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Abstract
Study Objectives:  Individuals with evening chronotype have a higher risk of cardiovascular and metabolic disorders, although the underlying mechanisms are 

not well understood. In a population-based cohort, we aimed to investigate the association between chronotype and 242 circulating proteins from three panels of 

established or candidate biomarkers of cardiometabolic processes.

Methods:  In 2,471 participants (49.7% men, mean age 61.2 ± 8.4 SD years) from the EpiHealth cohort, circulating proteins were analyzed with a multiplex proximity 

extension technique. Participants self-reported their chronotype on a five-level scale from extreme morning to extreme evening chronotype. With the intermediate 

chronotype set as the reference, each protein was added as the dependent variable in a series of linear regression models adjusted for confounders. Next, the 

chronotype coefficients were jointly tested and the resulting p-values adjusted for multiple testing using a false discovery rate (5%). For the associations identified, 

we then analyzed the marginal effect of each chronotype category.

Results:  We identified 17 proteins associated with chronotype. Evening chronotype was positively associated with proteins previously linked to insulin resistance 

and cardiovascular risk, namely retinoic acid receptor protein 2, fatty acid-binding protein adipocyte, tissue-type plasminogen activator, and plasminogen activator 

inhibitor 1 (PAI-1). Additionally, PAI-1 was inversely associated with the extreme morning chronotype.

Conclusions:  In this population-based study, proteins previously related to cardiometabolic risk were elevated in the evening chronotypes. These results may guide 

future research in the relation between chronotype and cardiometabolic disorders.

Key words:   chronotype; sleep habits; proteomics; cohort studies; cardiovascular diseases; metabolic diseases

Statement of Significance

A person’s chronotype is defined by diurnal preference as well as sleeping habits. Previous studies showed that individuals with later 
sleeping hours (i.e. later or evening chronotypes) have a higher risk for type 2 diabetes and cardiovascular disease. However, the mech-
anisms for this increased risk are not well understood. In this large population-based study, we investigated the association between 
chronotype and circulatory proteins relevant for cardiometabolic processes. We found that individuals with evening chronotypes had 
an increased level of proteins previously related to coronary heart disease and insulin resistance. Additionally, proteins levels increased 
progressively with greater evening preference. Our findings may guide future experimental and longitudinal studies to understand how 
evening chronotype connects to health problems.
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Introduction

The human sleep-wake cycle synchronizes with the day-night 
cycle through a number of external signals such as ambient 
light, food, and physical activity [1, 2]. Due to individual dif-
ferences in the reaction to these external signals, different 
chronotypes exist. Individuals that sleep and wake up early are 
defined as early or morning chronotypes, while those who have 
a later bedtime and wakeup time are defined as late or evening 
chronotypes [3]. Notably, the biological differences between the 
chronotypes stretch beyond the sleep timing, involving differ-
ences in body temperature circadian phases, hormone secre-
tion patterns, timing of alertness [4], and disease risk [5].

Observational studies show associations between evening 
chronotypes and adverse health outcomes, including cardio-
vascular disease (CVD) [6] and metabolic disorders [7]. In the 
National FINRISK Study (n = 6,258), evening-types had a higher 
odds (OR  =  2.5, 95% CI  =  1.5 to 4.4) of having type 2 diabetes 
(T2D) regardless of sleep duration and sufficiency [6]. Using UK 
Biobank data (n  =  433,268), Knutson et  al. found that evening-
types have increased odds of several comorbidities, such as T2D, 
CVD, renal disease, and endocrine disorders [5].

Several explanations for the association between evening 
chronotype and cardiometabolic disorder have been suggested. 
One hypothesis is an unhealthier lifestyle, as later chronotypes 
show lower sports participation, later eating time, as well as 
more smoking and higher alcohol consumption [8]. Another ex-
planation is that a difference in sleep timing between working 
and free days may lead to circadian misalignment, and thereby 
chronic sleep insufficiency, which has been related to health 
problems [9, 10]. Circadian misalignment can contribute to 
the development of obesity [10], while the adipose tissue can 
secrete a large array of active compounds with potential re-
percussions to cardiometabolic health. In addition, shift work 
can have deleterious impacts on health, especially when not 
aligned with the worker’s chronotype [11].

