Skip to main content
. 2022 Jan 31;11:792024. doi: 10.3389/fonc.2021.792024

Table 4(A-B).

A summary of statistical estimates on performance of single-omics models (4A), multi-omics models and the Radiomic model trained by using MKL algorithm (4B).

Table 4A Training Set Hold-out test set
Avg. AUC STD 95% CI p-value Avg. AUC STD 95% CI p-value
Single-omics Model
Radiomics (R) 0.94 0.01 (0.938,0.946) Ref  0.92 0.03 (0.903,0.933) Ref 
Morphology (M) 0.74 0.03 (0.726,0.754) <0.0001*  0.64 0.08 (0.608,0.677) <0.0001* 
Contouromics (C) 0.664 0.052 (0.641,0.687) <0.0001*  0.55 0.082 (0.514,0.586) <0.0001* 
Dosiomics (D) 0.9 0.02 (0.887,0.903) <0.0001*  0.81 0.03 (0.798,0.824) <0.0001* 
Table 4B Training Set Hold-out test set
Avg. AUC STD 95% CI p-value Avg. AUC STD 95% CI p-value
Multi-omics Model
RM 0.99 0.01 (0.983,0.989) <0.0001* 0.47 0.93 0.04 (0.916,0.952) 0.36 0.62
RD 0.99 0 (0.990,0.994) <0.01* <0.001* 0.93 0.03 (0.920,0.947) 0.37 0.64
RC 0.99 0.01 (0.984,0.989) <0.0001* 0.42 0.93 0.04 (0.909,0.941) 0.14 0.92
RMDC 1 0 (0.995,0.998) Ref <0.0001* 0.94 0.03 (0.931,0.956) Ref 0.21
Radiomic Model (trained by MKL)
R_MKL 0.98 0.01 (0.981,0.988) <0.0001* Ref 0.93 0.05 (0.905,0.948) 0.21 Ref

The symbol (*) represents meeting the level of statistical significance (p < 0.05).