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Abstract
Study Objectives:  Sleep is an important biological process that is perturbed in numerous diseases, and assessment of its substages 
currently requires implantation of electrodes to carry out electroencephalogram/electromyogram (EEG/EMG) analysis. Although 
accurate, this method comes at a high cost of invasive surgery and experts trained to score EEG/EMG data. Here, we leverage modern 
computer vision methods to directly classify sleep substages from video data. This bypasses the need for surgery and expert 
scoring, provides a path to high-throughput studies of sleep in mice.

Methods:  We collected synchronized high-resolution video and EEG/EMG data in 16 male C57BL/6J mice. We extracted features 
from the video that are time and frequency-based and used the human expert-scored EEG/EMG data to train a visual classifier. We 
investigated several classifiers and data augmentation methods.

Results:  Our visual sleep classifier proved to be highly accurate in classifying wake, non-rapid eye movement sleep (NREM), and 
rapid eye movement sleep (REM) states, and achieves an overall accuracy of 0.92 ± 0.05 (mean ± SD). We discover and genetically 
validate video features that correlate with breathing rates, and show low and high variability in NREM and REM sleep, respectively. 
Finally, we apply our methods to noninvasively detect that sleep stage disturbances induced by amphetamine administration.

Conclusions:  We conclude that machine learning-based visual classification of sleep is a viable alternative to EEG/EMG based 
scoring. Our results will enable noninvasive high-throughput sleep studies and will greatly reduce the barrier to screening mutant 
mice for abnormalities in sleep.
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Statement of Significance

We develop a noninvasive sleep state classification system for mice using computer vision. The trained classifier can accurately score wake, 
non-rapid eye movement sleep, and rapid eye movement sleep states using only the video data. The approach will enable high-throughput 
automated analysis of sleep states in mice. Validation of key findings will require electroencephalogram/electromyogram recording of sleep.
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Introduction

Sleep is a complex behavior that is regulated by a homeostatic 
process and whose function is critical for survival [1]. Sleep and 
circadian disturbances are seen in many diseases including 
neuropsychiatric, neurodevelopmental, neurodegenerative, 
physiologic, and metabolic disorders [2, 3]. Sleep and circadian 
functions have a bidirectional relationship with these diseases, 
in which changes in sleep and circadian patterns can contribute 
to or be the result of the disease state [4–11]. Even though the 
bidirectional relationships between sleep and many diseases 
have been well described, their genetic etiologies have not 
been fully elucidated. In fact, treatments for sleep disorders are 
limited because of a lack of knowledge about sleep mechanisms 
[1]. Rodents serve as a readily available model of human sleep 
due to similarities in sleep biology and mice, in particular, are 
a genetically tractable model for mechanistic studies of sleep 
and potential therapeutics [12–15]. One of the reasons for this 
critical gap is due to technological barriers that prevent reliable 
phenotyping of large numbers of mice for assessment of sleep 
states. The gold standard of sleep analysis in rodents utilizes 
electroencephalogram/electromyogram (EEG/EMG) recordings. 
This method is low throughput as it requires surgery for elec-
trode implantation and often requires hand scoring of the re-
cordings. Although new methods utilizing neural networks have 
started to automate EEG/EMG scoring [16–18], the data gener-
ation is still low-throughput. In addition, the use of tethered 
electrodes limits animal movement potentially altering animal 
behavior [19].

To overcome this limitation, several noninvasive approaches 
to sleep analysis have been explored. These include activity as-
sessment through beam break systems, or videography in which 
certain amount of inactivity is interpreted as sleep [20–24]. Piezo 
pressure sensors have also been used as a simpler and more 
sensitive method of accessing activity [25–28]. The latter has 
been applied toward high throughput studies in the knockout 
mouse project [29]. These methods only access sleep versus 
wake and are not able to differentiate wake, rapid eye move-
ment sleep (REM), and non-rapid eye movement sleep (NREM) 
states. This is critical because activity determination of sleep 
states can be inaccurate in humans as well as rodents that have 
low general activity [30]. Other methods to assess sleep states 
include pulse doppler-based method to assess movement and 
respiration [31] and whole body plethysmography to directly 
measure breathing patterns [32]. Both these approaches require 
specialized equipment. Recently, electric field sensors that de-
tect respiration and other movements have also been used to 
access sleep states [33]. Both doppler and electric field sensors 
achieve higher accuracy for 3-state sleep classification. In gen-
eral, respiration, movement, or posture by themselves are valu-
able for distinguishing between the three states and we predict 
that accuracy increases with combined features of movement 
and respiration.

In our work, to assess wake, NREM, and REM states, we used 
a video-based method with high resolution and found that in-
formation about sleep states is encoded in video data [34]. There 
are subtle changes in the area and shape of the mouse as it 
transitions from NREM to REM, likely due to the atonia of the 
REM stage. This allowed us to discriminate these two states [34]. 
However, using the methods available at that time, we found low 
discriminability between the three states. This is because the 
images we employed were low resolution and we tracked the 

mouse using an ellipse fit which inherently loses important pos-
tural information. Over the past few years, large improvements 
have been made in the field of computer vision, largely due to 
advancement in machine learning, particularly in the field of 
deep learning [35]. We have used these methods to track and 
determine action of mice [36–38]. Here we use these advanced 
machine vision methods to greatly improve upon visual sleep 
state classification. We extract rich features from the video that 
describe respiration, movement, and posture. These features 
combine to accurately determine sleep states in mice. This 
noninvasive video-based method is simple to implement with 
low hardware investment and yields high-quality sleep state 
data. The ability to access sleep states reliably, noninvasively, 
and in a high throughput manner will enable large scale mech-
anistic studies necessary for therapeutic discoveries. Key find-
ings from this discovery strategy can then be validated in a 
subset of mice with EEG/EMG recording of sleep states.

Methods

Animal housing, surgery, and experimental setup

Sleep studies were conducted in 16 C57BL/6J (000664) male mice. 
We also image C3H/HeJ (000659) without surgery for feature in-
spection. These mice were obtained from Jackson Laboratory at 
10–12 weeks of age. All animal studies were performed in accord-
ance with the guidelines published by the National Institutes of 
Health Guide for the Care and Use of Laboratory Animals and 
was approved by the University of Pennsylvania Animal Care 
and Use Committee. The methods employed have been de-
scribed previously by us [22, 34], and are described briefly here.

Mice were individually housed in an open-top standard 
mouse cage (6 by 6  inches). The height of each cage was ex-
tended to 12 inches prevent mice from jumping out of the cage. 
This design allowed us to simultaneously assess mouse behavior 
by video and sleep/wake stages by EEG/EMG recording. Animals 
were fed water and food ad libitum and were in a 12-hour light/
dark cycle. During the light phase, the lux level at the bottom of 
the cage was 80 lux.

For EEG recording, four silver ball electrodes were placed 
in the skull; two frontal and two parietotemporal. For EMG 
recordings, two silver wires were sutured to the dorsal nu-
chal muscles. All leads were brought subcutaneously to the 
center of the skull and connected to a plastic socket pedestal 
(Plastics One) which was fixed to the skull with dental ce-
ment. Electrodes were implanted under general anesthesia. 
Following surgery, animals were given a 10-day recovery period 
before recording.