The molecular mechanisms that connect the evening 
chronotype to metabolic disorders are unknown and only a few 
studies have investigated the biomarkers profile in chronotypes. 
Two studies have investigated chronotype in relation to the 
metabolome and found that later sleep timing was associated 
with branched-chain amino acids (BCAA) and their gamma-
glutamyl metabolites, as well as negatively correlated with 
acylcarnitines [12, 13]. Higher circulating levels of BCAA, as well 
as reduction in medium-chain acylcarnitines during oral glucose 
tolerance test, have been linked to insulin resistance [14, 15]. In 
addition, urinary carnitines were altered in early chronotype 
nurses working night shifts [16].

There is a lack of studies exploring the relationship of 
chronotype with circulating proteins biomarkers. The discovery of 
biomarkers associated with chronotypes has the potential to guide 
this research field toward important mechanisms behind the ad-
verse health outcomes of later sleep timing. Therefore, the present 
study aims to identify plasma protein biomarkers associated with 
chronotypes in a large population-based cohort in Sweden.

Methods

Cohort description

The Epidemiology for Health cohort (EpiHealth; https://www.
epihealth.lu.se/) study started in 2011 through a consortium 

between Uppsala and Lund universities to study lifestyle fac-
tors, genotypes, and the development of degenerative disorders 
[17]. For recruitment, an equal number of male and female par-
ticipants were invited across age and sex strata [17]. Participants 
(age 45–75, n = 25,080) answered an extensive online question-
naire and visited one of the test centers for blood sampling and 
anthropometric measuring. The current study included 2,471 
participants who were amongst the first participants included 
in the Uppsala site and were also selected for genotyping [18] 
and plasma proteomic profiling. Individuals with proteomics 
data were not markedly different from the whole EpiHealth co-
hort [19], besides a somewhat higher proportion of males (49.7% 
vs. 43.7%). Individuals with no information on chronotype from 
the EpiHealth questionnaire (n = 35) were excluded and the final 
sample comprised 2,436 participants (Figure 1).

Chronotype

Chronotype was assessed using the question: “Are you a 
morning person or an evening person?.” Answers were given 
on a scale from 1 to 5 (1 = extreme morning-type; 2 = moderate 
morning-type; 3 = intermediate; 4 = moderate evening-type; and 
5 = extreme evening-type).

Proteomic analysis

Blood samples were collected in the test center from December 
2011 to December 2012. Sampling was performed during the 
day (between 7:00 am and 5:00 pm), after at least 6 h of fasting. 
After separation of plasma, samples were stored at −80°C (mean 
storage time = 4.5 ± 0.3 SD years; range 4.0–5.0 years).

Protein biomarkers were measured using the multiplex prox-
imity extension assay (PEA) by Olink (Olink Proteomics, Uppsala, 
Sweden). Each PEA panel simultaneously quantifies 92 proteins 
using a pair of protein-specific antibodies attached to comple-
mentary oligonucleotides [20]. Proteins for the different panels 
are selected based on known or hypothesized links to disease 
groups. For the current study, the Olink panels Cardiovascular 
II, Cardiovascular III, and Metabolism (https://www.olink.com/
resources-support/document-download-center/) were used.

Individuals were excluded from a panel if their sample failed 
Olink’s quality control or more than 15% of the proteins (i.e. more 
than 10 proteins) in that panel were below the lower limit of de-
tection (LOD). Individuals excluded were not different in terms of 
age, sex, body mass index (BMI), waist circumference, and weight 
[21]. Additionally, proteins were excluded from the analysis if they 
were below the LOD in more than 15% of the samples. The final 
study sample comprised proteomic profile data for 2,328 individ-
uals on 88 proteins from panel CVD II, for 2,320 individuals on 91 
proteins from panel CVD III, and for 2,375 individuals on 63 pro-
teins from panel Metabolism (Figure 1). Although samples were 
considered randomized on plates and data had been normalized, 
protein values were adjusted for storage time and plate through 
linear regression and the standardized residuals (z-score) were 
used as the outcome variables in the subsequent analyses.

