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Abstract

Higher socio-economic status (SES) has been proposed to have facilitating and protective effects on brain and cognition. We

ask whether relationships between SES, brain volumes and cognitive ability differ across cohorts, by age and national

origin. European and US cohorts covering the lifespan were studied (4–97 years, N =500 000; 54 000 w/brain imaging). There

was substantial heterogeneity across cohorts for all associations. Education was positively related to intracranial (ICV) and

total gray matter (GM) volume. Income was related to ICV, but not GM. We did not observe reliable differences in

associations as a function of age. SES was more strongly related to brain and cognition in US than European cohorts.

Sample representativity varies, and this study cannot identify mechanisms underlying differences in associations across

cohorts. Differences in neuroanatomical volumes partially explained SES–cognition relationships. SES was more strongly

related to ICV than to GM, implying that SES–cognition relations in adulthood are less likely grounded in neuroprotective

effects on GM volume in aging. The relatively stronger SES–ICV associations rather are compatible with SES–brain volume

relationships being established early in life, as ICV stabilizes in childhood. The findings underscore that SES has no uniform

association with, or impact on, brain and cognition.
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Introduction

Higher socio-economic status (SES), indexed by education and

income, has been proposed to have facilitating and protective

effects on brain and cognition (Livingston et al. 2017; Ritchie

and Tucker-Drob 2018; Staff et al. 2018; Talboom et al. 2019), and

has been used as a proxy for cognitive reserve over the lifespan

(Jefferson et al. 2011). Positive relationships between education,

income, general cognitive ability (GCA), and brain volumes have

been reported in development, adulthood, and aging (Strenze

2007; Brooks et al. 2011; Noble et al. 2015; Walhovd et al. 2016;

Farah 2017; Livingston et al. 2017; Ritchie and Tucker-Drob 2018;

Judd et al. 2020; Lövden et al. in press).While higher SES has been

seen as a dimensional facilitating or protective factor, lower SES

has been indicated to confer risk to brain and cognitive function,

particularly in childhood (Hanson et al. 2013; Hair et al. 2015).

SES variables are also frequently included in analyses, for

example, on biological substrates of mental health, as “nuisance

variables,” that is, covariates of no interest, which effects are

not reported (Farah 2019). However, SES variables may not have

a unified meaning or relation to brain and cognition across

cohorts of varying ages and societal contexts (Tucker-Drob

and Bates 2016; Ahrenfeldt et al. 2018). As indicated from the

above discussion of protective and risk effects, any relationship

between SES, brain and cognition may not be linear. There

may well be stronger effects specific to certain ranges of SES,

dependent on the context.

While higher SES has been held to be neuroprotective

(Livingston et al. 2017; Ritchie and Tucker-Drob 2018; Staff et al.

2018), evidence also exists for it being neuroselective, that is,

it may be a marker of other favorable traits, including genetics

(Ericsson et al. 2017; Selzam et al. 2017). Both genes and envi-

ronments vary with SES (Belsky et al. 2018), and any observed

relationship does not need to be causal in nature. Indeed, since

children inherit both genes and social class from parents,

genetics linked to SES, such as education, could be spurious

correlates of socially, rather than genetically transmitted advan-

tages (Belsky et al. 2018). Differences in SES–brain–cognition

associations across cohorts have implications for whether

relationships can be assumed to arise from direct or indirect

effects of SES in early development or aging. For instance, if

education has a neuroprotective effect, then we would expect

people with higher education to show less brain atrophy,

and hence greater neuroanatomical volumes and also better

cognitive function in aging. However, if there is a neuroselective

effect of education, one might expect people with higher brain

volumes and cognitive function to get more education. While

a cross-sectional study such as the present cannot make fine-

grained distinctions between the two, and cannot make causal

interpretations, we can say something as to whether higher SES

may be associated with greater neuroanatomical volumes and

cognitive function, that is, a neuroprotective effect in aging, for

instance. Then we would expect higher SES to be specifically

related to brain volumes and cognitive function in older

adulthood. On the other hand, if higher SES is associated with

enhanced maturation, we would expect to see equally strong

associations with childhood cognitive function, and stronger

relationships to ICV, as a proxy for maximal neuroanatomical

volume. More generally, different relationships across cohorts

have implications for whether, when and how brain and cog-

nitive function can be impacted by SES, or vice versa. So, while

this cross-sectional multisample lifespan study cannot identify

causal effects, we think the study is suited to indicate whether

some causal mechanisms may be less likely to apply in general.

Here we ask whether relationships between SES, brain vol-

umes and GCA differ significantly across cohorts—childhood/

adolescence and adulthood, European or US origin—and to

what extent brain variables explain SES–cognition relationships
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across cohorts.We address these questions by investigating how

SES variables in different cohorts originating in seven European

countries, as well as in the US, relate to measures of brain struc-

ture and cognitive function. We test whether age-differences

(child and adolescent development vs. adulthood/aging) and

differences in sample origin (within Europe and Europe vs. US)

are of importance to the relationships. A further question is

to what extent SES may exert influence on cognition through

effects on brain structure through the lifespan, for example,

either affecting brain development or aging. It should be noted

that neither causality nor direction of causality is given. For

instance, cognitive function could affect SES directly. People

with higher cognitive ability may seek to have more education

or income,and thismay ormaynot lead to, or originate in,health

behaviors that relate to brain volumes. Regardless of a possible

bidirectional and complex nature, a relationship between SES

and cognition may be mediated by brain characteristics. While

the present data set does not lend itself to a classic mediation

analysis, we analyzed partial correlations to test to what extent

SES–cognition relationships change when adjusting for brain

variables. Note that we do not perform this analysis to test

a model of causality in terms of time-dependent effects of

SES on brain and cognition. Indeed, cross-sectional analyses

of longitudinal mediation are prone to bias (Maxwell and Cole

2007). However, even if SES is a distant proxy, it may be a proxy

for something that affects both brain and cognition, and hence

manifest in shared variance among the constructs.

The neural substrate for GCA is distributed across the

brain (Fjell et al. 2015; Walhovd et al. 2016). Also anatomically

widespread associations between SES and neuroanatomical

features have been reported (Noble et al. 2015; McDermott

et al. 2018). Hence, gross gray matter (GM) volume seems a

good proxy for the brain foundations of SES–GCA relationships.

GM volume is known to increase sharply along with cortical

surface expansion in early childhood (Li et al. 2013), and

decrease in aging along with cortical thinning and subcortical

volume reductions (Storsve et al. 2014). Change in intracranial

volume (ICV), on the other hand, comes to a halt after an

initial period of development, and little if any age differences

are seen after childhood (Pfefferbaum et al. 1994; Mills et al.