To assess how well our video-based algorithm worked when 
there were dynamic changes in state, we performed studies with 
intra-peritoneal injections of methamphetamine HCl (Sigma 
Aldrich). An additional 8 C57BL/6J male singly housed mice were 
studied with methamphetamine. They had surgery performed 
as described for insertion of electrodes for recording of EEG 
and EMG. They were allowed 10  days to recover from surgery 
before assessment of sleep. Animals were fed water and food 
ad libitum and were in a 12-hour light/dark cycle. EEG and EMG 
were recorded simultaneously with video. We recorded an ini-
tial 24-hour period of baseline wake and sleep behavior the day 
prior to the methamphetamine injection. Following the baseline 
day, animals received two separate intra-peritoneal injections of 
1 mg/kg of methamphetamine at the Zeitgeber time (ZT) hours 
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2 and 6 following lights on. Recording was continued throughout 
the remainder of the 24-hour period.

EEG/EMG acquisition. For recording of EEG/EMG, raw signals were 
read using Grass Gamma Software (AstraMed) and amplified 
(20,000×). The signals were filtered with settings for EEG being 
low cutoff frequency of 0.1 Hz and high cutoff frequency of 100 
Hz. The settings for EMG were a low cutoff frequency of 10 Hz 
and high cutoff of 100 Hz. Recordings were digitized at 256 Hz 
samples/second/channel.

Video acquisition. We used a Raspberry Pi 3 model B night vi-
sion setup to record high quality video data in both day and 
night conditions. We utilized the Sainsmart infrared night vi-
sion surveillance camera, which is accompanied with infrared 
light-emitting diodes to illuminate the scene when visible light 
is absent (SKU:101-40-112). The camera was mounted 18 inches 
above the floor of the home cage looking down providing a top-
down view of the mouse for observation. During the day, video 
data are color. During the night, video data are monochromatic. 
We recorded video at 1920 × 1080 pixel resolution and 30 frames 
per second using the v4l2-ctl capture software. The cost of our 
video acquisition was approximately $155 ($35 Raspberry Pi3, $ 
30 camera, $80 3TB hard drive, $10 power supply).

Video and EEG/EMG data synchronization. We used computer clock 
time to synchronize video and EEG/EMG data. The EEG/EMG data 
collection computer was used as the source clock. At a known 
time on the EEG/EMG computer, a visual cue was added to the 
video. The visual cue typically lasted 2–3 frames in the video, 
suggesting that possible error in synchronization could be at 
most 100 ms. Since EEG/EMG data are analyzed in 10 s intervals, 
any possible error in temporal alignment would be negligible.

EEG/EMG annotation for training data: We collected 24 h synchron-
ized video and EEG/EMG data for 16 C57BL/6J male mice from 
the Jackson Laboratory that were 10–12 weeks old. Both the EEG/
EMG data and videos were divided into 10 s epoch, each epoch 
was scored and labeled as REM, NREM, or wake stage based on 
EEG and EMG signals by trained scorers. A total of 17,700 EEG/
EMG epochs were scored by expert humans. Among them, 48.3% 
± 6.9% epochs were annotated as wake, 47.6% ± 6.7% as NREM 
and 4.1% ±1.2% as REM stage. Additionally, we applied SPINDLE’s 
methods for a second annotation [16]. Similar to human experts, 
52% were annotated as wake, 44% as NREM, and 4% as REM. 
Since SPINDLE annotates 4 s epochs, we joined three sequential 
epochs to compared to the 10 s epochs and only compare epochs 
when the three 4 s epochs do not change. When we correlated 
specific epochs, the agreement between human annotations 
and SPINDLE was 92% (89% Wake, 95% NREM, and 80% REM).

Data preprocessing. Starting with the video data, we applied a pre-
viously described segmentation neural network architecture to 
produce a mask of the mouse [1]. We annotated 313 frames to 
train the segmentation network. We applied a 4  × 4 diamond 
dilation followed by a 5  × 5 diamond erosion filter to the raw 
predicted segmentation. These routine operations were used 
to improve segmentation quality. With the predicted segmen-
tation and resulting ellipse fit, we extracted a variety of per-
frame image measurement signals in each frame described 
in Table 1. All these measurements (Table 1) were calculated 

by applying OpenCV contour functions on the neural network 
predicted segmentation mask. The OpenCV function we used 
included fitEllipse, contourArea, arcLength, moments, and 
getHuMoments. Using all the measurement signal values within 
an epoch, we derived a set of 20 frequency and time domain 
features (Table 2). These were calculated using standard signal 
processing approaches and can be found in our example code 
(github.com/KumarLabJax/MouseSleep).

Training the classifier. Due to the inherent dataset imbalance, 
that is, many more epochs of NREM compared to REM sleep, we 
randomly selected an equal number of REM, NREM, and wake 
epochs to generate a balanced dataset. We utilized a cross-
validation approach to evaluate the performance of our clas-
sifier. We randomly selected all epochs from 13 animals from 
the balanced dataset for training and used imbalanced data 
from the remaining four animals for testing. The process was 
repeated 10 times to generate a range of accuracy measure-
ments. This approach allowed us to observe performance on real 
imbalanced data while taking advantage of training a classifier 
on balanced data.

Prediction post-processing. We applied a Hidden Markov Model 
(HMM) approach to integrate larger scale temporal information 
to enhance prediction quality. The HMM model can correct er-
roneous predictions made by the classifier by integrating the 
probability of sleep state transitions and thus obtain more ac-
curate predicted results. The hidden states of the HMM model 
are the sleep stages, whereas observables come from the prob-
ability vector results from the XgBoost algorithm. We com-
puted the transition matrix empirically from the training set 
sequence of sleep states, then applied the Viterbi algorithm 
(Viterbi 1967) to infer the most probable sequence of the states 
given a sequence of the out of bag class votes of the XgBoost. 
In our cases, the transition matrix is a 3 by 3 matrix T = {S_ij}, 
here S_ij represents the transition probability from state S_i to 
state S_j (Table 2).

Table 1.  Description of per-frame measurements derived from the 
segmentation and resulting ellipse fit of the segmentation mask of 
the mouse

Measurement Measurement description

m00 Area
Perimeter Perimeter of the mouse silhouette
x Center x-position of ellipse-fit
y Center y-position of ellipse-fit
w Minor axis length for an ellipse-fit
l Major axis length for an ellipse-fit
wl_ratio Width divided by length of minor 

and major axis of ellipse fit
dx Change in ellipse center x-position
dy Change in ellipse center y-position
hu0 Hu moment 0
hu1 Hu moment 1
hu2 Hu moment 2
hu3 Hu moment 3
hu4 Hu moment 4
hu5 Hu moment 5
hu6 Hu moment 6



4  |  SLEEPJ, 2022, Vol. 45, No. 2

Classifier performance analysis. Performance was evaluated using 
metrics of accuracy as well as several metrics of classification 
performance: precision, recall, and F1 score. Precision is de-
fined as the ratio of epochs classified by both the classifier and 
the human scorer for a given sleep stage to all of the epochs 
that the classifier assigned as that sleep stage. Recall is defined 
as the ratio of epochs classified by both the classifier and the 
human scorer for a given sleep stage to all of the epochs that 
the human scorer classified as the given sleep stage. F1 com-
bines precision and recall and measures the harmonic mean of 
recall and precision. The mean and standard deviation of the 
accuracy and the performance matrix were calculated from 
10-fold cross-validation.

Methamphetamine analysis. Performance of the methampheta-
mine experiment was conducted by training a classifier using 
the original 16 animals and predicting on the methamphetamine 
data. This means that no animals from the methamphetamine 
experiment were included in the visual classification model we 

used. We calculated the same metrics as we used in the classi-
fier performance analysis for this dataset as well as summarized 
hourly time spent in each sleep state. For detecting the effect of 
methamphetamine, we analyzed after each injection (ZT2 and 
6) and compared them to baseline in the same animal.