Covariates

Relevant covariates were categorized according to a hypothet-
ical causal diagram depicted in a directed acyclic graph (DAG) 
using the application DAGitty (www.dagitty.net; Supplementary 

https://www.epihealth.lu.se/
https://www.epihealth.lu.se/
https://www.olink.com/resources-support/document-download-center/
https://www.olink.com/resources-support/document-download-center/
http://www.dagitty.net
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsab226#supplementary-data
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Figure S1) [22]. Following the d-separation criteria, we identi-
fied the covariates categorized as confounders or mediators. 
Confounders were ancestors variables of both chronotype and 
proteins in a pathway that did not include chronotype. Potential 
mediators were defined as the covariates which were a des-
cendent of the exposure and an ancestor of the outcome in the 
causal pathway from chronotype to circulating proteins levels 
(Figure 2) [22].

The confounders identified were sex and age at visit. 
Participants’ sex was indicated as either male or female.

The potential mediators identified were smoking, alcohol, 
physical activity, diet, sleep sufficiency, sleep duration, BMI, 
hypertension, and diabetes. Smoking was entered as a nom-
inal variable (never, former, or current smoker) based on the 

questions “Do you smoke?” and “Have you ever smoked?.” 
Drinking habits were estimated using the modified version of 
the Alcohol Use Disorders Identification Test-Concise (AUDIT-C) 
[23]. Self-reported leisure-time physical activity was classi-
fied into four possible levels: a low level consisting of mainly 
sedentary activity; a medium-low level consisting of light in-
tensity activity, such as walking and dancing; a medium-high 
level including regular exercises and ordinary house chores; 
and a high level including regular vigorous-intensity activities. 
Diet was assessed with the Healthy Nordic Food Index (HNFI), 
which was calculated from the food frequency questionnaire in 
the original cohort as described at Warensjö Lemming et al. [24]. 
The HNFI score ranges from 0 to 6 based on the consumption of 
six food groups: apples and pears, root vegetables, cruciferous 

Figure 1.  Flowchart of the study population in total and by Olink panels. Individuals were excluded from a panel if their sample failed Olink’s quality control or more 

than 15% of the proteins in that panel were below the lower limit of detection (LOD). Individuals were also excluded if they were missing information on chronotype. 

Proteins were excluded if they were below the LOD in more than 15% of the samples. Final study population comprised 2,436 individuals and 242 proteins. CVD, car-

diovascular disease.

Figure 2.  Simplified directed acyclic graph depicting the direct and indirect effects of chronotype on circulating protein biomarkers.

http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsab226#supplementary-data
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vegetables, whole-grain bread, oatmeal, and fish. Insufficient 
sleep was assessed by the sleep sufficiency index (SSI) [25]. SSI 
was calculated by the ratio of reported sleep duration to re-
ported sleep need. Individuals with an SSI < 0.8 were considered 
as having insufficient sleep [25]. Hypertension and diabetes 
were defined based on self-reported doctor diagnosis or medica-
tion use for the condition. BMI was calculated as weight/height 
[2] (kg/m2) based on the study site measurements. Fat mass 
was assessed using a bioimpedance scale (Tanita, Tokyo, Japan) 
[26]. Body fat percentage was calculated by the ratio of fat mass 
to weight.

Lastly, time of the day for blood sampling was added as a 
covariate of technical variation as samples were collected over a 
large time span and protein levels varied depending on the time 
of sampling.

Statistical analysis

Chronotype was modeled as the independent variable with 
the intermediate chronotype set as the reference category, and 
protein biomarkers as the dependent variable. The effect of 
chronotype on each of the 242 proteins was investigated in two 
steps using a series of linear regressions. The first step was the 
main analysis and examined the total effect of chronotype by 
adjusting for the confounders’ age and sex and in addition sam-
pling time. Significance was tested by applying a joint Wald test 
on the four chronotype coefficients. Adjustment for multiple 
comparisons was performed using the Benjamini–Hochberg 
method [27] on the joint test p-values with a false discovery rate 
(FDR) set at 5%. The second step examined the direct effect of 
chronotype on proteins. In this step, the potential mediators 
from the DAG were also included in the model with the aim 
of estimating the effect of chronotype that is not mediated by 
another covariate. The proteins that reached in the main ana-
lysis the threshold of an FDR p-value < 0.05 were sequentially 
added as the dependent variable in the model further adjusted 
for the potential mediators. In this step, a joint test p-value < 
0.05 was considered significant. Finally, for the proteins iden-
tified in the first and second steps, we looked at the regression 
β-coefficients, 95% CIs, and p-values to determine how each 
chronotype category associated with the proteins. Also, for the 
proteins identified, we analyzed the regression residuals for ap-
proximate normality and homogeneity of variance.

