocyte cell population
(Figure 3B), which corresponds to ACTA2þ SMCs cells in our data-
set. For CAD, the enriched was driven by genes CDKN2A,
COL4A1, COL4A2, APOC1, APOE, and CXCL12. Similar to the genes
found in our datasets in SMCs and ECs (Supplementary material on-
line, Table S2).

Endothelial cells are enriched for
ischaemic stroke-associated genes
Atherosclerotic disease is one of the major culprits underlying stroke,
with carotid plaques being the main driver of large artery stroke. We
subsequently investigated overlap of GWAS-associated genes for stroke
subtypes any stroke (AS) and any ischaemic stroke (IS) and found they
were predominantly enriched in ECI (AS: P-adj. = 0.011, 2.7 fold enrich-
ment; IS: P-adj = 0.077, 2.5 fold enrichment) and ECII (AS: P-adj =
1.9� 10-5, 3.9 fold enrichment; IS: P-adj = 0.023, 3.2 fold enrichment)
subtypes (Figure 3A). Overlapping genes between AS and cell popula-
tions include ESAM, LMNA, and SLC44A2 (Figure 3B). Soluble ESAM (EC
adhesion molecule) levels have been correlated to myocardial infarction
and heart failure.24 Lmna deficient mouse models develop cardiovascular
disease at an accelerated pace due to premature ageing.25 Of note, ex-
pression of these genes was not specific to vascular derived tissue of
GTEx when using bulk transcriptomics data, suggesting that our findings
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are cell population and tissue specific (Figure 3C). No significant enrich-
ment is found for IS in SMCs, but the cell population-specific signal in
ECI and ECII is largely different from AS (Figure 3D).

Large artery stroke (LAS) is a subtype of IS. Strikingly, we see en-
richment in CD3þ Regulatory T Cells and CD79Aþ B Cells II (plasma
cells) (P-adj = 0.026 and P-adj = 0.021, respectively) populations for
LAS (Figure 3E). Suggesting the involvement of the adaptive immune
system on the development of the LAS phenotype.

Transitional smooth muscle cells
enriched for atherosclerotic disease
candidate genes
Plaque ACTA2þ SMCs can be further divided into three sub-
populations with a distinct phenotype; Synthetic SMCs, contractile
SMCs, and a smaller cell population consisting of SMCs with an inter-
mediate phenotype (transitional SMCs) (Figure 4A and B, Supplementary
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..material online, Figure S5A and Table S2). To explore if we can narrow
down the signal from SMCs into a specific SMC subtype, we subjected
this subset of plaque cells to our workflow (Supplementary material on-
line, Figure S5B and C). This revealed that the majority of the signal can
be found in transitional SMCs. This population is predominantly
enriched for CAD (P-adj. = 0.026, 2.4 fold enrichment), carotid intima-
media thickness (cIMT) (P-adj. = 0.027, 2.4 fold enrichment), and plaque
presence (P-adj. = 0.081, 2.3 fold enrichment) (Figure 4C). Intima-media
thickness is a commonly used tool to measure atherosclerosis.26 Signal
for LAS was present in transitional and synthetic SMCs with unique hits
for each cell population (Figure 4D).

To test the robustness of these results, we have repeated the ana-
lysis with the other public dataset (Pan et al.). For CAD, the overlap

between transitional SMCs and corresponding ‘Fibrochondrocytes’
in Pan et al. (Supplementary material online, Figure S5D and E)
showed significant enrichment and again identified a largely overlap-
ping set of commonly studied GWAS loci COL4A1, COL4A2, APOC1,
APOE, and CXCL12.

Functional assessment of smooth muscle
cell-associated candidates
To demonstrate the potential role of newly identified gene-cell pairs
in atherosclerosis-relevant process we selected three genes enriched
in the SMC population of plaques. SKI, KANK2, and EDNRA are CAD
candidate genes and are currently understudied in relation to athero-
sclerotic disease in this cell population. Making them possible
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..interesting targets for further functional studies. To investigate the
role of these genes in SMCs, we functionally characterized SMCs
from the ascending aortas in 151 healthy and diverse donors for cel-
lular migration, proliferation, and calcification.27 KANK2 gene expres-
sion is correlated with proliferation under different stimuli (P-adj. <
0.1) and was negatively correlated with calcification in quiescent cells
[Calcification Osteo: P-adj = 0.0058; Calcification (Pi): P-adj 0.069]
(Figure 5A, Supplementary material online, Table S5). Under all stimuli,
the response was positive, except upon TGFb1 exposure. SKI ex-
pression positively correlates with calcification in proliferative cells
(P-adj = 0.069) but has a negative response towards TGFb1-induced
proliferation (P-adj = 0.069, R -0.21) (Figure 5A, Supplementary ma-
terial online, Table S5). EDNRA was negatively correlated with prolif-
eration response to IL1b (P-adj. = 0.038) and calcification (P-adj =

0.062) in non-proliferative cells and showed a positive correlation in
proliferative cells for migration (P-adj = 0.069) (Figure 5A,
Supplementary material online, Table S5).