2016). ICV therefore may serve as a proxy for maximal brain

size (van Loenhoud et al. 2018). Hence, if SES variables are

linked to ICV, this may be seen as a relationship intrinsic to

neurodevelopment. If however, SES is related to GM volume in

adult and aging populations when ICV is controlled for, then

this may relate to variance in brain maintenance (Nyberg et al.

2012) or neurodegeneration.

As for sample origin, one debate has centered on possi-

bly greater effects of variation in SES in US than in Europe

(Scarr-Salapatek 1971; Tucker-Drob and Bates 2016; de Zeeuw

and Boomsma 2017; Figlio et al. 2017). This could be the case

if the extent of stratification by SES differs between US and

Europe, or if SES variation is greater in the US (Tucker-Drob

and Bates 2016). Different effects of SES could also to a greater

extent reflect differences in opportunity for optimal develop-

ment or maintenance of brain structure and cognition in US

than in Europe. For instance, differences in income could be

more linked to health and education in the US where higher

education and health services are not provided as part of a

free or minimal-cost welfare system in contrast to some Euro-

pean countries. It should be noted, however, that variation in

socioeconomic inequalities, educational systems, and welfare

states is also substantial across birth cohorts and within Europe

(Esping-Andersen Gs 1999). For instance, the UK provides a

national health system, but while population health is worse in

the US than in England, similar inequality in health by income

have been found (Martinson 2012). Such income gradients may

also apply to neurocognitive characteristics. Furthermore, the

currently included cohorts are bound to vary in population

representativeness, sowhile analyses herewill illuminate differ-

ences across the specific cohorts studied, they may not readily

be generalized to national or societal differences more broadly.

Finally, there is evidence that income may be more related

to brain and cognition within lower income cohorts (Decker

et al. 2020). While this is of interest to test, we do not have

sufficient cross-cohort information to address the question of

effects of poverty. Defining part of the sample as poor according

to national criteria for poverty would require information of

household income, size, and composition, which is not readily

available for all the samples.Additionally, the criteria for poverty

vary between the US and the EU and associated countries (Cam-

inada and Martin 2011). Trying to single out individuals defined

as poor in the present samples would thus be complicated

and yield little power. It is difficult to set one meaningful cut-

off for what may constitute lower income. Any strict division

would be speculative. Hence, we chose to tentatively divide

the samples by median split by income to address whether

correlations with brain and cognition were significantly higher

in the lower halves. In 2018, it was estimated that 1 in 6 children

in the US were poor (Children’s Defense Fund 2020). In view

of the big US ABCD child cohort being recruited specifically

to be demographically representative and such representative-

ness not being secured for the EU cohorts (see further discus-

sion below), we tentatively also performed comparison analyses

across US and European cohorts where the lowest 15% income

participants were omitted from the US samples.

We study multiple samples within the Lifebrain consortium

(Walhovd et al. 2018), and also other European and US databases

with SES, brain imaging and GCA measures to which Lifebrain

researchers had access, namely the UK Biobank (UKB) (Sudlow

et al. 2015; Alfaro-Almagro et al. 2018), the Human Connectome

Project (HCP) (Van Essen et al. 2012), and the Adolescent Brain

Cognitive Development (ABCD) study (Casey et al. 2018; Garavan

et al. 2018). We calculated per-site and across-site effect sizes

for SES–brain–cognition relationships. The major goal of the

Lifebrain consortium is to ensure a fuller exploitation, harmo-

nization and enrichment of some of the largest longitudinal

studies of age differences in brain and cognition in Europe.

Hence, a stream-lined analysis of possible differences in SES–

brain–cognition relationships in these data sets, in combina-

tion with other European and US databases, will serve as an

assessment of the effect sizes of these relationships, and how

they differ across cohorts. Such an encompassing multinational

mega-analysis on SES–brain–cognition relationships across the

lifespan is a novel undertaking.

Based on theoretical perspectives and evidence reviewed

above, we hypothesized that SES–brain–cognition relationships

would be found both in development and in adulthood/ag-

ing. We expected the relationships to vary in strength across

cohorts, regardless of age.We also expected differences between

US and European cohorts, but both regional differences and

differences in sample characteristics within each subset may

be greater than general differences between continents. Based

on the variable nature of previously reported relationships, we

hypothesized that SES–cognition relationships could partly be

explained by differences in brain structure.



842 Cerebral Cortex, 2022, Vol. 32, No. 4

Table 1 Overview of sample characteristics of included cohorts

Origin Study N M Age Age range Sex M/F N MRI N Flu N Cry N Edu N Inc

Norway LCBC-Dev 767 11 4–20 0.49 767 765 767 646 374

Norway LCBC-Adult 1148 41 20–93 0.33 1148 1125 1123 775 371

Sweden Betula 366 63 26–97 0.48 334 364 364 363 NA

Denmark HUBU 86 14 8–18 0.43 84 — — 86 65

Germany BASE-II 1828 62 24–88 0.49 414 1799 — 1590 249

Netherlands NESDA 288 38 18–57 0.32 288 — — 288 283

Spain UB 305 67 36–89 0.36 299 128 226 305 —

UK Cam-CAN 708 55 18–88 0.49 648 660 705 697 672

UK Whitehall 780 70 60–85 0.81 755 778 779 779 635

UK CALM 813 9 5–19 0.68 258 551 538 — 745

UK UKB 491261 58 38–83 0.46 39 297 184 714 — 481610 415 914

US ABCD 9740 10 9–11 0.52 9049 9533 9577 9723 8856

US HCP 589 28 22–37 0.52 538 580 585 588 584

Total 508 679 57 4–97 0.46 53 879 200 998 14664 497 450 428 748

Fluid=measures of fluid cognitive ability, Cry=Measures of crystallized cognitive ability, Edu=measures of education, Inc=measures of income. Sex M/F refers to sex
ratio, male proportion.

Materials and Methods

Samples

All research was performed under approval of relevant ethical

committees/review boards, and in accordance with approved

informed consent procedures. All samples were recruited to

be community-dwelling participants, some were convenience

samples, whereas others were contacted on the basis of

populations registry information. While we do not believe

development ends at a particular point, for simplicity we here

use the terms “development(al)” for the child and adolescent

cohorts and “adult(hood)” for the cohorts with participants

20 years of age and above. Demographics of the samples are

given in Table 1, see Supplementary Material for details. For a

visual representation of the age-distributions of the samples,

see Supplementary Figure SS1.