To analyze the potential effect of sleep insufficiency on the 
relationship between chronotype and protein biomarkers, the 
proteins identified in step 1 were assessed in a total effect model 
with the addition of an interaction term between chronotype 
and insufficient sleep. Individuals with no information on SSI 
were excluded from this analysis (n = 109).

Four sensitivity analyses were performed. First, we repeated 
the analysis on the total effect of chronotype on circulating pro-
teins after excluding shift workers (n  =  124). Second, because 
some of the biomarkers identified had been previously related 
to obesity and fat tissue mass, we compared the results of the 
direct effect model after additional adjustment for waist-to-hip 
ratio and body fat percentage. Third, to better control the effect 
that certain conditions or medications could have on protein 
levels, the total effect of chronotype was further studied for the 
proteins identified in the main analysis by restricting the ana-
lysis to those participants without self-reported hypertension, 

diabetes, dyslipidemia, or medication use for these conditions. 
Finally, in the fourth sensitivity analysis, we compared the re-
sults of complete case analysis to the results produced from the 
imputed data.

All analyses were performed with the software Stata 15 
(Stata Corp., Texas, USA). Figures with results were produced in 
the software R version 4.0.3 (2020-10-10).

Imputation of missing variables

Variables with the most missing information were smoking 
(n = 463), alcohol (n = 148), SSI (n = 109), and physical activity 
(n = 26). Missing values were imputed with multiple imputations 
by 10 chained equations. To account for the uncertainty of im-
putations, analysis was performed on each of the completed 
datasets and then combined using Rubin’s combination rules 
[28]. Continuous variables were imputed using linear regression, 
binary variables using logistic regression, and categorical vari-
ables with > 2 levels using ordinal logistic regression. Variables 
used for imputation included all confounders, mediators, and 
protein variables, as well as body fat mass, waist-to-hip ratio, 
total energy intake, marital status, shift work, and snus use.

Ethical considerations

Data collection for EpiHealth was approved by the Ethics Board 
in Uppsala, Sweden (Dnr 2010/402—December 1, 2010 and 
November 17, 2011). The Swedish Data Protection Authority also 
inspected the study and found it to be clear of objections (Dnr 
307-2011—March 3, 2011). The current study was approved by 
the Ethics Boards in Uppsala (Dnr 2017/487—December 13, 2017).

Results
The study population is described in Table 1. About half of the 
individuals were males (49.7%) and the mean age was 61.2 (±8.4 
SD) years. Most of the participants described themselves as the 
intermediate chronotype with 845 (34.7%) participants, while 
383 (15.7%) defined themselves as an extreme evening-type 
and 511 (21.0%) as an extreme morning-type. Extreme evening-
types and extreme morning-types were slightly younger, more 
often single or living alone, and more often a current smoker 
than intermediate types. No significant differences were seen 
for diet (HNFI score), alcohol score, BMI, or sleep duration across 
the categories. There was, however, a larger proportion of par-
ticipants with an SSI < 0.8 among the extreme evening-types.

Association between chronotypes and protein 
biomarkers

We identified 19 proteins associated with chronotype in the 
first step (model adjusted for age, sex, and sampling time) after 
adjusting for multiple testing (Figure 3 and Supplementary 
Table S1). All but two proteins (adrenomedullin [ADM] and 
prostasin [PRSS8]) identified at the first step were associated 
with chronotype in the fully adjusted model (Figure 3 and 
Supplementary Table S2). The top five proteins identified with 
the joint test at both steps were tissue-type plasminogen acti-
vator (tPA), retinoic acid receptor responder protein 2 (RARRES2), 

http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsab226#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsab226#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsab226#supplementary-data
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plasminogen activator inhibitor (PAI-1), fatty-acid binding pro-
tein—adipocyte (FABP4), and spondin 2 (SPON2).

