Skip to main content
. 2022 Jan 31;13:831020. doi: 10.3389/fgene.2022.831020

TABLE 4.

Prediction accuracies for seven end-use quality traits using four different uni- and multi-trait genomic selection models for the two locations across the years, namely, Pullman and Lind using the cross-validation approach.

Uni-trait models Multi-trait models
Location Trait GBLUP BayesB RF MLP GBLUP BayesB RF MLP
Pullman GPC 0.55 0.54 0.59 0.60 0.59 0.50 0.76 0.72
FPROT 0.58 0.58 0.61 0.62 0.64 0.61 0.66 0.79
FASH 0.55 0.59 0.58 0.59 0.63 0.58 0.62 0.63
MSCOR 0.58 0.52 0.60 0.63 0.66 0.57 0.64 0.68
FYELD 0.71 0.64 0.76 0.75 0.68 0.65 0.75 0.73
CODI 0.67 0.67 0.69 0.69 0.64 0.61 0.67 0.64
FSDS 0.67 0.66 0.69 0.70 0.71 0.72 0.73 0.77
 Lind GPC 0.51 0.51 0.54 0.55 0.55 0.53 0.58 0.62
FPROT 0.48 0.46 0.51 0.53 0.53 0.50 0.56 0.54
FASH 0.51 0.44 0.54 0.56 0.59 0.40 0.62 0.60
MSCOR 0.48 0.53 0.50 0.52 0.57 0.57 0.55 0.63
FYELD 0.64 0.58 0.68 0.67 0.66 0.59 0.69 0.70
CODI 0.56 0.54 0.57 0.58 0.55 0.54 0.58 0.59
FSDS 0.59 0.59 0.62 0.63 0.64 0.62 0.67 0.64
Average 0.58 0.56 0.61 0.62 0.62 0.57 0.65 0.66

Highest prediction accuracies are bolded for each trait.