Lifebrain Subsamples

The samples were derived from the European Lifebrain project

(http://www.lifebrain.uio.no/) (Walhovd et al. 2018), including

participants from major European brain studies: Berlin Study

of Aging II (BASE II) (Bertram et al. 2014; Gerstorf et al. 2016),

the BETULA project (Nilsson et al. 1997), the Centre for Atten-

tion, Learning and Memory study (CALM) (Holmes et al. 2019;

Simpson-Kent et al. 2020), the Cambridge Centre for Aging and

Neuroscience study (Cam-CAN) (Shafto et al. 2014), the Brain

maturation in children and adolescents study (HUBU) (Madsen

et al. 2018), Center for Lifebrain Changes in Brain and Cognition

longitudinal studies (LCBC) (Walhovd et al. 2016; Fjell et al. 2018),

the Netherlands Study of Depression and Anxiety (NESDA) (Pen-

ninx et al. 2008), the University of Barcelona brain studies (UB)

(Vidal-Pineiro et al. 2014; Rajaram et al. 2016; Abellaneda-Perez

et al. 2019), and theWhitehall II Imaging sub-study (WH II Imag-

ing) (Filippini et al. 2014). In total, data from 7089 participants

(5–96 years of age) were included from the Lifebrain cohorts.

However, all participants and all cohorts did not contribute all

categories of data, as detailed in Table 1 and Supplementary

Material. Importantly, MRI-derived ICV and GM measures were

available for 4995 participants from the Lifebrain cohorts.

UKB

The UK Biobank (UKB) recruited 502649 participants aged 37–

73 years from 2006 to 2010 (Guggenheim et al. 2015). Ethical

approval was obtained from the National Health Service

National Research Ethics Service (Ref 11/NW/0382) and all

participants provided written informed consent. Here, the

dataset released February 2020 was used, consisting of 502 507

participants, of whom 40682 had undergone MRI scanning.

After applying exclusion criteria (see Supplementary Material),

491 261 had sufficient valid information to be included in the

final analyses, of whom 39297 had a valid MRI.

HCP

The Human Connectome Project (HCP) is funded by the US

National Institute of Health (NIH) (http://www.neuroscienceblue

print.nih.gov/connectome/). The consortium led by Washington

University and the University of Minnesota (the “WU-Minn HCP

Consortium”) aims to study brain connectivity and functionwith

a genetically informative design in 1200 individuals using four

MR-based modalities plus MEG and EEG. Behavioral and genetic

data are also acquired from these participants. After application

of exclusion criteria, 538 participants with MRI were included.

For further information, see Supplementary Material.

ABCD

TheAdolescent Brain Cognitive Development (ABCD) study aims

to track human brain development from childhood through

adolescence (Casey et al. 2018). ABCD has recruited >10 000 9–

10-years olds across 21 US sites with harmonized measures and

procedures, including imaging acquisition https://abcdstudy.o

rg/scientists-workgroups.html and processing (Hagler Jr. et al.

2019). A goal of the ABCD study is that its sample should reflect,

as best as possible, the sociodemographic variation of the US

population (Garavan et al. 2018). For ABCD, the dataset release

2.0.1 was used, consisting of 11 875 participants at baseline, of

whom 9740 had sufficient valid information to be included in

the final analyses (9049 with MRI).

General Procedures

We used all available Lifebrain cohorts that provided at least

two of the constructs of interest: GCA (crystallized and/or fluid

intelligence), SES (income and/or education), and brain structure

(GM volume and ICV), resulting in a total of 10 Lifebrain studies.

Of the Lifebrain studies, 9 provided measures of education, 8 of

income, 9 of brain structure, and 8 of crystallized and/or fluid

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab248#supplementary-data
www.lifebrain.uio.no/
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab248#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab248#supplementary-data
http://www.neuroscienceblueprint.nih.gov/connectome/
http://www.neuroscienceblueprint.nih.gov/connectome/
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab248#supplementary-data
https://abcdstudy.org/scientists-workgroups.html
https://abcdstudy.org/scientists-workgroups.html
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intelligence, used to compute measures of GCA. In addition,

analyses were performed on UKB, HCP, and ABCD.

For each study, we gathered all cognitive tests that we

considered measuring fluid and/or crystallized intelligence.

There were multiple tests for GCA in each cohort. Using

principal component analysis, we reduced GCA to its first

principal component. With this approach, we could analyze the

correlations of four constructs of interest thatwe refer to as GCA,

income, education, and neuroanatomical volume. For details on

how these constructs were recorded per study, see Supplemen-

tary Material. For measures of neuroanatomical volumes, we

gathered FreeSurfer-based estimates of total GM volume and

ICV. We meta-analyzed Spearman rank-order correlations with

bootstrapped standard errors based on 1000 replications each.

The bootstrapped standard errors served as weights for the

meta-analysis. For GM and ICV, we ran separate regressions for

each cohort predicting volume by age and checking whether

absolute residuals exceeded a relatively liberal four standard-

deviations criterion. If so, the respective participants were

entirely deleted from the following analysis. For details, see SM.

Magnetic Resonance Imaging Acquisition and Analysis

T1-weighted structural scans were acquired at Siemens

(Erlangen, Germany), Philips, and GE scanners at the various

sites. Further information on MRI scanning and processing

is given in SI, and MRI sequence parameters per cohort are

given in Supplementary Table SS1. Images were processed with

FreeSurfer, mainly version 6.0 (https://surfer.nmr.mgh.harva

rd.edu/) (FreeSurfer 5.3 was used for Whitehall II, HCP and

ABCD). Because FreeSurfer is almost fully automated, to avoid

introducing possible site-specific biases, gross quality control

measures were imposed and no manual editing was done.

Demographic Measures

For all samples, age was measured in years and months, and

converted to a three-decimal numeric value for analyses. Sex

was coded as 0 for males and 1 for females. For details on how

education and income was recorded, see Supplementary Mate-

rial. In general, estimates of parental education and incomewere

used for developmental samples, whereas participant income

and education were recorded for adult samples.

Cognitive Tests

For GCA, national versions of a series of batteries and tests were

used, see Supplementary Material for details. These included

tests from the Wechsler Abbreviated Scale of intelligence

((Wechsler 1999) LCBC, CALM), Wechsler Primary and Preschool

Scale of Intelligence III ((Wechsler 2008a) LCBC – below age

6.5 years), the Wechsler Adult Intelligence Scale R/III/IV

((Wechsler 1997, 2008b) UB, Betula, Whitehall II), Wechsler

Individual Achievement Test ((Wechsler 2005) CALM), Test of

Premorbid Functioning ((Wechsler 2011) Whitehall II), Cattell

Culture Fair ((Cattell and Cattell 1973) Cam-CAN), National

Adult Reading Test ((Nelson and Willison 1991) UB), NIH toolbox

((Gershon et al. 2013) ABCD, HCP), as well as local batteries.

