TABLE 4.
Uni-trait models | Multi-trait models | ||||||||
---|---|---|---|---|---|---|---|---|---|
Location | Trait | GBLUP | BayesB | RF | MLP | GBLUP | BayesB | RF | MLP |
Pullman | GPC | 0.55 | 0.54 | 0.59 | 0.60 | 0.59 | 0.50 | 0.76 | 0.72 |
FPROT | 0.58 | 0.58 | 0.61 | 0.62 | 0.64 | 0.61 | 0.66 | 0.79 | |
FASH | 0.55 | 0.59 | 0.58 | 0.59 | 0.63 | 0.58 | 0.62 | 0.63 | |
MSCOR | 0.58 | 0.52 | 0.60 | 0.63 | 0.66 | 0.57 | 0.64 | 0.68 | |
FYELD | 0.71 | 0.64 | 0.76 | 0.75 | 0.68 | 0.65 | 0.75 | 0.73 | |
CODI | 0.67 | 0.67 | 0.69 | 0.69 | 0.64 | 0.61 | 0.67 | 0.64 | |
FSDS | 0.67 | 0.66 | 0.69 | 0.70 | 0.71 | 0.72 | 0.73 | 0.77 | |
Lind | GPC | 0.51 | 0.51 | 0.54 | 0.55 | 0.55 | 0.53 | 0.58 | 0.62 |
FPROT | 0.48 | 0.46 | 0.51 | 0.53 | 0.53 | 0.50 | 0.56 | 0.54 | |
FASH | 0.51 | 0.44 | 0.54 | 0.56 | 0.59 | 0.40 | 0.62 | 0.60 | |
MSCOR | 0.48 | 0.53 | 0.50 | 0.52 | 0.57 | 0.57 | 0.55 | 0.63 | |
FYELD | 0.64 | 0.58 | 0.68 | 0.67 | 0.66 | 0.59 | 0.69 | 0.70 | |
CODI | 0.56 | 0.54 | 0.57 | 0.58 | 0.55 | 0.54 | 0.58 | 0.59 | |
FSDS | 0.59 | 0.59 | 0.62 | 0.63 | 0.64 | 0.62 | 0.67 | 0.64 | |
Average | 0.58 | 0.56 | 0.61 | 0.62 | 0.62 | 0.57 | 0.65 | 0.66 |
Highest prediction accuracies are bolded for each trait.