When examining the effect by each of the chronotype 
categories, the associations identified were largely driven by 
positive β-coefficients for the moderate and extreme evening-
types. Regression coefficients showed a trend for an association 
with extreme morning-type for several proteins; however, only 
PAI-1 was associated after adjustment. For most of the associ-
ated proteins, there was a dose-response effect noticed by a pro-
gressive increase in the β-coefficients as chronotype delayed in 
the chronotype scale from the extreme morning-type to the ex-
treme evening-type. This gradient effect could also be observed 
in a heatmap displaying the association between chronotype 
categories and the protein biomarkers (Figure 4).

Effect of insufficient sleep

From the 19 proteins identified at the first step, only RARRES2 
was associated with the interaction term of chronotype and in-
sufficient sleep (joint test p-value = 0.035) (Table S3).

Sensitivity analysis

Excluding shift workers from the study sample did not notably 
change the results (Table S4), nor did adjusting for waist-to-hip 
ratio and body fat percentage (Table S5).

When we restricted the total effect analysis to the partici-
pants who did not have hypertension, diabetes, dyslipidemia, or 
used medication for these conditions (n = 1,459), the direction of 
the associations was preserved (Table S6). The association with 
the extreme chronotype was strengthened for some proteins 
(e.g. tPA, RARRES2, and PAI-1) while attenuated for others. Only 
four proteins were no longer associated with chronotype (tumor 
necrosis factor receptor superfamily member 6 [FAS], PRSS8, 
ADM, and cathepsin Z [CTSZ]).

The complete case analysis and the multiple imputations pro-
duced comparable results to the fully adjusted model, with coeffi-
cients of similar magnitude and same direction, despite the larger 
confidence intervals (Table S7). Out of the 17 proteins identified 
with multiple imputations, four were no longer associated with 
chronotype in the complete case analysis (fibroblast growth factor 
21 [FGF21] and 23 [FGF23], cathepsin D [CTSD], and CTSZ).

Discussion
The main finding of this study is that chronotype, and espe-
cially the evening chronotypes, is associated with circulating 
cardiometabolic proteins. Out of preselected 242 proteins rele-
vant for CVD and metabolism measured using a high-throughput 
target proteomics approach, we found 19 proteins associated with 
chronotype in 2,436 individuals aged 45–75 from Sweden. After 
further adjustment for hypertension, diabetes, BMI, and other 

Table 1.  Study population characteristics (2,436 Swedish adults from the Uppsala site of EpiHealth cohort, age 45–75 years)

 

Extreme morning  
n = 511

Moderate morning  
n = 391

Intermediate  
n = 845

Moderate evening  
n = 306

Extreme evening  
n = 383

Mean (SD) or n (%) Mean (SD) or n (%) Mean (SD) or n (%) Mean (SD) or n (%) Mean (SD) or n (%) P