Statistics

Meta-analyses were computed based on the primary outcome of

a single effect size r, the pair-wise Spearman correlations among

constructs. Spearman correlations were chosen as we did not

necessarily expect relationships between SES, brain and cogni-

tion to be linear, but likely monotonic. We used pairwise com-

plete observations to compute correlations. When constructs

had more than one indicator, we used principal component

analysis as dimensionality reduction techniques to obtain factor

score estimates. In order to obtain PCA estimates from missing

data,missing data have to be imputed.Missing data in GCAwere

imputed using the regularized iterative PCA algorithm (with a

single component) as implemented in the R package missMDA

(Josse and Husson 2016), which provides a function for estimat-

ing imputed PCA components using an iterative (expectation–

maximization) algorithm. We are convinced that this type of

imputation works well, since we can assume that a strong g-

factor exists that can be leveraged by this type of algorithm. As a

follow-up analysis, we generated missing data pattern matrices

for several of the studies in themeta-analysis, which we provide

in Supplementary Figure SS2A–J. A separate PCA was conducted

per cohort, and Supplementary Table SS2 shows which mea-

sures per cohort were included in the first component, along

with principal components loadings and explained variance.

All statistical tests were two-sided. Meta-analytic estimates

of correlations and their precisions were obtained from the

metafor package (Viechtbauer 2010). As our primary outcome

of interest is the latent correlation of pairs of constructs

of interest (crystallized/fluid intelligence, income, education,

and neuroanatomical volumes), effect size estimates were

weighted by their inverse bootstrapped standard error (which

implicitly considers sample size differences among cohorts).

We additionally tested the extent to which the relations

between cognitive ability and SES changed when adjusting

for the brain variables, by testing the difference between

the GCA–SES correlations adjusted for age and sex and the

same correlations additionally adjusted for ICV, GM, or both.

Note that we do not do this as a classic mediation analysis

with strong causal interpretation, we merely run semipartial

correlations. We report mean effect size and 95% confidence

interval (CI) for each study and for the meta-analytic effect

size estimates. If the 95% CI did not include zero, the null

hypothesis of no correlation could be rejected at a α level

of 0.05. The meta-analysis was based on a random-effects

model (Hedges and Olkin 2014), in which both the within-study

variance and the between-study variance form the variance

component used to calculate study-specific weights (Field

2001). In contrast to a fixed-effects model, it is often described

as more conservative. Importantly, the random-effects model

accounts for between-study heterogeneity, τ
2, which itself

is an outcome of interest for our analysis. To describe and

test the heterogeneity in our results, we report I2, the ratio

of between-study heterogeneity, τ
2 over observed variability

(Higgins et al. 2003). I2 can be considered a standardized

effect size estimate of heterogeneity or inconsistency across

studies with larger values meaning a presence of more

heterogeneity. To assess whether observed heterogeneity in

the estimated correlations across studies are compatible with

chance alone, we also report P values of Cochrane’s Q test of

heterogeneity.

Results

Regional Cortical Associations with GCA and SES

First, we validated that global GM volume is a better measure

of brain structure in relation to GCA than regional volume,

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab248#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab248#supplementary-data
https://surfer.nmr.mgh.harvard.edu
https://surfer.nmr.mgh.harvard.edu
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab248#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab248#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab248#supplementary-data
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Figure 1. Effects of GCA on cortical volume, area and thickness. Results corrected by false discovery rate<0.05.

thickness or area. We ran general linear models (GLM) vertex-

wise across the cortical surface, with GCA as predictor, and

sex, study, age, age2, and ICV as covariates, for the participants

for whom reconstructed surfaces were available (development

< 20 years, n =9689; adulthood ≥20 years, n =39143, see Sup-

plementary Material for details). This analysis (Fig. 1, see Sup-

plementary Fig. SS3 for right hemisphere) showed extensive

positive relationships across the cortical surface for volume and

area. Bidirectional relationships were seen for thickness, espe-

cially in development, as expected due to ongoing developmen-

tal cortical thinning in this age-range. The volumetric results

were most uniform in terms of direction of effects and a broad

anatomical distribution. The same analyses were run using each

SES variable as predictor, also showing widespread effects with

most consistent results for volume (income, see Supplementary

Fig. SS4; education, see Supplementary Fig. SS5). This suggests

that global GM volume is a good summary measure of brain

structure also in relation to GCA and SES. Further GM analyses

were thus conducted on global GM volume, hereafter termed

GM. Variation in GM and ICV in relation to age are shown in

Figure 2 across all cohorts.

Income and Education

In all main analyses, variables of interest were adjusted for

sex and age using a smoothing spline. To compare effect sizes

across subsets of cohorts (development vs. adulthood, European

vs. US), Wald tests for mean group differences between group-

level meta-analytic estimates were run. We ran analyses on the

cohorts grouped by age (development vs. adulthood) and in the

full sample to obtain meta-analytic effect size estimates of both

the grand-average relationships and the group-level relation-

ships. For developmental cohorts, the parental education and

income were used as SES.

As income data were given in various bins across studies,

it is not possible to provide an informative measure of dis-

persion of income across studies. However, plots showing the

distribution of income in each cohort that had data on income

available are depicted in Supplementary Figure SS6.An overview

of dispersion of years of education across studies is given in

Supplementary Table SS3. AWelch two group t-test showed that

the variance in education was greater in European than US sam-

ples (t=3.9567, df = 3.0835, P=0.0274). The relationship between

education and incomewas significantly positive overall (r =0.30,

95% CI: 0.20–0.40), but heterogeneity was large (Q= 2185.99, P <

0.0001, I2 = 99.29%, see Supplementary Fig. SS7). The association

was in the positive direction in all 10 cohorts contributing both

measures, and reached significance (as evidenced by CI not over-

lapping 0) for all but 1 cohort (NESDA).While apparently stronger

relationships between income and education were found in

US (r=0.51, CI: 0.20–.82) versus European (r=0.25, CI: 0.18–0.31)

cohorts, the differencewasnot significant (Z=−1.611,P=0.1100).