Lipid-related risk factors are enriched in
liver hepatocyte populations
Causal mechanisms for atherosclerosis have been linked to lipid
metabolic processes active in the liver and blood glucose levels. This
offered us the opportunity to assess the robustness of our approach
across tissues and diseases. We acquired published scRNA-seq data-
sets of human liver cells28 and human pancreatic Langerhans islet
cells29 to identify possible cell- and disease-specific targets.
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Since one of the major liver functions is lipid metabolism, we

expected strong signals for candidate genes involved in triglycerides
levels. In line with our expectations, these GWASs indeed show the
strongest signal in hepatocytes #3, #4, and #5 driven by several apoli-
poprotein genes (Supplementary material online, Figure S6A and C,
Table S2).

Langerhans islet cells overall showed weak enrichments for all
atherosclerosis-related GWASs (Supplementary material online,
Figure S5B and D). Signal for CAD in endothelial and mesenchymal
populations overlap with hits in comparable cell populations in
plaque (Supplementary material online, Table S2). We could detect
significant overlap of type 2 diabetes-associated genes with beta cells
(P-adj. = 0.001) driven by INS, WFS1, and FTO amongst others
(Supplementary material online, Table S2).

Altogether, we show that candidate genes for atherosclerotic dis-
ease are significantly enriched in EC and SMC populations of athero-
sclerotic plaque, notably in transitional SMCs. Stroke-related genes
were enriched in ECs and lipid loci were found enriched in hepato-
cytes. Pancreatic beta cells were enriched for body mass index (BMI)
candidate genes. Interestingly, only limited signals were observed in
the cells of the adaptive immune system suggesting the genetic com-
ponent for atherosclerosis is rooted in the structural cells of the ves-
sel. We selected three candidate genes enriched in SMCs for
functional testing in cells of ascending aortas for cellular calcification,
proliferation and migration that showed that KANK2, SKI, and EDNRA
expression correlated with calcification, migration, and proliferation
in vascular SMCs.

Discussion

Post-GWAS analyses aiming to identify candidate genes for transla-
tion into clinical care are not straightforward. The thousands of var-
iants associated with complex traits, including cardiovascular
diseases, have made it abundantly clear that many genes contribute
to disease risk and progression. For instance, GWAS for CAD have
identified 163 loci linking to hundreds of candidate genes.3 Further
efforts like chromatin interaction mapping linked almost 300 add-
itional gene targets for atherosclerotic disease via distal chromatin
interactions.14 This adds another layer to candidate gene prioritiza-
tion. Selecting causal GWAS loci for functional testing can be
deduced with vast knowledge of the trait or disease, but this remains
speculative. There are numerous ways to accelerate the path to
translational research. The intersection of loci found amongst differ-
ent GWAS related to the same trait or disease can highlight some of
the primary genes involved but, the cellular resolution is still
lacking.4,30

Overlapping GWAS hits with pathways or within gene networks
offers more context to study the genes. However, this is highly de-
pendent on knowledge of the respective pathways and networks,
and locating the relevant key players in the network is not
indisputable.31

Colocalization of tissue-specific eQTLs10,32,33 with GWAS data
provides another alternative that can be used to estimate if there are
overlapping causal variants in both datasets. For example, a recent
study on type 2 diabetes leveraged publicly available eQTL data and a
separate pancreatic dataset to find targets for glucose- and insulin-

related trait loci.10 In concordance to our data, trait-associated genes
are expressed in pancreatic islet tissue. However, cell population-
specific signals are lacking and eQTL signals can be confounded by
variability in tissue cell composition. Currently, the first efforts are
being made to study eQTLs in a single-cell space, with single-cell
quantification of gene expression in disease relevant tissue. With this
method, it is possible to detangle the effect of SNPs on the single-cell
and patient-specific level and construct personalized gene regulatory
networks.34,35

Another straightforward approach to identify the causative genes
is overlapping the expression profiles of different tissues and organs
to GWAS candidate genes. Utilizing bulk RNA sequencing data ap-
plicable to the GWAS helps to find targets that are directly acting in
the affected tissue. This powerful approach has one major drawback:
the data are composed of multiple cell populations and this signal is
difficult to deconvolute into individual cell populations. It is especially
limiting when looking for cells that are present in almost all tissues—
like ECs or SMCs. We show here that these bulk RNA tissues
approaches can be misleading due to lack of specific expression pat-
terns for relevant GWAS loci in specific tissue, like vascular wall tis-
sue (Figure 2E). On the other hand, the overlap with single-cell
transcriptomics can detect significant overlaps in distinct cell types
such as ECs.