Male* 249 (48.7) 199 (50.9) 410 (48.5) 166 (54.2) 183 (47.8) 0.41
Age (years) 60.8 (8.3) 60.2 (8.2) 62.3 (8.4) 60.1 (8.7) 61.6 (8.1) <0.001
Marital status      <0.001
  Single/living alone 127 (24.9) 84 (21.5) 178 (21.1) 69 (22.5) 124 (32.6)  
  Married/living together 384 (75.1) 306 (78.5) 667 (78.9) 237 (77.5) 256 (67.4)  
Education      0.066
  Compulsory 107 (20.9) 71 (18.2) 162 (19.2) 49 (16.0) 67 (17.5)  
  Secondary 143 (28.0) 99 (25.4) 209 (24.8) 67 (21.9) 87 (22.8)  
  University 192 (37.6) 174 (44.6) 352 (41.8) 156 (51.0) 183 (47.9)  
  Other 69 (13.5) 46 (11.8) 120 (14.2) 34 (11.1) 45 (11.8)  
Current smoker 44 (10.2) 20 (6.5) 52 (7.6) 25 (10.5) 40 (12.7) 0.034
AUDIT-C score 3.4 (1.8) 3.5 (1.6) 3.5 (1.7) 3.7 (1.8) 3.6 (1.9) 0.1
BMI (kg/m2) 26.3 (3.6) 26.2 (3.7) 26.4 (3.9) 26.7 (3.9) 26.9 (4.0) 0.055
WHR 0.89 (0.08) 0.90 (0.08) 0.89 (0.08) 0.90 (0.08) 0.91 (0.08)1) 0.17
Body fat (%) 30.1 (7.9) 29.7 (7.9) 30.5 (8.1) 29.9 (8.5) 31.2 (8.4) 0.099
Physical activity level      0.24
  Low 30 (5.9) 15 (3.9) 37 (4.4) 17 (5.6) 29 (7.7)  
  Medium-low 169 (33.4) 128 (33.3) 296 (35.4) 121 (39.5) 138 (36.5)  
  Medium-high 212 (41.9) 165 (43.0) 364 (43.5) 117 (38.2) 155 (41.0)  
  High 95 (18.8) 76 (19.8) 139 (16.6) 51 (16.7) 56 (14.8)  
HNFI score 2.7 (1.5) 2.8 (1.4) 2.8 (1.5) 2.6 (1.4) 2.8 (1.4) 0.36
Sleep duration (hours) 6.8 (1.0) 6.9 (0.9) 6.9 (1.0) 6.9 (0.9) 6.9 (1.0) 0.32
SSI 0.95 (0.13) 0.95 (0.12) 0.94 (0.13) 0.93 (0.12) 0.93 (0.14) 0.075
Insufficient sleep 65 (12.9) 45 (11.9) 119 (14.6) 53 (18.0) 77 (21.0) 0.002
Hypertension 142 (27.8) 103 (26.3) 219 (25.9) 71 (23.2) 115 (30.0) 0.32
Diabetes 15 (2.9) 14 (3.6) 39 (4.6) 4 (1.3) 16 (4.2) 0.087

Variables presented as mean (±SD) or as n (%).

To obtain p-values, ANOVA and chi-square test were used for continuous and categorical variables, respectively. AUDIT-C score, Alcohol Use Disorders Identification 

Test-Concise score; BMI, body mass index; HNFI score, Healthy Food Nordic index score; SSI, sleep sufficiency index; WHR, waist-to-hip ratio.

*Information on gender was not available for 22 participants.

http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsab226#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsab226#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsab226#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsab226#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsab226#supplementary-data
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common risk factors of cardiometabolic disorders, 17 proteins re-
mained associated. The associations were mainly driven by a posi-
tive association with the evening chronotypes, accompanied by 
coefficients in the oppositive direction for morning chronotypes.

To our knowledge, this is the first study to investigate the 
proteomic profile associated with chronotype. Our findings add 
to the existing knowledge and provide some molecular insights 
in the relation of chronotype with cardiometabolic disorders. 

Furthermore, the variety of proteins identified indicates that 
several mechanisms may link chronotype to health outcomes.

Both PAI-1 and tPA were positively associated with the ex-
treme evening chronotype and PAI-1 was also negatively as-
sociated with the extreme morning chronotype even after 
adjustment for common cardiometabolic risk factors. PAI-1 and 
tPA have previously been associated with glucose metabolism 
disorders [29], incident T2D [30], and coronary heart disease  

Step 1. Total effect Step 2. Direct effect
tPA

RARRES2

PAI−1

FABP4

SPON2

LEP

TNFR1

FGF21

CCL15

FAS

ADM

LDL receptor

CTSD

PLC

CTSZ

IGFBP7

HAOX1

FGF23

PRSS8

−0.2 0.0 0.2 0.4 −0.2 0.0 0.2 0.4
β−coefficient (95% CI)

P
ro

te
in

s

Chronotype

Ext. even.

Mod. even.

Mod. morn.

Ext. morn.