Relationships of GCA with SES and Brain Structure

In analyses with total GM volume ICV was controlled for in

addition to the other variables as listed above. Relationships of

GCA to education, income, GM and ICV are shown grouped by

developmental and adult cohorts in Figure 3. For plots grouped

by European versus US, see Supplementary Figure SS8. The

overall GCA-education correlationwas r =0.37 (CI: 0.28–0.46).The

association was significantly positive in 9 of the 10 cohorts, as

evidenced by CIs not overlapping 0. However, as the only two

developmental cohorts included in this analysis showed very

different effect sizes, the association was not significant across

the developmental cohorts. The overall GCA-income correlation

was r =0.19 (CI: 0.07–0.46). The associationwas significantly pos-

itive in 6 of the 9 cohorts included, but was negative, although

not significant, in 2 cohorts (BASE II, LCBC-dev), rendering the

associations not significant in development. The overall GCA-

GM correlation was r =0.09 (CI: 0.05–0.13). The association was

in the positive direction in all 11 cohorts included, but was

significantly different from zero in only 4 (Whitehall, UKB, BASE

II and ABCD). The overall GCA–ICV correlation was r =0.17 (CI:

0.12–0.22). The association was in the positive direction in all 11

cohorts included, and was significantly different from zero for

8 (Whitehall, Betula and BASE II being the exceptions). Hetero-

geneity overall was large (GCA-education: I2 = 98.93%,Q = 257.91,

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab248#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab248#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab248#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab248#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab248#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab248#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab248#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab248#supplementary-data
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Figure 2.Age-related differences in GM and ICV. Individual data points are shown across upper panel: All Lifebrain cohorts (BASE-II fromGermany, Betula from Sweden,

CALM, Cam-Can and Whitehall from the UK, HUBU from Denmark, LCBC from Norway, NESDA from the Netherlands, and UB from Spain), and lower panel: ABCD and

HCP from the USA, and UKB from the UK,. The black line represents a smoothed (3 knots) average difference. All data after outlier removal are shown.

P < 0.0001; GCA-income: I2= 99.05%; Q = 436.60, P < 0.0001; GCA-

GM: I2 = 89.98%; Q = 194.70, P < 0.0001; GCA–ICV: I2 = 92.56%,

Q = 63.82, P < 0.0001). The differences between developmen-

tal and adult cohorts in the GCA associations did not reach

significance (all P > 0.25), with the exception of the GCA–ICV

association being stronger in the developmental (r=0.17, CI:

0.12–0.22) than adult (r=0.15, CI: 0.09–0.21) cohorts (Z=−2.026,

P=0.043).

The difference in the GCA-education associations between

European (r =0.35, CI: 0.24–0.46) and US cohorts (r =0.45, CI:

0.43–0.46) was not significant (Z =−1.672, P =0.095). However,

the GCA-income associationwas significantly stronger in the US

(r =0.35, CI: 0.19–0.52) than in European (r =0.14, CI: 0.02–0.25)

cohorts (Z =−2.09, P =0.037). There was no significant difference

in the GCA–GM associations adjusted for ICV between European

(r =0.07, CI: 0.03–0.11) and US (r =0.15, CI: 0.04–0.27) cohorts (Z = –

1.377, P =0.17). However, the GCA–ICV association was stronger

for US than European cohorts (European: r =0.15, CI: 0.10–0.21;

US: r =0.22, CI: 0.20–0.24; European-US difference: Z = –2.055,

P =0.04).

Relationships Between Brain Structure and SES

Relationships of GM and ICV with SES are shown grouped

by developmental and adult cohorts in Figure 4. For plots

grouped by European vs US, see Supplementary Figure SS9. The

overall GM-education correlation was r =0.06 (CI: 0.01–0.11). The

association was in the positive direction in 9 of the 12

cohorts included, but only significant in 3 (NESDA, HCP, and

ABCD). The effect was in the negative direction, although not

significant, in two adult cohorts (Betula and Cam-CAN) and was

numerically zero in an additional cohort (UB). There was no

overall significant GM-income correlation (r =0.05, CI: −0.01–

0.11). The association was in the positive direction in 6 of the

11 cohorts included, and significant in 5 (Whitehall, UKB, HCP,

LCBC-Dev, and ABCD), numerically zero in 1 (Cam-CAN), and

in the negative direction in 4 cohorts (LCBC-adult, BASE II,

HUBU, CALM). There was no significant difference in the GM-

income association between developmental and adult cohorts

(Z =−0.538, P =0.5900). Heterogeneity was large for the GM-

education (Q = 248.19, P < 0.0001, I2= 91.74%) and GM-income (Q

= 251.14, P < 0.0001, I2=93.56%) associations.

Income was significantly more strongly associated with GM

(Z =−2.763,P =0.0057) in US (r =0.17, CI: 0.08–0.26) than European

cohorts (r =0.03, CI: −0.02–0.07). Education was also significantly

more positively related to GM (Z =−7.987, P < 0.0001) in US

(r =0.18, CI: 0.16–0.20) than European cohorts (r =0.03, CI: −0.01–

0.06).

The overall ICV-education correlation was r =0.12 (CI:

0.08–0.16). All associations were positive, and significant

relationships were observed in 8 of the 12 cohorts included (not

in NESDA, LCBC-dev, LCBC-adult, and BASE II). Heterogeneity

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab248#supplementary-data
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Figure 3. The associations of cognition (GCA) with education, income, GM, and ICV. Forest plots show the individual observed effect sizes with corresponding 95% CI.

Diamonds represent the weighted average correlation estimate and its 95% CI with white diamonds representing the subgroup estimates and black diamonds the

overall estimate. Numeric values of the cohort-specific and meta-analytic estimates are given in the right column. CI not spanning 0 indicates a significant (P<0.05)

relationship.

was large (Q =72.44, P <0.0001, I2 = 85.66%). The ICV-education

association was not significantly different (Z= –0.858, P > 0.39)

between developmental and adult cohorts, but was significantly

greater (Z =−4.528, P < 0.0001) in US (r =0.19, CI: 0.17–0.21)

than European (r =0.10, CI: 0.06, 0.14) cohorts. The overall ICV-

income correlation was r =0.12 (CI: 0.08–0.16). The associations

were positive in 10 of 11 cohorts, being significant in 6

cohorts (UKB, HCP, Cam-CAN, LCBC-dev, HUBU, and ABCD).

Heterogeneity was large (Q = 72.44, P < 0.0001, I2= 85.66%). The

ICV-income association was not significantly different between

developmental and adult cohorts (Z=− 0.876, p=0.3800),

but was significantly greater (Z =−9.583, P < 0.0001) in US

(r =0.20, CI: 0.18–0.22) than in European (r =0.09, CI: 0.08–0.10)

cohorts.

Sensitivity Analyses

Repetition of the analysis with the samples split by median

income, did not show any significant differences in overall

correlations between the lower and higher income parts of

the samples, for either the relation of income to GM volume

controlled for ICV (P =0.8112), ICV (P =0.2082) or GCA (P =0.1768).

Repetition of income analyses across US and European cohorts

where the lowest 15% income participants were omitted from
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Figure 4. The associations of GM and ICV with education and income. Forest plots show the individual observed effect sizes with corresponding 95% CI. Diamonds

represent theweighted average correlation estimate and its 95% CI withwhite diamonds representing the subgroup estimates and black diamonds the overall estimate.