Results

Experimental design

We sought to quantify the feasibility of using exclusively video 
data to classify mouse sleep states. This entire process is de-
scribed visually in Figure 1A. We designed an experimental para-
digm where we could leverage the current gold standard of sleep 
state classification, EEG/EMG recordings, as labels for training 
and evaluating our visual classifier. Overall, we recorded syn-
chronized EEG/EMG and video data in 16 animals (24  h per 
animal). The data were split into 10 s epochs. Each epoch was 
hand scored by human experts. Concurrently, we designed fea-
tures from video data which could be used in a machine learning 
classifier. These features were built on per frame measurements 
that describe the animal’s visual appearance in individual video 
frames (Table 1). We then applied signal processing techniques 
to the per frame measurements to integrate temporal informa-
tion to generate a set of features for use in a machine learning 
classifier (Table 2). Finally, we split the human-labeled dataset 
by holding out individual animals into training and validation 

Record
Synchronized

Data

Generate
Frame

Measurements

Spectral
Analysis of
Features

Machine
Learning
Classifier

Human
Scoring

Compare
Approaches

Video Data

EEG/EMG
Data

80% Training

20% Validation

Input Frame Neural Network Segmentation Output

A

B

Figure 1.  Visual data flow of our experimental pipeline. (A) A visual description of how we organized data collection, annotation, feature generation, and classifier 

training. (B) A visual description of frame-level information we use for visual features. We used a trained neural network to produce a segmentation mask of pixels 

pertaining to the mouse for use in downstream classification.

Table 2.  The transition probability matrix of the sleep stages

From\to Wake NREM REM

Wake 97.0% 3.0% 0%
NREM 2.4% 96.5% 1.1%
REM 10.1% 4.4% 85.6%
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datasets (80:20, respectively). Using the training dataset, we 
trained a machine learning classifier to classify 10 s epochs of 
video into three states: wake, sleep NREM, and sleep REM. We 
used the set of held out animals in our validation dataset to 
quantify our classifiers performance. When we separate the val-
idation set from the training set, we held out whole animal data 
which ensured that our classifier generalized well across ani-
mals instead of learning to predict well only on the animals it 
was shown.

Per frame features

We applied computer vision techniques to extract detailed visual 
measurements of the mouse in each frame. The first computer 
vision technique that we used is segmentation of the pixels per-
taining to the mouse versus background pixels (Figure 1B). We 
trained a segmentation neural network as an approach that op-
erates well in dynamic and challenging environments such as 
light and dark conditions as well as the moving bedding seen 
in our arenas [1]. Segmentation also allowed us to remove the 
EEG/EMG cable emanating from the instrumentation on head of 
each mouse so that it does not affect the visual measurements 
with information about the motion of the head. Our segmen-
tation network predicts pixels that are only the mouse and as 
such the measurements are only based on mouse motion and 
not the motion of the wire connected to the mouse’s skull. We 
annotated frames randomly sampled from all videos to achieve 
this high-quality segmentation and ellipse fit using a previously 
described network [36] (Figure 1B). The neural network required 
only 313 annotated frames to achieve good performance seg-
menting the mouse. We show example performance of our seg-
mentation network by coloring pixels predicted as not mouse 
with red and pixels predicted as mouse as blue on top of the ori-
ginal video (Video 1). Following the segmentation, we calculated 
16 measurements from the neural network predicted segmenta-
tion that describes the shape and location of the mouse (Table 1).  

These include, major, minor length, and ratio of the mouse from 
an ellipse fit that describes the mouse shape. We extracted the 
location of the mouse (x, y) and change in x, y (dx, dy) for the 
center of the ellipse fit. We also calculated the area of the seg-
mented mouse (m00), perimeter, and 7 Hu image moments that 
are rotationally invariant (HU0-6) [2]. Hu image moments are nu-
merical descriptions of the segmentation of the mouse through 
integration and linear combinations of central image moments 
[3].

Time-frequency features

Next, we used these per frame features to carry out time and 
frequency-based analysis in each 10 s epoch. This allowed us to 
integrate time information by applying signal processing tech-
niques. For each per frame feature in an epoch, we extracted 
six time-domain features: kurtosis, mean, median, std, max, 
min of each signal and 14 frequency domain features: kurtosis 
of power spectral density, skewness of power spectral density, 
mean power spectral density for 0.1–1 Hz, 1–3 Hz, 3–5 Hz, 5–8 
Hz, 8–15 Hz, total power spectral density, max, min, average, and 
standard deviation of power spectral density (Table 3). These 
resulted in 320 total features (16 measurements × 20 time-
frequency features).

We visually inspected these spectral window features to 
determine if they vary between wake, REM, and NREM states. 
Figure 2, A and B show representative epoch examples of m00 
(area, Figure 2A) and wl_ratio (width-length ratio of ellipse 
major and minor axis, Figure 2B) features that vary in time and 
frequency domain for wake, NREM, and REM state. The raw sig-
nals for m00 and wl_ratio show clear oscillation in NREM and 
REM states (Figure 1, A and B, left) which can be seen in the fast 
Fourier transform (FFT) (Figure 1, A and B, middle) and autocor-
relation (Figure 1, A and B, right). We observed a single dominant 
frequency present in NREM epochs and a wider peak in REM. 
Additionally, the FFT peak frequency varied slightly between 

Table 3.  Time and frequency features extracted from the per frame measurements in Table 1

Label Description Domain

k Kurtosis of raw signal Time domain 1
k_psd Kurtosis of power spectral density Frequency domain 2
s_psd Skewness of power spectral density Frequency domain 3
MPL_1 Mean power spectral density (0.1–1 HZ) Frequency domain 4
MPL_3 Mean power spectral density (1–3 HZ) Frequency domain 5
MPL_5 Mean power spectral density (3–5 HZ) Frequency domain 6
MPL_8 Mean power spectral density (5–8 HZ) Frequency domain 7
MPL_15 Mean power spectral density (8–15 HZ) Frequency domain 8
Tot_PSD Total power spectral density Frequency domain 9
Max_PSD Max power spectral density Frequency domain 10
Min_PSD Min power spectral density Frequency domain 11
Ave_PSD Average power spectral density Frequency domain 12
Std_PSD Standard deviation of power spectral density Frequency domain 13
Ave_Signal Average raw signal Time domain 14
Std_Signal Standard deviation of raw signal Time domain 15
Max_Signal Max raw signal Time domain 16
Min_Signal Max raw signal Time domain 17
TOP_SIGNAL Frequency that corresponds to MAX_PSD Frequency domain 18
MED_SIGNAL Median raw signal Time domain 19
MED_PSD Median power spectral density Frequency domain 20

The analysis results in 320 total features for each 10 s epoch.
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NREM (2.6 Hz) and REM (2.9 Hz) and in general we observed 
more regular and consistent oscillation in NREM epochs than 
REM. Thus, an initial examination of our features revealed dif-
ferences between the sleep states and provided confidence that 
useful metrics are encoded in our features for use in a visual 
sleep classifier.