Associations between chronotype and circulating protein markers 
n=2436

Figure 3.  Associations between chronotype and circulating protein markers. Figure shows the results from the linear regression modelling of total or direct effect of 

chronotype. The total effects model was adjusted for age, sex, and sampling time. The direct effects model was further adjusted for smoking, alcohol, physical activity, 

diet, sleep sufficiency, sleep duration, BMI, hypertension, and diabetes. Results are presented as β-coefficients and 95% confidence intervals representing changes in 

protein measurement in relation to the intermediate chronotype. ADM, Adrenomedullin; CCL15, C-C motif chemokine 15; CTSD, cathepsin D; CTSZ, cathepsin Z; FAS, 

tumor necrosis factor receptor superfamily member 6; FABP4, fatty acid-binding protein, adipocyte; FGF21, fibroblast growth factor 21; FGF23, fibroblast growth factor 

23; HAOX1, hydroxyacid oxidase 1; IGFBP7, insulin-like growth factor-binding protein 7; LEP, leptin; LDL receptor, low-density lipoprotein receptor; PAI-1, plasminogen 

activator inhibitor 1; PLC, perlecan; PRSS8, prostasin; RARRES2, retinoic acid receptor protein 2; SPON2, spondin-2; tPA, tissue-type plasminogen activator; TNFR1, tumor 

necrosis factor receptor 1; Ext, extreme; Even, evening-type; Mod, moderate; Morn, morning-type.
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[31, 32]. PAI-1 and tPA are components of the fibrinolytic system, 
with PAI-1 acting as a direct inhibitor of tPA [33]. This is the first 
time that fibrinolysis markers are linked to chronotype. Prior 
studies have found that altered fibrinolysis markers can antici-
pate the development of T2D, even though a causal relationship 
has not been recognized [34]. In addition, lifestyle interventions 
for weight reduction through low-fat diet and physical activity 

led to a reduction in the plasma concentration of these proteins 
in individuals at high risk for T2D [35, 36].

Lifestyle factors have been suggested as a link between 
chronotype and cardiometabolic disease. Evening chronotypes 
have a higher risk of T2D and CVD [5, 6, 37], which could be 
related to engagement in more unhealthy behaviors [38]. 
Nevertheless, the particular contribution of each lifestyle factor 
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is unclear. In the current study, among the evening-types, there 
was a higher proportion of current smokers, lower proportion of 
individuals with medium-high or high physical activity, but no 
difference in the diet score. In a UK study (n = 635) using wrist 
accelerometer-based data, evening-types not only were less in-
volved in moderate-to-vigorous physical activity but also spent 
more time in sedentary behavior [39]. The role of diet as me-
diator between evening-types and obesity was investigated in 
the National FINRISK 2007 Study (n = 4,421). Although evening-
types had lower adherence to a healthy Nordic diet, there was 
insufficient evidence to conclude that the poorer diet was a me-
diator between chronotype and obesity. Occupation, especially 
shift work, could be another factor connecting chronotype to 
cardiometabolic diseases [11]. Nevertheless, the exclusion of 
shift workers did not affect our results.

Among our findings, there were three adipokines posi-
tively associated with the evening chronotype, namely FABP4, 
Leptin (LEP), and RARRES2. The intracellular lipid transporter 
FABP4 is secreted by adipocytes under fasting-related signals 
and stimulates hepatocyte glucose production [40]. In humans, 
serum FABP4 has been associated with obesity and insulin re-
sistance [41]. LEP is a well-known appetite regulator produced 
by the adipose tissue. Obese individuals have higher LEP levels 
but they are also more resistant to its anorexigenic effect [42]. 
RARRES-2, also known as chemerin, is involved in adipogenesis, 
regulation of inflammation and metabolism, and is considered 
a potential link between obesity and development of insulin 
resistance [43]. In this study, the three adipokines were asso-
ciated with chronotype even after adjustment for BMI, waist-
to-hip ratio, and body fat percentage, suggesting that obesity 
may not be the only mechanism connecting these adipokines 
to chronotype, although we cannot exclude the possibility of in-
sufficient adjustment.

A study by Nowak et al. implemented a similar approach to the 
present study to investigate protein biomarkers associated with 
insulin resistance [44]. The study used data from two cohorts from 
Uppsala, Sweden, one as a discovery sample (mean age 70.2) and 
another as a validation sample (mean age 77.6). Out of the seven 
proteins identified by Nowak et al., four proteins (LEP, tPA, FABP4, 
and CTSD) were also identified in the current study, indicating 
possible pathways linking chronotype and insulin resistance. 
These findings deserve further exploration in future studies.