Numeric values of the cohort-specific and meta-analytic estimates are given in the right column.

the US samples, reduced the relationships between income

and cognition, GM, and ICV somewhat in the US samples. The

difference in the association of cognition and income between

US (r =0.29, CI: 0.17–0.40) and European (r =0.14, CI: 0.02–0.25)

cohorts was then nonsignificant (Z =−1.787, P =0.074). However,

the associations of income and GM (US: r =0.14, CI: 0.10–0.17;

European: r =0.03, CI: −0.02–0.07; Z =−3.671, P =0.0002) and

income and ICV (US: r =0.16, CI: 0.14–0.18; European: r =0.09, CI:

0.08–0.10; Z =−5.461, P < 0.001) were still significantly greater in

the US than European cohorts.

Since we found that income and education were more

strongly related to ICV than GM and the relationships may

thus be grounded in neurodevelopment (see discussion below),

we decided to repeat this analysis also without the US ABCD

cohort, containing much of the developmental data. These

analyses without the ABCD cohort showed the same significant

differences, with both education (P = 0.0415) and income

(P < 0.0001) being significantly more related to ICV than to GM

adjusted for ICV. For additional details and sensitivity analyses,

see section Sensitivity analyses of Supplementary Material.

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab248#supplementary-data
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Controlling for Ethnicity and Genetic Ancestry

We addressed whether ethnicity or genetic ancestry factors

(GAF) affected the relationships. It should be noted in this regard

that there is substantial variation across cohorts in ethnicity,

and the extent to which ethnic variance is present in the popu-

lations from which they were recruited also varies substantially.

Controlling for either reported ethnicity (available for UKB, HCP,

and ABCD, see Supplementary Figs SS10 and SS11) or GAF (avail-

able for UKB, LCBC-adult, and LCBC-Dev, see Supplementary

Figs SS12 and SS13) did not change the results substantially in

the adult cohorts. In general, also relatively little change was

observed in the relationships in the Norwegian developmen-

tal cohort (LCBC-Dev) when controlling for GAF, but the ICV-

income relationship was no longer significant (GAF-adjusted

r =0.04, CI = –0.08–0.15; not GAF-adjusted r =0.11, CI: 0.01–

0.21). Relationships in the ABCD cohort appeared attenuated

overall, albeit still significant when controlling for reported eth-

nicity. GCA-education and GCA-income relationships in ABCD

appeared stronger when not controlling for ethnicity (going

from r =0.45, CI: 0.43–0.46 to r =0.33, CI: = 0.32–0.35 for GCA-

education and from r =0.43, CI: 0.42–0.45 to r =0.28, CI: 0.26–

0.30 for GCA-income).Associations betweenGCAand brainmea-

sures with SES variables in ABCD were the proportionally most

attenuated overall after controlling for ethnicity (going from

being in the range of r =+/−0.20 to r =+/− 0.10), but were still

significant.

The Role of ICV

Differences in SES–CV relationships and SES–GM relationships

when ICV is controlled for have implications for the extent to

which effects on the brainmay be established in development or

adulthood/aging.We found that education relatedmore strongly

(P =0.039) to ICV (r =0.12, CI: 0.08–0.16) than to GM controlled for

ICV (r =0.06, CI: 0.01–0.11). The same was the case for income

(P =0.0270) (with ICV: r =0.12, CI: 0.08–0.16; with GM controlled

for ICV: r =0.05, CI: −0.01–11). Notably, GCA was significantly

more positively related to ICV than to GM controlled for ICV

(P =0.0226). GCA was also more positively related to education

than to income (P < 0.0001). For details on these comparisons,

see Supplementary Material, Supplementary Figure SS14.

Effects of GM and ICV on SES–GCA Relationships

We tested the extent to which the brain variables could explain

part of the relations between cognitive ability and SES. We did

this by testing the difference between the GCA–SES correlations

adjusted for age and sex and the same correlations additionally

adjusted for ICV, GM, or both. Overall, the correlations between

GCA and SES were larger when not being adjusted for brain

variables, especially for ICV. The GCA-education relationship

was significantly more positive when not adjusting for ICV

(P =0.0014), GM (P =0.0154), or ICV and GM combined (P =0.0160).

The GCA-income relationship was also significantly more pos-

itive across cohorts when not being adjusted for these brain

variables (not adjusting. vs adjusting; for ICV: P =0.0020; GM:

P =0.0240; ICV and GM: P =0.0245). There was considerable

variance across cohorts in the extent to which these variables

altered the correlations. Only in the ABCD, HCP, and the UKB

cohorts, however,were SES–GCA associations significantly lower

when controlling for any brain variable (see Supplementary Fig.

SS15 for details).

Discussion

In summary, by this multicohort approach we show that there is

substantial heterogeneity in SES–brain–cognition relationships

across US and European cohorts encompassing all ages of the

human lifespan. This demonstrates that SES does not exert

influence on either brain or cognition, or vice versa, in any uni-

form way across cohorts. There were stronger positive relations

between SES and brain structure in the US than in the European

cohorts. ICV was more strongly related to SES than was GM vol-

ume controlled for ICV.This indicates a primarily developmental

effect rather than neuroprotection in aging. We also found that

ICV and GM volume explained part of the variance in both the

education-GCA relationship and the income-GCA relationship.

These results nuance the role of income in brain and cogni-

tive development and aging in cohorts in industrialized coun-

tries, as uniformly positive effects were not the rule. As samples

are highly heterogeneous and have varying degrees of represen-

tativeness of the populations of origin, and lack of population

representativity is indeed known (Stamatakis et al. 2021), cau-

tion is warranted in interpretation of specificity of effects.While

education was as expected related to cognitive ability, and also

showed some relationship to GMvolume, a stronger relationship

was observed for education and ICV.

This may imply that associations between education and

brain characteristics are grounded in neurodevelopment, as

ICV changes relatively little after school-age is reached, and

is known to stabilize between 10 years of age (Pfefferbaum

et al. 1994) and midadolescence (Mills et al. 2016). GM volume,

on the other hand, for which less effect of education, and no

overall effect of income, was found, shows substantial age

differences across the lifespan, especially in older age (Walhovd

et al. 2005; Walhovd et al. 2011; Fjell et al. 2013). As years of

education typically accumulate after ICV no longer increases,

a direct effect of education on ICV in adulthood is improbable.

Having more educated parents—or a correlate thereof - could

have a facilitating effect on brain development in childhood

and possibly adolescence. For instance, an association between

parental education level and hippocampal volumes was found

to be mediated by cortisol levels in children (Merz et al. 2019).