Here, we present a possible approach to the prioritization prob-
lem. We projected GWAS loci directly into single-cell transcriptom-
ics datasets derived from disease-relevant tissue. This allowed us to
identify both known and novel gene targets together with their asso-
ciated cell populations. Notably, the CAD-associated gene SKI is sig-
nificantly enriched in SMC and EC populations (Figure 2A). SKI inhibits
TGF-beta signalling,22 which plays a major role in atherosclerotic dis-
ease progression by controlling processes such as cell proliferation
and matrix formation. Consequently, SKI increases lesion size in
LDR-/- mice.36 Another identified gene—KANK2 plays a role in cyto-
skeletal function by reducing the cell’s ability to migrate by activating
TALIN.37 This gene is specifically expressed in the SMC population of
plaques. Possible impairment of cell mobility by KANK2 could lead to
inefficient SMC migration towards the cap resulting in an unstable
plaque phenotype. Interestingly, our functional analysis of KANK2
showed a positive association between gene expression and cell mi-
gration in quiescent and proliferative cells of SMCs from ascending
aortas (R = 0.15 and 0.2, respectively) (Supplementary material on-
line, Table S5)—suggesting more complex mechanisms. Follow-up
experiments creating gene-deficient primary cell lines derived from
atherosclerotic plaques to study the molecular mechanistic of those
genes can provide more information of its role in atherosclerosis.38

Notably, the CAD-associated locus in the vicinity of KANK2 also con-
tains LDLR gene (Figure 5B, bottom). Even though LDLR involvement
in atherosclerosis is widely accepted, we were able to show that
KANK2 is another strong candidate in this region as it also shows a
strong correlation with SMC proliferation (Figure 5A). This also dem-
onstrates that our approach can identify genes that are located more
further from the lead SNP but are positioned within same broader
regulatory domain (Figure 5B)—as based on Hi-C data from IMR90
fibroblast cells39 (Figure 5B, top).

Currently, 32 stroke loci have been implicated by GWAS.4 From
the new main stroke loci found by Malik et al., only SLC44A2 was sig-
nificantly enriched in scRNA-seq populations. However, we identified
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..other potential targets in SMCs, ECs and in B cells, and regulatory T
cell populations (Figure 3A). One of the targets, ESAM, was not yet
directly linked to atherosclerosis but is known to enhance vascular
permeability in selective tissues40 and could therefore contribute to
the influx of cholesterol and inflammatory cells in the arteries contri-
buting to the stroke phenotype. Another target, Gs-coupled recep-
tor calcitonin receptor-like receptor (CALCRL) is expressed in both
ECI and ECII populations. Activation of this receptor leads to an anti-
inflammatory response in ECs. Subsequently, CALCRL deficient mice
present with more advanced atherosclerotic lesions.41 A recent
study by Örd et al.42 researched the enrichment of CAD, IS, and
seven other cardiometabolic GWAS signals in scATAC-seq peaks of
carotid artery plaques. Similarly, they report enrichment of CAD and
stroke loci in SMCs and ECs and total cholesterol loci in
macrophages.

Remarkable is the absence of significant enrichment in the cells of
the adaptive immune system of the plaque for CAD. Out of six T-cell
populations, four exhibited the enrichment of 0.00 and CD3þCD8Aþ

T cells II and II showed enrichment of 1.3 and 0.37, respectively, indi-
cating that there is no or very little overlap between CAD candidate
genes and cell population-specific DEGs. This suggests that the genetic
component of atherosclerotic disease is not rooted in the adaptive im-
mune system but rather in the structural cells of the vessel and influen-
ces the integrity of the vascular wall or plaque stability.

Our workflow can be generalized to other single-cell transcrip-
tomics datasets and complex traits. We applied it to scRNA-seq data
from tissues with expected causal involvement in atherosclerotic dis-
ease: human liver cells and human pancreatic Langerhans Islet cells.
Genome-wide association studies studying lipid levels were associ-
ated with hepatocyte subsets but in particular subsets Hep3, Hep4,
and Hep5 (Supplementary material online, Figure S6A). It suggests
that these risk factors for atherosclerosis have a stronger biological
foundation in lipid metabolism in the liver rather than local lipid me-
tabolism in the plaque. Langerhans Islet cells show less prominent sig-
nals for our selected GWAS, suggesting that the genetic mechanisms
involved in atherosclerosis do not have a local component in the pan-
creas (Supplementary material online, Figure S6B).