For our analysis, we defined the intermediate chronotype as 
the reference category, and interestingly the resulting regression 
coefficients for the extreme chronotypes were of opposite dir-
ections. Such finding suggests, at least for many associations, 
the existence of a continuum in protein concentration from the 
morning-types to the evening-types. Moreover, it supports the 
validity of our chronotype assessment.

In our study, the main exposure was determined using a single 
question about preference on time of the day, producing a categor-
ical variable with five levels. Other methods exist, including more 
detailed questionnaires, as the Morning-Evening Questionnaire 
[45], and the Munich ChronoType Questionnaire (MCQT) that de-
fines the chronotype on a continuous scale based on the mid-point 
between bedtime and wakeup-time on free days [46]. Two aspects 
can underline the reliability of our approach. First, self-assessment 
of chronotype has been shown to have a high correlation with the 
MCTQ. Second, the question used in EpiHealth has been previously 
related to sleep timing and the estimated circadian phase [47]. 
Although exposure misclassification may not be completely ruled 

out, it would likely be unrelated to the outcome, resulting in effect 
estimates biased toward the null.

Chronotype and insufficient sleep

Given that insufficient sleep has been previously associated 
with later chronotypes [48] and metabolic disorders [49], we 
conducted an additional analysis to investigate if the effect of 
chronotype varied according to the presence or absence of in-
sufficient sleep. Only for one protein, RARRES2, there was a sig-
nificant interaction for chronotype with insufficient sleep. This 
result must be interpreted with caution but indicates that the 
associations found between chronotype and the circulating pro-
tein biomarkers are not altered by insufficient sleep.

Strengths and limitations

The main strengths of this study are the extensively validated 
proteomics profiling method used [20] and the large and well-
characterized study population. The PEA method requires a 
small sample volume and enabled us to examine 242 circulating 
proteins biomarkers in relation to chronotype. Because samples 
were collected over 10 h, the measurements are more likely to 
reflect average protein levels during the collection period rather 
than phase shift on plasma levels. Nevertheless, all models were 
adjusted for sampling time to control for the potential effect of 
circadian variation on our results. In addition, previous studies 
have shown that the proteomic profile is usually stable over time 
[50]. The EpiHealth cohort contains a large number of variables 
on the participants’ health, lifestyle, and several anthropometric 
measurements recorded on site [17]. The amount of information 
available allowed us to condition our analysis for many relevant 
covariates.

There are, nonetheless, important considerations to be 
made when assessing the results. Despite the extensive adjust-
ments made, residual confounding is expected to affect the re-
sults of observational studies that are so intricately related to 
lifestyle factors. In addition, most of the data is self-reported, 
hence susceptible to reporting bias. The cross-sectional design 
restricts our possibilities of inferring causality, but given the 
current knowledge, it is unlikely that the protein biomarkers 
identified could act influencing the chronotype. Although the 
biomarkers investigated are a preselected set of candidates or 
established markers for cardiovascular or metabolic disease, 
many of the markers are involved in multiple biological path-
ways. Experimental studies are needed before we can draw 
conclusions about specific pathways. Our findings are also re-
stricted to one study population and we lack a replication co-
hort. Given the influence of latitude and age on chronotype [51], 
our findings from a cohort in Uppsala, Sweden (latitude 59°N) 
need to be validated in other latitudes and other age groups.

Last, other studies have reported a higher social-jetlag, dif-
ference in sleep timing between weekdays and weekends  
[46, 48], in evening-types. Unfortunately, we do not have the data 
to assess the impact of social-jetlag on our results.

Conclusion
In this study, we identified several circulating protein bio-
markers of cardiometabolic relevance associated with the 
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evening chronotypes. In addition, there was a gradient effect 
on circulating protein from one extreme to the other in the 
chronotype scale. Among the newly identified associations, 
there were proteins previously linked to cardiovascular and 
metabolic disorders, in particular fibrinolysis markers and 
adipokines. Overall, these findings suggest potential pathways 
in the relation of chronotype with health problems, which de-
serves future investigations.
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