We also note that the relations of SES to brain and cognition

were generally of similarmagnitude in developmental and adult

cohorts, and there were generally not significant differences in

the strength of associations with age. This is so despite the fact

that we had to apply differentmeasures of SES in developmental

and adult cohorts, namely parental versus individual SES.

While individual education often has been seen as boosting

development and being neuroprotective (Livingston et al. 2017;

Ritchie and Tucker-Drob 2018; Staff et al. 2018), evidence also

exists for it being neuroselective (Ericsson et al. 2017; Selzam

et al. 2017). Both the boosting development and neuroprotection

account implies a causal effect of socioeconomic status,

whereas in a strict neuroselective view, education and income

would rather be markers or proxies of some other favorable,

putatively genetic, trait (Ericsson et al. 2017; Selzam et al. 2017).

A higher ICV could in part reflect causal factors in driving years

of education in adulthood. However, one needs to keep in mind

that ICV has shown very high heritability, up to 0.88 in some

studies (Renteria et al. 2014), and genetic pleiotropy of ICV and

education may be likely. While for instance education could be

a spurious correlate of socially, rather than genetically trans-

mitted advantages, recent evidence points to genetic influences

on educational attainment both directly through social mobility

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab248#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab248#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab248#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab248#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab248#supplementary-data
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and indirectly through family environments (Belsky et al. 2018).

The present heterogeneity of SES–brain–cognition associations

across cohorts has implications for whether relationships can

be assumed to arise from direct or indirect effects of SES in early

development or aging. If education really had a neuroprotective

effect in aging, then we would expect people with higher

education to show less brain atrophy, and hence greater

neuroanatomical volumes and also better cognitive function

in aging. We saw no evidence that higher SES was specifically

related to gray matter volumes and cognitive function in

older adulthood. Rather, higher SES could be associated with

enhanced maturation, as we generally observed equally strong

associations with childhood cognitive function, and stronger

relationships to ICV, as a proxy for maximal neuroanatomical

volume.

As this study was performed on cross-sectional data,

conclusions regarding change in brain and cognition cannot be

drawn. Less knowledge exists on SES–brain structure relations

in midlife and aging, but a relatively large US study found

that community disadvantage in midlife was associated with

reduced cortical tissue volume, cortical surface area, and cortical

thickness, but not subcortical morphology (Gianaros et al. 2017).

Hence, while most focus has been on development, there is

no reason to believe that overall relations between SES and

brain structure is confined to young samples. Indirect evidence

for this also comes from epidemiological data, where lower

SES is associated with greater risk of dementing diseases

characterized by brain atrophy or lesser neuroanatomical

volumes (Livingston et al. 2017). However, the fact that SES–

brain–cognition relationships are found in aging cohorts, should

not be taken to indicate that they operate in aging specifically,

rather than in a stable manner, perhaps as an intercept effect

across the lifespan. The current results do not support a

neuroprotective account, where higher SES serves to mitigate

cognitive decline or GM atrophy in aging. Neither education

nor income were consistently positively associated with ICV-

adjusted GM volumes, and relationships with GM and cognitive

ability did not significantly differ in developmental and aging

cohorts.

Comparison Between European and US Samples

The question of whether SES–brain–cognition relationships dif-

fer across cohorts and societies has also been highlighted by

other types of studies. Evidence for an SES–genotype interaction

on cognitive ability has been found, in terms of suppression of

heritability with lower SES (Scarr-Salapatek 1971; Tucker-Drob

and Bates 2016). Recently, such effects and as their possible cur-

rent absence in European and presence in US samples have been

debated (Tucker-Drob and Bates 2016; de Zeeuw and Boomsma

2017; Figlio et al. 2017). Our results show substantial hetero-

geneity of SES–brain–cognition relationships across cohorts also

within Europe, and even from the same country, as can be

appreciated by differing effect sizes across UK cohorts.

However, there were significantly different effects of income

on cognition, and of income and education on GM and ICV

between US and European samples. These differences all point

to stronger positive relationships between SES and brain and

cognition in the US than in the European samples. When the

lowest 15% incomeparticipantswere excluded from theUS sam-

ples, the association of income and cognition was no longer sig-

nificantly greater in the US than European samples,whereas the

associations of income with GM and ICV were slightly weaker,

but remained significantly greater in US than European samples.

This indicates that the greater SES–brain-associations in the US

cohorts may in part be driven by the lowest income part of

the samples, and as income distributions may systematically

vary across the presently included samples (see further discus-

sion below), one should not see the differences in associations

as intrinsic to US versus Europe. Rather, these findings show

that relationships between income, education and brain and

cognition found in some large and well-known cohorts should

not necessarily be taken to apply across cohorts, regardless

of origin. Large US studies on developmental samples, one of

which included here, have shown broadly distributed associa-

tions between SES and brain structure (Noble et al. 2015; McDer-

mott et al. 2018). One recent European longitudinal study found

widespread associations between a composite SESmeasure and

cortical surface area at age 14, with independent contributions

from polygenetic scores for education (Judd et al. 2020). Some US

studies have found the strongest associations, with especially

lower regional neuroanatomical volumes, in children living in

poverty (Hanson et al. 2013; Hair et al. 2015). Somewhat less

evidence is available from European cohorts, although such

associations have also been found in young cohorts in Germany

and France with large variation in SES (Jednorog et al. 2012; Holz

et al. 2015). However, in a Norwegian sample (Walhovd et al.

2016), including a subset of the one entered in present analy-

ses, no associations were found between income or education

and regional cortical area. The current finding of US–European

differences is thus not completely unexpected.

However, it should be emphasized that the currently included

cohorts will vary in representativeness of the populations

from which they were drawn. For both US cohorts, efforts

were made to recruit participants reflecting the ethnic and

sociodemographic composition of the population (Van Essen

et al. 2013; Garavan et al. 2018). Unfortunately, even designing

sample demographics to be similar to those of a target nation

population, such as in the ABCD, does not guarantee sample

representativeness across amultitude of dimensions of interest.

For instance, it is known that ABCD under-recruited rural

families because of neuroimaging facilities tending to be in

mostly urban research centers (Compton et al. 2019). This,

we believe, is bound to be the case in European studies too.

And while population representativeness was sought also

for many of the European cohorts (see e.g., Nilsson et al.