Breathing rate

Previous work in both humans and rodents has demonstrated 
that breathing and movement varies between sleep stages [39–
43]. In our examination of m00 and wl_ratio features, we dis-
covered a consistent signal between 2.5 and 3 Hz that appears as 
a ventilatory waveform (Figure 2). An examination of the video 
revealed that changes in body shape and changes in chest size 
due to breathing were visible and may be captured by our time-
frequency features. To visualize this signal, we carried out con-
tinuous wavelet transform (CWT) spectrogram for the wl_ratio 

feature (Figure 3A, top). To summarize data from these CWT 
spectrograms, we identified the dominant signal in the CWT 
(Figure 3A, bottom), and a histogram of dominant frequencies 
in the signal (Figure 3A, bottom right). From this histogram, we 
calculated the mean and variance of the frequencies contained 
in the dominant signal.

Previous work has demonstrated that C57BL/6J mice have a 
breathing rate of 2.5–3 Hz during NREM state [43, 44]. Examination 
of a long bout of sleeping (10 min), which include both REM and 
NREM, showed that the wl_ratio signal is more prominent in 
NREM than REM, although it was clearly present in both (Figure 
3B). Additionally, the signal varies more within the 2.5–3.0 Hz 
range while in the REM state. This is because the REM state 
causes higher and more variable breathing rate than the NREM 
state. We also observed low-frequency noise in this signal in the 
NREM state due to larger motion of the mouse such as adjusting 
their sleeping posture. This suggests that the wl_ratio signal is 
capturing the visual motion of the mouse abdomen.

A

B

Figure 2.  Examples of selected signals in time and frequency domain within one epoch. (A) the leftmost column shows m00 (area of the segmentation mask) for the 

wake, NREM, REM states; the middle column gives the FFT of the corresonding signals;the rightmost column shows the auto-correlation of the signals. (B) wl_ratio in 

time and frequency domain, similar to panel (A).
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Breathing rate validation

To confirm that the signal we observe in REM and NREM epochs 
for m00 and wl_ratio features is abdominal motion and correl-
ates with breathing rate, we carried out a genetic validation 
test. C3H/HeJ mice have been previously demonstrated to have 
a wake breathing frequency that is approximately 30% less than 
that of C57BL/6J mice, ranging from 4.5 versus 3.18 Hz [45], 3.01 
versus 2.27 Hz [46], and 2.68 versus 1.88 Hz [47] for C57BL/6J 
and C3H/HeJ, respectively. We video-recorded un-instrumented 
C3H/HeJ (5M/5F) and applied classical sleep/wake heuristic of 
movement (distance traveled) [22] to identify sleep epochs. We 
conservatively selected epochs with in lowest 10% quantile for 

motion. We used annotated C57BL/6J EEG/EMG data to confirm 
that our movement-based cutoff was able to accurately identify 
sleep bouts. Using the EEG/EMG annotated data for the C57BL/6J 
mice, we found that this cutoff primarily identifies NREM and 
REM epochs (Figure 4A). Epochs selected in our annotated data 
consists of 90.2% NREM, 8.1% REM, and 1.7% wake epochs. Thus, 
as expected, this mobility-based cutoff method correctly distin-
guished between sleep/wake and not REM/NREM. From these 
low motion sleep epochs, we calculated the mean value of the 
dominant frequency in the wl_ratio signal. We selected this 
measurement due to its sensitivity to chest area motion. We 
plotted the distribution of this measurement for each animal 
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and observed similar distributions between animals within the 
same strain. For instance, C57BL/6J animals have an oscillation 
range from mean frequency of 2.2 to 2.8 Hz, while C3H/HeJ range 
from 1.5 to 2.0 Hz, in which C3H/HeJ breathing rates are approxi-
mately 30% less than of C57BL/6J. This is a statistically signifi-
cant difference between the two strains, that is, C57BL/6J and 
C3H/HeJ (p < .001) (Figure 4B) and similar in range to previously 
reported data for breathing rate [45–47]. Thus, using this genetic 
validation method, we conclude that the signal we observe cor-
relates strongly with breathing rate.

In addition to overall changes in breathing frequency due to 
genetics, breathing during sleep has been shown to be more or-
ganized and with less variance during NREM than REM in both 
humans and rodents [26, 48]. We hypothesized that the breathing 
signal we detected would show greater variation in REM than 
NREM epochs. We determined whether there are changes in 
variation of CWT peak signal in epoch across REM and NREM 
states in the EEG/EEG annotated C57BL/6J data. Using only the 
C57BL/6J data, we partition the epochs by NREM and REM states 
and observed the variation in the CWT peak signal (Figure 4C). 
NREM states showed a smaller standard deviation of this signal 
while the REM state has a wider and higher peak. The NREM 
state appeared to comprise of multiple distributions, possibly 
indicating sub-divisions of the NREM sleep state [49]. To confirm 
that this odd shape of the NREM distribution is not an artifact of 
combining data from multiple animals, we also plotted data for 
each animal and show that each animal increased its standard 
deviation from NREM to REM state (Figure 4D). We also observed 
that individual animals show this long-tailed NREM distribution. 
Both these experiments indicate that the signals we observe are 
in fact a breathing rate signal. Knowing this, we expected good 
classifier performance.

Classification

Finally, we trained a machine learning classifier to predict sleep 
state using the 320 visual features. For validation, we held out 
entire animal’s data to avoid any bias that may be introduced 
by correlated data within a video. For calculation of training 
and test accuracy, we carried out 10-fold cross-validation by 
shuffling which animals were held out. We created a balanced 
dataset (see Methods section) and compared multiple classifica-
tion algorithms, including XgBoost, Random Forest, multilayer 
perceptron (MLP), logistic regression, singular value decom-
position (SVD), and observed a wide variety of performances 
between classifiers (Table 4). XgBoost and Random Forest both 
achieved good accuracies in the held-out test data. However, 
the Random Forest algorithm achieves 100% training accuracy, 
indicating that it overfits the training data. Overall, the best per-
forming algorithm is the XgBoost classifier.

Transitions between wake, NREM, and REM states are not 
random and generally follow expected patterns. For instance, 
generally wake transitions to NREM which then transitions to 
REM sleep. The HMM is an ideal candidate to model the depend-
encies between the sleep states. The transition probability ma-
trix and the emission probabilities in a given state are learned 
using the training data. We observed that by adding HMM 
model, the overall accuracy improved by 7% (Figure 5A, HMM) 
from 0.839 ± 0.022 to 0.906 ± 0.021.

To enhance classifier performance, we adopted Hu mo-
ment measurements from segmentation for inclusion in input 

features for classification [50]. These image moments are numer-
ical descriptions of the segmentation of the mouse through inte-
gration and linear combinations of central image moments. The 
addition of Hu moment features achieved a slight increase in 
overall accuracy and increased robustness of classifier through 
decreased variation in cross-validation performance (Figure 5A, 
Hu moments) from 0.90 6 ± 0.021 to 0.913 ± 0.019.

Even though the EEG/EMG scoring was performed by human 
trained experts, there is often disagreement between trained 
annotators [22]. Indeed, two experts only generally agree be-
tween 88% and 94% of the time for REM and NREM [22]. We used 
a recently published machine learning method to score our EEG/
EMG data to complement data from human scorers [16]. We 
compared annotations between SPINDLE and human annota-
tion and found that these two annotations agree in 92% of all 
epochs. We then used only epochs with both the human and 
machine-based methods agreed as labels to train our visual 
classifier. Training a classifier using only epochs where SPINDLE 
and humans agree added an additional 1% increase in accuracy 
(Figure 5A, filter annotations). Thus, our final classifier is able to 
achieve a three-state classification accuracy of 0.92 ± 0.05.