Little to no signal can be observed for GWASs that have no relation
to the cells composing the atherosclerotic plaque, such as height, can-
cers and congnition-related traits such as bipolar disorder and neuroti-
cism (Supplementary material online, Figure S3A). Yet, these GWASs
have ample candidate genes and considerable GWAS sample size—
suggesting the specificity of our approach. (Supplementary material on-
line, Figure S1B and C, Table S1). Similarly, no signal for BMI is found in
plaque cell populations, intuitively confirming that the mechanisms
underlying obesity cannot be accounted for in plaque tissue.43

In highly heterogeneous tissues, such as atherosclerotic plaque,
multiple genes can be shared amongst the same class of cell popula-
tions (e.g. all ECs), whilst they are lacking in others. To resolve this
problem and to keep such genes as cell type-specific, we imple-
mented an approach that can unambiguously uncover cell-specific
genes without the need of a predefined list of ubiquitously expressed
genes. Although this method is inclusive, the balance between the suf-
ficient number of DEGs and their specificity can be adapted depend-
ing on the scRNA-seq dataset in question.

Our approach, however, is subject to several limitations. In our
workflow, a bias may be introduced by low-powered GWAS, or by

threshold introduced in the selection of candidate genes. The depth
and quality of the scRNA sequencing is a another limiting factor. The
amount and kind of RNA that can be detected and favours the most
abundant genes with highest mRNA counts per cell. As a result certain
gene classes, like transcription factors or signalling molecules are more
difficult to detect. At the same time, cell types like neutrophils and
foam cells in atherosclerotic plaque are difficult to capture by single-
cell transcriptomics and might be underrepresented or completely
missed. Digestion protocols, tissue quality, and sample handling also af-
fect the quality and/or cell composition of scRNA-seq data. Finally, our
workflow does not utilize the existing information about eQTLs, non-
coding DNA regulatory units and chromatin organization. Integration
of these datasets has potential to increase the accuracy and number of
identified target genes. However, we aimed to remain agnostic with re-
spect to identifying candidate genes based on genetic data, and thus
designed our experiment using GWAS data only. For instance, integra-
tion with Hi-C data would be biased towards a specific cell type in a
specific tissue, and favour the selection of genes expression in that
given tissue and thus bias the cell type enrichment analysis. Our ap-
proach moves atherosclerotic candidate genes forward based on the
gene-based genetic association and the differential expression plaques.

In conclusion, we systematically projected GWAS summary statistics
for 46 traits directly into single-cell transcriptomic profiles across 18
distinct cell populations derived from plaques. We devised a two-step
workflow that (i) leverages large-scale human genetic data to prioritize
trait-associated genes, and (ii) calculates a cell-type-specific enrichment
score. We uncovered 11 potential cell population-specific targets for
CAD and provided functional evidence for KANK2, SKI, and EDNRA in
SMCs. Additionally, we verified the robustness and transportability of
our approach by confirming the tissue- and trait-specific enrichment of
circulating lipid genes in liver and glycaemic disorder genes in pancreatic
tissue. The principal strength of our framework is the cell-specific reso-
lution it offers for disease-associated genes mapped to GWAS loci,
thus putting the emphasis on prioritization of candidates (instead of
adding to an ever-growing candidate-list) and accelerating the path to
functional testing.
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of human atherosclerotic plaques from the AtheroExpress biobank
study. She is using single-cell RNAseq data to study complex genetic loci
and molecular mechanisms of cell plasticity such as endoMT.

Supplementary material

Supplementary material is available at European Heart Journal Open
online.
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S, Seshadri S, Kurl S, Heckbert SR, Ring S, Harris TB, Lehtimäki T, Galesloot TE,
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Thery M, Dunn AR, Fässler R. Kank2 activates talin, reduces force transduction
across integrins and induces central adhesion formation. Nat Cell Biol 2016;18:
941–953.

38. Buono MF, Slenders L, Wesseling M, Hartman RJG, Monaco C, den Ruijter HM,
Pasterkamp G, Mokry M. The changing landscape of the vulnerable plaque: a call
for fine-tuning of preclinical models. Vascul Pharmacol 2021;141:106924.

39. Rao SSP, Huntley MH, Durand NC, Stamenova EK, Bochkov ID, Robinson JT,
Sanborn AL, Machol I, Omer AD, Lander ES, Aiden EL. A 3D map of the human
genome at kilobase resolution reveals principles of chromatin looping. Cell 2014;
159:1665–1680.

40. Duong CN, Nottebaum AF, Butz S, Volkery S, Zeuschner D, Stehling M,
Vestweber D. Interference with ESAM (Endothelial Cell-Selective Adhesion
Molecule) plus vascular endothelial-cadherin causes immediate lethality and lung-
specific blood coagulation. Arterioscler Thromb Vasc Biol 2020;40:378–393.
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Translational perspective Genome-wide association studies (GWAS) identified a large number of genomic loci associated with
atherosclerotic disease. The translation of these results into drug development and faster diagnostics remains challenging. With our ap-
proach, we cross-reference the GWAS findings for atherosclerotic disease with single-cell RNA sequencing data of disease-relevant tis-
sue and bring the GWAS findings closer to the functional and mechanistic studies.
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