1997; Bertram et al. 2014; Sudlow et al. 2015), this was not

necessarily successfully accomplished and some of these

cohorts are also in part convenience samples. Thus, differences

across US and European cohorts may still reflect more diverse

sociodemographic backgrounds in the US than European

studies. For instance, the UKB cohort is not representative of

the population from which it is drawn with regard to a number

of risk factors (Stamatakis et al. 2021). However, it should be

noted that in terms of years of education, the variance was

greater in European than US samples. As for SES and GCA, a few

meta-analyses exist (Bowles et al. 2001; Ng et al. 2005; Strenze

2007), all reporting relationships between intelligence quotient

(IQ), income, and education. In the most comprehensive meta-

analysis so far, differences in IQ–SES relationships in the USA

versus other Western societies were not supported (Strenze

2007). This is in line with our findings for education, but we

note that a stronger positive relationship between income

and cognitive ability was observed in US samples, though

the difference was not significant when excluding the 15%

lowest income parts of the US samples. Income was not
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consistently related to cognitive ability across the present

cohorts. The most positive relationships were found in the US

and UK cohorts, while there were other European cohorts in

which no relationships were seen. Hence, the results highlight

that income may not be related to cognitive function in a

global way.

The Role of Brain Structure in SES–Cognition
Relationships

Finally, the current results did not only yield support for SES–

cognition and SES–brain relationships, but also showed that

variance in brain structure, that is, ICV and GM independently

of ICV, explained part of the education-cognition and income-

cognition relationships across cohorts. Thiswas indicated by the

fact that adjusting for either brain metric significantly weak-

ened the relationships. By this analysis, we cannot, and do

not intend to say that SES causally affects cognitive function

through its effect on brain structure. However, these analyses

indicate that partially overlapping variance in brain and cogni-

tion is shared with SES as a distant proxy. Future studies, and

preferably longitudinal ones, are required to further delineate

mechanisms leading to such relationships.

Limitations and Future Directions

The current study has a number of limitations. Other relations

could be uncovered with less general metrics than education,

income, GM and ICV. For instance, occupation, subjectively per-

ceived social rank, cortical thickness and area could be more

refined measures. Still, the vertex analyses showed that both

for GCA and SES, effects were anatomically widespread and

more consistently related to volume than thickness or area,

suggesting that GM volume is a sensitive measure of brain

structure for our purpose. Given that income may be more

related to brain and cognition in lower income cohorts (Decker

et al. 2020), a skewing of samples towards more wealthy par-

ticipants may have affected results. While the comparison of

correlations between income, brain and cognition in the upper

and lower income halves of the samples yielded no significant

differences overall, it may still be that consistent relations could

be found across samples of lower income. Indeed, excluding the

15% lowest income individuals I the US samples did weaken

the income-brain relationships somewhat, and rendered the

difference of associations between income and cognition in US

versus Europe nonsignificant. Further, ethnicity or GAFs were

not included as covariates in all analyses. While some of the

cohorts have no or minor ethnic variation, others have more

(see Supplementary Material). Analyses in select big cohorts did

overall indicate, however, that the relationships in most cases

remained significant when controlling for ethnicity or GAFs.

Furthermore, the measures for some of the constructs

studied here are quite heterogeneous. Especially, the fact that

income was coded differently across studies, so that systematic

variance across studies cannot be readily compared, constitutes

a major limitation with regard to further interpretation of what

the differences mean. Ideally, income measures should also be

supplemented by measures of societal services received (e.g.,

supported child care, housing, schooling etc), so as to yield a

fuller picture of income in relation to need. Heterogeneity of

measures also apply to estimates of GCA, which were obtained

with different tests of crystallized and fluid ability. While

behavior testswere taken from theNIH Toolbox (http://www.hea

lthmeasures.net/explore-measurement-systems/nih-toolbox)

in the US cohorts, various tests were used in other cohorts. To

the extent that the measures used have higher reliability and

validity in some cohorts than others, this could lead to higher

correlations in those cohorts. This is a possibility that cannot

be ruled out. However, we think that the given data sets do not

afford an assessment of differential reliability and validity of the

measures. The cognitive measures from the NIH toolbox have

shown good short term reliability (Weintraub et al. 2013). Digitial

batteries such as the NIH toolbox have also been validated

against “gold standards” as indicated by tests from Wechsler

batteries (Weintraub et al. 2013), and such were used in several

of the European cohorts. The variance is however substantial in

the European cohorts. While many used paper and pencil test,

UKB, for instance used a digital measure of fluid ability that has

shown moderate to high reliability (Fawns-Ritchie and Deary

2020). The content and reliability of the GCA measures may not

only vary by test versions but also by age. This is however a

fundamental problem of cross-cohort analysis that is ultimately

unsolvable unless one can prestandardize all measures, and

even if this was to be achieved, age differences may remain. In

addidtion, if one were to apply one measure of SES consistently

across the lifespan, that would need to be parental income

and education, rather than individual income and education.

Unfortunately, parental SES was only consistently available for

the developmental cohorts currently studied. The comparison

of European and US cohorts is limited by the fact that we have

only two US samples. In part, the same limitation goes for

the relatively few developmental relative to adult and aging

samples.

As cohorts are not invariably representative of the societies

fromwhich they are recruited, and indeed,we know they are not,

further interpretation of these possible differences is not war-

ranted here.We want to emphasize that the present study is not

designed to delineate themechanisms underlying differences in

SES–brain–cognition associations across cohorts. For instance,

this study does not address the effects of poverty specifically.

We do not have sufficient cross-cohort information regarding

the combination of household income, size and composition,

and it would not be clear what criterion for poverty should

be applied across cohorts from different nations. In the EU,

people are seen as at risk for poverty when they have income

below 60% of the national median disposable income, whereas

poverty is defined in absolute terms in the USA (Caminada and

Martin 2011). Hence, addressing poverty as a mechanism would

require other conceptual and empirical analyses. However, the

substantial heterogeneity found should prompt researchers to

carefully examine relationships before SES indicators are used

as covariates of no interest. Such practices may otherwise sup-

press or inflate variance in relationships of interest in unpre-

dictable ways.

Conclusion

There is substantial heterogeneity in the relationships of SES

to brain and cognition across major European and US cohorts.

Based on these results, it is not likely that the effects of SES on

cognition are grounded in neuroprotective effects on GMvolume

in aging. Rather, SES relations established in brain development

may be seen through the lifespan. In this regard, stronger rela-

tionships of income and education to neuroanatomical volumes

were found in US than European cohorts, pointing to SES not

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab248#supplementary-data
http://www.healthmeasures.net/explore-measurement-systems/nih-toolbox
http://www.healthmeasures.net/explore-measurement-systems/nih-toolbox
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signifying the same across different populations from indus-

trialized countries. The present results also indicate that part

of the relations between SES and cognition may be explained

by variance in brain structure. This does not imply that SES

causally affects cognition through its impact on the brain, only

that SES as a distant proxy is related to both brain and cognition

in partially similar ways. The findings, including the significant

heterogeneity of effects across cohorts,have implications for our

understanding of whether,when and how SESmay impact brain

and cognition.
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Supplementary material can be found at Cerebral Cortex online.
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