We investigated the most important features used in classi-
fication and discover that area of the mouse and motion meas-
urements are most important (Figure 5B). This makes sense 
because motion is the only feature used in binary sleep-wake 
classification algorithms. Additionally, three of the top five fea-
tures are low frequency (0.1–1.0 Hz) power spectral densities 
(Figure 2, A and B, FFT column). We note that wake epochs have 
the most power in low frequencies, REM has low power in low 
frequencies, and NREM has the least power in low-frequency 
signals.

Using our highest performing classifier, we observed good 
performance (Figure 5C). Rows in the matrix represent sleep 
stated assigned by the human scorer, while columns repre-
sent stages assigned by the classifiers. Wake has the highest 
accuracies of the classes at 96.1% accuracy. By observing the 
off-diagonals of the matrix, our classifier performed better at 
distinguishing wake from either sleep state than between the 
sleep states. This shows that distinguishing REM from NREM is 
a difficult task.

An average of 0.92 ± 0.05 overall accuracy was achieved in our 
final classifier. The prediction accuracy for wake stage is 0.97 ± 
0.01, with average precision recall rate of 0.98. The prediction 
accuracy for NREM stage is 0.92 ± 0.04, with average precision re-
call rate of 0.93. The prediction accuracy for REM stage is around 
0.88 ± 0.05, with average precision-recall rate of 0.535. The lower 
precision-recall rate for REM is largely due to a very small per-
centage of epochs that are labeled as REM stage (4%).

In addition to the prediction accuracy, we showed perform-
ance metrics including precision, recall, F1 score to evaluate the 

Table 4.  The accuracy of the model on dataset used for constructing 
the model (training accuracy) and the accuracy of the samples on the 
examples the model has not seen (test accuracy)

Classifer Training accuracy Test accuracy

XgBoost 0.875 0.852
Random Forest 1.000 0.857
Neural network 0.635 0.696
SVM 0.597 0.564

Significantly lower accuracy in the training set implies overfitting.
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model (Figure 5D) from the 10-fold cross-validation. Given the 
imbalanced data, precision-recall were better metrics for classi-
fier performance [51, 52]. We also used precision measures, the 
proportion of positive items that was correctly predicted, while 
recall measures the proportion of actual positives that was iden-
tified correctly. F1 score is the weighted average of precision 
and recall.

	
Precision =

TP
TP+ FP�

	
Recall =

TP
TP+ FN�

	
F1 score =

2× (Recall× Precision)
Recall+ Precision �

Here TP, TN, FP, and FN are true positives, true negatives, false 
positives, and false negatives, respectively.

We also attempted a variety of data augmentation ap-
proaches to improve classifier performance. The proportion 
of the different sleep states in 24  h is severely imbalanced 
(WAKE 48%, NREM 48%, and REM 4%). The typical augmentation 

techniques used for time series data include jittering, scaling, 
rotation, permutation, and cropping. These methods can be ap-
plied in combination with each other. In a recent study, it was 
shown that the classification accuracy could be increased by 
augmenting the training set by combining four data augmenta-
tion techniques [53]. However, the features we extract from the 
time series depend on the spectral composition and therefore 
we decided to use a dynamic time warping based approach to 
augment the dataset for improving the classifier [54]. The results 
of applying this data augmentation are shown in Supplementary 
Figure S1 and Supplementary Table S1. This data augmentation 
approach did not improve classifier performance and was not 
pursued further. In addition to data augmentation, we also con-
sidered using smaller epoch sizes, since two epoch sizes (4 and 
10  s) are commonly used in sleep research. However, we ob-
served decreased performance when training our classifier with 
4 s epoch data (Supplementary Figure S2).

Our classifier is exceptional for both the wake and NREM 
states. However, the poorest performance was noted for REM 
stage, which has a precision of 0.535 and the F1 of 0.664. Most 
of the misclassified stages were between NREM and REM. As 
REM state is the minority class (only 4% of the dataset), even a 
relatively small false positive rate will cause a high number of 
false positives which will overwhelm the rare true positives. For 
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Figure 5.  Classifier performance metrics. (A) shows the performance of our classifier. We compare performance at different stages of our classifier, starting with the 

XgBoost classifier, adding an HMM model, increasing features to include 7 Hu moments, and integrating SPINDLE annotations to improve epoch quality. We can see 

the overall accuracy improves by adding each of these steps. (B) The top 20 most important features for the classifier. (C) Confusion matrix obtained from 10-fold cross 

validation. (D) Precision-recall table.

http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsab260#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsab260#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsab260#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsab260#supplementary-data


Geuther et al.  |  11

instance, 9.7% of REM bouts were incorrectly identified as NREM 
by the visual classifier, and 7.1 of the predicted REM bouts are 
actually NREM (Figure 5C). These misclassification errors seem 
small, but can disproportionately affect the precision of the 
classifier due to the imbalance between REM and NREM. Despite 
this, our classifier is also able to correctly identify 89.7% of REM 
epochs present in the validation dataset.

Within the context of other existing alternatives to EEG/
EMG recordings, our model performs exceptionally. We re-
port performances elsewhere in literature to provide con-
text of our model performance (Table 5). We note that each 
of these performances uses different datasets with different 
characteristics. Notably, the piezo system is evaluated on a 
balanced dataset which may present higher precision due to 
reduced possible false positives. Our approach outperforms 
all approaches for Wake and NREM state prediction. REM 
prediction is a more difficult task for all approaches. Of the 
machine learning approaches, our model achieves the best 
accuracy.

Figure 6, A and B display visual performance compari-
sons of our classifier to manually scored by a human expert 
(hypnogram). The x axis is time, consisting of sequential 
epochs, and the y axis corresponds to the three stages. For 
each subfigure, the top panel represent the human scoring re-
sults and the bottom panel represent the scoring results of the 
classifier. The hypnogram shows accurate transitions between 
stages along with frequency of isolated false positives (Figure 
6A). We also plot data obtained by human scorers from EEG/
EMG data and our visual classifier scoring for a single animal 
over 24 h (Figure 6B) as well as for the remaining animals in 
the validation dataset (Supplementary Figure S3). The raster 
plot shows exceptional global correlation between classifica-
tion of state (Figure 6B). We then compare all C57BL/6J ani-
mals between human EEG/EMG scoring and our visual scoring 
(Figure 6, C and D). We observe high correlation across all 
states and conclude that our visual classifier scoring results 
are consistent with human scorers. Finally, we conduct full 
bout analysis to compare EEG/EMG scores and our visual pre-
diction classifier (Supplementary Figure S4). These results in 
tandem with the 24-hour plots (Supplementary Figure S3) sug-
gest that errors in classification are uniform over all data and 
do not skew sleep-related behavioral measurements. There are 
notably only two exceptions to this, that is, animal ID 21_3’s 
longest NREM bout and animal ID 18_4’s longest REM bout 
(Supplementary Figure S4). These errors represent an overall 
minority of the validation data. We inspected the segments 
when these longer bouts are predicted by our visual system 
and discovered that the wire used for EEG/EMG recording be-
came twisted and is obscuring the mouse more than most 

other video segments, which would cause a drastic shift in 
features.

We conducted an experiment with a drug perturbation to 
validate our system further, that is, did we capture dynamic 
changes in sleep state. We observed mice both preinjection and 
postinjection of methamphetamine because it has previously 
been shown to affect sleep/wake behavior [55]. We observe that 
our classifier is robust to the drug perturbation and can accur-
ately predict both the baseline and post-injection data (Figure 
7A–F). Using EEG/EMG annotations, we detect sleep state differ-
ences for the first 2 h after each injection (Supplementary Figure 
S5). Additionally, we compared the 2 h after each injection and 
detected differences between baseline and injection for both 
EEG/EMG annotations as well as our visual prediction (Figure 
7G–I). Finally, we present the precision-recall and F1 scores for 
this entire experiment and find that they are within expected 
variation based on our held-out validation set (Figures 5D and 
7J). These results show that our classifier can accurately be ex-
tended to detect drug-induced sleep perturbation experiments 
without modification.

Overall, the visual sleep state classifier is able to accurately 
identify sleep states using only visual data. Inclusion of HMM, 
Hu moments, and highly accurate labels, improve performance, 
whereas data augmentation using dynamic time warping and 
motion amplification did not improve performance.

Discussion
Sleep disturbances are a hallmark of numerous diseases and 
high-throughput studies in model organisms are critical for 
discovery of new therapeutics [1–3]. Sleep studies in mice are 
challenging to conduct at scale due to the time investment for 
conducting surgery, recovery time, and scoring of recorded EEG/
EMG signals. We propose a system which provides a low-cost 
alternative to EEG/EMG scoring of mouse sleep behavior. This al-
ternative will enable researchers to conduct larger-scale sleep 
experiments that would have been previously cost prohibitive. 
Previous systems have been proposed to conduct such experi-
ments but have only been shown to adequately distinguish 
between wake and sleep states. Our system builds on these ap-
proaches and can also distinguish the sleep state into REM and 
NREM states. We argue that this is particularly useful for high 
throughput analysis of sleep, for example, in multiple lines of 
mutant mice. Findings from this approach in discovery would 
then be validated in only a small subset of these lines by EEG/
EMG recording of sleep. Thus, our approach is not proposed as 
an alternative to EEG/EMG recording of sleep but rather a high 
throughput approach to discovery.

Table 5.  Performance comparison across published approaches

Approach Wake NREM REM Overall

 Accuracy Precision Recall Accuracy cc. Precision Recall Accuracy Precision Recall Accuracy

Video (mice) [34]          0.767
Doppler (rats) [31] 0.916 0.898 0.834 0.851 0.852 0.917 0.697 0.718 0.615 0.844
Piezo (mice) [26] 0.91 0.841 0.9 0.831 0.717 0.81 0.834 0.815 0.66 0.787
Electric field* (mice) [33]   0.938  0.943 0.943   0.834 0.94
Ours (mice) 0.961 0.984 0.961 0.914 0.951 0.914 0.898 0.535 0.897 0.92

Bold indicates best performing approach for each metric.

*Electric field approach uses human annotation, not a machine learning algorithm.

http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsab260#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsab260#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsab260#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsab260#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsab260#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsab260#supplementary-data
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The system we designed utilized sensitive measurements of 
mouse movement and posture during sleep. We show that our 
system detects features that correlate with mouse breathing 
rates using analysis of video behavior. It provides assess-
ments of wake and sleep and importantly the substages of 
sleep, that is, NREM and REM sleep. Previously published sys-
tems that attempt to use noninvasive sleep scoring include 

plethysmography [32] or piezo systems [26, 28]. Additionally, we 
show that based on our features, our system may be capable of 
identifying subclusters of NREM sleep epochs. This could shed 
additional light on the structure of mouse sleep.

While our system consists of low-cost, off-the-shelf parts, 
and is accurate and scalable, it is not without limitation. To 
achieve the sensitive measurements, our system relies upon 
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high-resolution video relatively close to a mouse. These meas-
urements are, therefore, vulnerable to feature shifts when the 
mouse is obscured from camera view. Processing and classifica-
tion of video data require data storage and graphics processing 
units (GPUs) for data analysis resources. While our system out-
performs other similar scalable systems, our REM recall per-
formance is not sufficient to fully replace the gold standard of 
EEG/EMG. Instead, we consider the advantages of this system 

are for extending sleep analyses to more broad experimental 
paradigms while still reserving EEG/EMG for confirming sleep 
state differences.

Our breathing rate measurements are limited to when the 
mouse is immobile. But this is not an issue for how we use these 
measurements since assessments of breathing rate and its 
variability are done when the mouse is immobile during sleep. 
We have validated the measurement of breathing rate using 
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comparisons of breathing rate in two mouse strains known 
to have different breathing frequencies. To fully validate the 
measurement as directly measuring breathing, a follow-up ex-
periment of video inside a plethysmograph system would be ne-
cessary. To the best of our knowledge, this is not feasible to carry 
out given the size of the current widely used mouse plethysmo-
graph system. We do not believe that this is required since we 
are not proposing that this is a method to measure breathing. 
Rather, we have extracted a feature that provides data to deter-
mine sleep states.

The current study is limited to isogenic C57BL/6J mice, which 
is the mouse reference strain. As proof of principle, this is the 
first step and future work needs to extend these methods to 
diverse strains as well as genetically heterogeneous popula-
tions such as the Diversity Outcross [56, 57] and Collaborative 
Cross [58]. This is technically feasible since we have applied our 
segmentation and tracking methods to diverse mouse strains 
[36]. Application of our approach to multiple mouse strains will 
introduce a variety of challenges for our machine learning ap-
proach such as the impact of variability in body size, coat color, 
and breathing rate which need to be explored and re-validated. 
During feature selection, we prioritized nondimensional fea-
tures to reduce the impact of this variability. Notably, the genetic 
difference between resting breathing rates may pose a chal-
lenge for our visual sleep classifier which could be addressed by 
selecting different frequency domain features.

While we provide reliable estimates of baseline sleep, we do 
not assess sleep homeostasis. This is typically done studying in-
crease in delta power during recovery sleep following a period 
of sleep deprivation [59]. While our technique does not directly 
address this, there are other approaches to studying the propen-
sity to sleep that provide information on sleep drive. Our ana-
lysis provides data not only in amounts of sleep and its stages, 
but also bout duration. During recovery sleep following a period 
of sleep deprivation, NREM sleep becomes more consolidated 
with longer bouts [60]. There are also interventions that can 
be used that assess difference in sleep propensity. Veasey et al. 
describe a murine equivalent of the multiple sleep latency test 
to assess time to fall asleep during multiple nap opportunities 
during the lights-on period [61]. Latency to sleep can be assessed 
by patterns of activity and inactivity [56]. Progressive decrease 
in latency to sleep during these multiple naps is a measure of 
sleep propensity that is heritable, as revealed by studies in the 
founder mice for the Collaborative Cross [56] and in Diversity 
Outbred mice [56, 57]. Thus, assessment of mouse behavior with 
video analysis can be conducted during this type of intervention.

Extensions of this approach to genetically diverse mouse 
strains will enable high throughput studies that are needed for 
mapping genetic architecture of sleep, as well as application to 
interventional studies for better sleep therapeutics. In addition 
to extension to genetically diverse populations, video-based 
sleep assay has the exciting possibility of examining sleep in 
mice housed in groups thereby elucidating social genetic effects 
[62]. Tethered EEG/EMG approaches have forced analysis of sleep 
states in isolated animals but video-based assays have the po-
tential to distinguish multiple animals and track each for sleep 
state determination [63, 64]. Our noninvasive method also allows 
mice to be evaluated for sleep over long time periods, potentially 
through the lifetime of the animal, and in group-housed envir-
onments. Combined, these will enable aging studies and studies 
that require longitudinal monitoring of animals, such as those 

to model Alzheimer’s disease [4, 65]. This is particularly salient 
in interventional studies where sleep disruption serves as a bio-
marker for disease progression [11]. In conclusion, we present a 
high-throughput, noninvasive, computer vision-based method 
for sleep state determination in mice that will be of utility to the 
research community.

Supplementary Material
Supplementary material is available at SLEEP online.

Funding
This work was funded by The Jackson Laboratory Directors 
Innovation Fund, National Institute of Health DA041668 (NIDA), 
DA048634 (NIDA) (VK), and HL094307 (NHLBI) (AIP).

Disclosure Statement
None declared.

Acknowledgments
We thank members of the Kumar Lab for helpful advice and Taneli 
Helenius for editing. We thank JAX Information Technology 
team members Edwardo Zaborowski, Shane Sanders, Rich Brey, 
David McKenzie, and Jason Macklin for infrastructure support.

Data Availability
All code are available at Kumar Lab Github at https://github.
com/KumarLabJax/MouseSleep.
Feature data from experiments are available on Zenodo at 
https://zenodo.org/record/5180680.

References
	1.	 Webb JM, et al. Recent advances in sleep genetics. Curr Opin 

Neurobiol. 2021;69:19–24.
	2.	 Scammell  TE, et  al. Neural circuitry of wakefulness and 

sleep. Neuron. 2017;93(4):747–765.
	3.	 Allada R, et al. Unearthing the phylogenetic roots of sleep. 

Curr Biol. 2008;18(15):R670–R679.
	4.	 Green  TRF, et  al. The bidirectional relationship between 

sleep and inflammation links traumatic brain injury and 
Alzheimer’s disease. Front Neurosci. 2020;14:894.

	5.	 Firth J, et al. A meta-review of “lifestyle psychiatry”: the role of 
exercise, smoking, diet and sleep in the prevention and treat-
ment of mental disorders. World Psychiatry. 2020;19(3):360–380.

	6.	 Benjamin  SE. Sleep in patients with neurologic disease. 
Continuum (Minneap Minn). 2020;26(4):1016–1033.

	7.	 Ashton  A, et  al. Disrupted sleep and circadian rhythms 
in schizophrenia and their interaction with dopamine 
signaling. Front Neurosci. 2020;14:636.

	8.	 Freeman  D, et  al. Sleep disturbance and psychiatric dis-
orders. Lancet Psychiatry. 2020;7(7):628–637.

	9.	 Eacret  D, et  al. Bidirectional relationship between opioids 
and disrupted sleep: putative mechanisms. Mol Pharmacol. 
2020;98(4):445–453.

https://github.com/KumarLabJax/MouseSleep
https://github.com/KumarLabJax/MouseSleep
https://zenodo.org/record/5180680


Geuther et al.  |  15

	10.	 Krystal AD. Sleep therapeutics and neuropsychiatric illness. 
Neuropsychopharmacology. 2020;45(1):166–175.

	11.	 Carter P, et al. Sleep and memory: the promise of precision 
medicine. Sleep Med Clin. 2019;14(3):371–378.

	12.	 Mackiewicz  M, et  al. Functional genomics of sleep. Respir 
Physiol Neurobiol. 2003;135(2-3):207–220.

	13.	 Mavanji  V, et  al. Sleep and obesity: a focus on animal 
models. Neurosci Biobehav Rev. 2012;36(3):1015–1029.

	14.	 Kelly  JM, et  al. Mammalian sleep genetics. Neurogenetics. 
2012;13(4):287–326.

	15.	 Toth LA, et al. Animal models of sleep disorders. Comp Med. 
2013;63(2):91–104.

	16.	 Miladinović  Đ, et  al. SPINDLE: end-to-end learning from 
EEG/EMG to extrapolate animal sleep scoring across ex-
perimental settings, labs and species. PLoS Comput Biol. 
2019;15(4):e1006968.

	17.	 Yamabe M, et al. MC-SleepNet: large-scale sleep stage scoring 
in mice by deep neural networks. Sci Rep. 2019;9(1):15793.

	18.	 Barger Z, et al. Robust, automated sleep scoring by a com-
pact neural network with distributional shift correction. 
PLoS One. 2019;14(12):e0224642.

	19.	 Tang X, et al. Telemetric recording of sleep and home cage 
activity in mice. Sleep. 2002;25(6):691–699. doi:10.1093/
SLEEP/25.6.677.

	20.	 Brown  LA, et  al. Simultaneous assessment of circadian 
rhythms and sleep in mice using passive infrared sensors: 
a user’s guide. Curr Protoc Mouse Biol. 2020;10(3):e81.

	21.	 Fisher SP, et al. Rapid assessment of sleep-wake behavior in 
mice. J Biol Rhythms. 2012;27(1):48–58.

	22.	 Pack AI, et al. Novel method for high-throughput phenotyping 
of sleep in mice. Physiol Genomics. 2007;28(2):232–238.

	23.	 Brown LA, et al. COMPASS: continuous open mouse phenotyping 
of activity and sleep status. Wellcome Open Res. 2016;1:2.

	24.	 Singh S, et al. Low-cost solution for rodent home-cage be-
haviour monitoring. PLoS One. 2019;14(8):e0220751.

	25.	 Flores AE, et al. Pattern recognition of sleep in rodents using 
piezoelectric signals generated by gross body movements. 
IEEE Trans Biomed Eng. 2007;54(2):225–233.

	26.	 Mang  GM, et  al. Evaluation of a piezoelectric system as 
an alternative to electroencephalogram/ electromyogram 
recordings in mouse sleep studies. Sleep. 2014;37(8):1383–
1392. doi:10.5665/sleep.3936.

	27.	 Donohue  KD, et  al. Assessment of a non-invasive high-
throughput classifier for behaviours associated with sleep 
and wake in mice. Biomed Eng Online. 2008;7:14.

	28.	 Yaghouby  F, et  al. Noninvasive dissection of mouse sleep 
using a piezoelectric motion sensor. J Neurosci Methods. 
2016;259:90–100.

	29.	 Joshi SS, et al. Noninvasive sleep monitoring in large-scale 
screening of knock-out mice reveals novel sleep-related 
genes. Neuroscience 2019. doi:10.1101/517680

	30.	 Tang  X, et  al. Home cage activity and behavioral per-
formance in inbred and hybrid mice. Behav Brain Res. 
2002;136(2):555–569.

	31.	 Zeng T, et al. Automated determination of wakefulness and 
sleep in rats based on non-invasively acquired measures 
of movement and respiratory activity. J Neurosci Methods. 
2012;204(2):276–287.

	32.	 Bastianini  S, et  al. Accurate discrimination of the wake-
sleep states of mice using non-invasive whole-body 
plethysmography. Sci Rep. 2017;7:41698.

	33.	 Kloefkorn H, et al. Noninvasive three-state sleep-wake sta-
ging in mice using electric field sensors. J Neurosci Methods. 
2020;344:108834.

	34.	 McShane BB, et al. Assessing REM sleep in mice using video 
data. Sleep. 2012;35(3):433–442. doi:10.5665/sleep.1712.

	35.	 Raghu M, et al. A survey of deep learning for scientific dis-
covery. ArXiv:200311755 Cs Stat. 2020. http://arxiv.org/
abs/2003.11755. Accessed March 13, 2021

	36.	 Geuther BQ, et al. Robust mouse tracking in complex envir-
onments using neural networks. Commun Biol. 2019;2:124.

	37.	 Geuther  BQ, et  al. Action detection using a neural net-
work elucidates the genetics of mouse grooming behavior. 
bioRxiv. 2020. doi:10.1101/2020.10.08.331017

	38.	 Sheppard K, et al. Gait-level analysis of mouse open field be-
havior using deep learning-based pose estimation. bioRxiv. 
https://www.biorxiv.org/content/10.1101/2020.12.29.4247
80v1. Accessed March 13, 2021.

	39.	 Stradling JR, et al. Changes in ventilation and its components 
in normal subjects during sleep. Thorax. 1985;40(5):364–370.

	40.	 Gould  GA, et  al. Breathing pattern and eye movement 
density during REM sleep in humans. Am Rev Respir Dis. 
1988;138(4):874–877.

	41.	 Douglas NJ, et al. Respiration during sleep in normal man. 
Thorax. 1982;37(11):840–844.

	42.	 Kirjavainen  T, et  al. Respiratory and body movements as 
indicators of sleep stage and wakefulness in infants and 
young children. J Sleep Res. 1996;5(3):186–194.

	43.	 Friedman L, et al. Ventilatory behavior during sleep among 
A/J and C57BL/6J mouse strains. J Appl Physiol (1985). 
2004;97(5):1787–1795.

	44.	 Fleury  Curado  T, et  al. Sleep-disordered breathing in 
C57BL/6J mice with diet-induced obesity. Sleep. 2018;41. 
doi:10.1093/sleep/zsy089.

	45.	 Berndt A, et al. Comparison of unrestrained plethysmography 
and forced oscillation for identifying genetic variability of airway 
responsiveness in inbred mice. Physiol Genomics. 2011;43(1):1–11.

	46.	 Groeben H, et al. Heritable differences in respiratory drive 
and breathing pattern in mice during anaesthesia and 
emergence. Br J Anaesth. 2003;91(4):541–545.

	47.	 Breathing-Rate-Jan-2019.pdf. https://4e0msbd6u0p3nnihfrzedkd8-
wpengine.netdna-ssl.com/wp-content/uploads/2019/01/
Breathing-Rate-Jan-2019.pdf. Accessed January 10, 2021.

	48.	 Terzano  MG, et  al. The cyclic alternating pattern as a 
physiologic component of normal NREM sleep. Sleep. 
1985;8(2):137–145. doi:10.1093/sleep/8.2.137

	49.	 Katsageorgiou VM, et al. A novel unsupervised analysis of 
electrophysiological signals reveals new sleep substages in 
mice. PLoS Biol. 2018;16(5):e2003663.

	50.	 Hu  MK. Visual pattern recognition by moment invari-
ants. IRE Trans Inf Theory. 1962;8(2):179–187. doi:10.1109/
TIT.1962.1057692

	51.	 Powers  DMW. Evaluation: from precision, recall and 
F-measure to ROC, informedness, markedness and cor-
relation. ArXiv201016061 Cs Stat. 2020. http://arxiv.org/
abs/2010.16061. Accessed January 10, 2021. 

	52.	 Saito T, et al. The precision-recall plot is more informative 
than the ROC plot when evaluating binary classifiers on 
imbalanced datasets. PLoS One. 2015;10(3). doi:10.1371/
journal.pone.0118432

	53.	 Rashid  KM, et  al. Times-series data augmentation and 
deep learning for construction equipment activity rec-
ognition. Adv Eng Inform. 2019;42:100944. doi:10.1016/j.
aei.2019.100944

	54.	 Fawaz  HI, et  al. Data augmentation using synthetic data 
for time series classification with deep residual networks. 
ArXiv180802455 Cs. 2018. http://arxiv.org/abs/1808.02455. 
Accessed January 10, 2021.

https://doi.org/10.1093/SLEEP/25.6.677
https://doi.org/10.1093/SLEEP/25.6.677
https://doi.org/10.5665/sleep.3936
https://doi.org/10.1101/517680
https://doi.org/10.5665/sleep.1712
http://arxiv.org/abs/2003.11755
http://arxiv.org/abs/2003.11755
https://doi.org/10.1101/2020.10.08.331017
https://www.biorxiv.org/content/10.1101/2020.12.29.424780v1
https://www.biorxiv.org/content/10.1101/2020.12.29.424780v1
https://doi.org/10.1093/sleep/zsy089
https://4e0msbd6u0p3nnihfrzedkd8-wpengine.netdna-ssl.com/wp-content/uploads/2019/01/Breathing-Rate-Jan-2019.pdf
https://4e0msbd6u0p3nnihfrzedkd8-wpengine.netdna-ssl.com/wp-content/uploads/2019/01/Breathing-Rate-Jan-2019.pdf
https://4e0msbd6u0p3nnihfrzedkd8-wpengine.netdna-ssl.com/wp-content/uploads/2019/01/Breathing-Rate-Jan-2019.pdf
https://doi.org/10.1093/sleep/8.2.137
https://doi.org/10.1109/TIT.1962.1057692
https://doi.org/10.1109/TIT.1962.1057692
http://arxiv.org/abs/2010.16061
http://arxiv.org/abs/2010.16061
https://doi.org/10.1371/journal.pone.0118432
https://doi.org/10.1371/journal.pone.0118432
https://doi.org/10.1016/j.aei.2019.100944
https://doi.org/10.1016/j.aei.2019.100944
http://arxiv.org/abs/1808.02455


16  |  SLEEPJ, 2022, Vol. 45, No. 2

	55.	 Kitahama K, et al. Strain differences in amphetamine sensi-
tivity in mice. Psychopharmacology. 1979;66:189–194.

	56.	 Keenan BT, et al. High-throughput sleep phenotyping produces 
robust and heritable traits in Diversity Outbred mice and their 
founder strains. Sleep. 2020;43(5): doi:10.1093/sleep/zsz278

	57.	 Churchill  GA, et  al. The Diversity Outbred mouse popula-
tion. Mamm Genome. 2012;23(9-10):713–718.

	58.	 Swanzey  E, et  al. Mouse genetic reference populations: 
cellular platforms for integrative systems genetics. Trends 
Genet. 2021;37(3):251–265.

	59.	 Franken P, et al. The homeostatic regulation of sleep need is 
under genetic control. J Neurosci. 2001;21(8):2610–2621.

	60.	 Franken P, et al. Genetic determinants of sleep regulation in in-
bred mice. Sleep. 1999;22(2):155–169. doi:10.1093/SLEEP/22.2.155.

	61.	 Veasey  SC, et  al. Murine Multiple Sleep Latency Test: 
phenotyping sleep propensity in mice. Sleep. 2004;27(3):388–
393. doi:10.1093/sleep/27.3.388.

	62.	 Baud  A, et  al. Genetic variation in the social environ-
ment contributes to health and disease. PLoS Genet. 
2017;13(1):e1006498.

	63.	 Ohayon S, et  al. Automated multi-day tracking of marked 
mice for the analysis of social behaviour. J Neurosci Methods. 
2013;219(1):10–19.

	64.	 Pereira TD, et al. SLEAP: multi-animal pose tracking. bioRxiv. 
2020. doi:10.1101/2020.08.31.276246

	65.	 Roh JH, et al. Disruption of the sleep-wake cycle and diurnal 
fluctuation of β-amyloid in mice with Alzheimer’s disease 
pathology. Sci Transl Med. 2012;4(150):150ra122.

https://doi.org/10.1093/sleep/zsz278
https://doi.org/10.1093/SLEEP/22.2.155
https://doi.org/10.1093/sleep/27.3.388
https://doi.org/10.1101/2020.08.31.276246

