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Abstract 

Background:  Type 2 diabetes mellitus (T2DM) is caused by a combination of environmental, genetic, and epigenetic 
factors including, fasting blood glucose (FBG), genetic variant rs841853, and cg19693031 methylation. We evaluated 
the interaction between rs841853 and cg19693031 on the FBG levels of non-diabetic Taiwanese adults.

Methods:  We used Taiwan Biobank (TWB) data collected between 2008 and 2016. The TWB data source contains 
information on basic demographics, personal lifestyles, medical history, methylation, and genotype. The study partici‑
pants included 1300 people with DNA methylation data. The association of cg19693031 methylation (stratified into 
quartiles) with rs841853 and FBG was determined using multiple linear regression analysis. The beta-coefficients (β) 
and p-values were estimated.

Results:  The mean ± standard deviation (SD) of FBG in rs841853-CC individuals (92.07 ± 7.78) did not differ signifi‑
cantly from that in the CA + AA individuals (91.62 ± 7.14). However, the cg19693031 methylation levels were signifi‑
cantly different in the two groups (0.7716 ± 0.05 in CC individuals and 0.7631 ± 0.05 in CA + AA individuals (p = 0.002). 
The cg19693031 methylation levels according to quartiles were β < 0.738592 (< Q1), 0.738592 ≤ 0.769992 (Q1–Q2), 
0.769992 ≤ 0.800918 (Q2–Q3), and β ≥ 0.800918 (≥ Q3). FBG increased with decreasing cg19693031 methylation 
levels in a dose–response manner (ptrend = 0.005). The β-coefficient was − 0.0236 (p = 0.965) for Q2–Q3, 1.0317 
(p = 0.058) for Q1–Q2, and 1.3336 (p = 0.019 for < Q1 compared to the reference quartile (≥ Q3). The genetic vari‑
ant rs841853 was not significantly associated with FBG. However, its interaction with cg19693031 methylation was 
significant (p-value = 0.036). Based on stratification by rs841853 genotypes, only the CC group retained the inverse 
and dose–response association between FBG and cg19693031 methylation. The β (p-value) was 0.8082 (0.255) for 
Q2–Q3, 1.6930 (0.022) for Q1–Q2, and 2.2190 (0.004) for < Q1 compared to the reference quartile (≥ Q3). The ptrend was 
0.002.

Conclusion:  Summarily, methylation at cg19693031 was inversely associated with fasting blood glucose in a 
dose-dependent manner. The inverse association was more prominent in rs841853-CC individuals, suggesting that 
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Background
Type 2 diabetes mellitus is a serious global public con-
cern with a huge, yet constantly increasing burden. It 
negatively affects quality of life and greatly increases 
health care expenditure [1]. Type 2 diabetes affected 
approximately 462 million people (6.28% of the world’s 
population) in 2017 [2]. The disease is projected to 
affect 552 million people by 2030 [3]. The global preva-
lence rate was approximately 6059 patients per 100,000 
in 2017 and is projected to be 7079 and 7862 cases per 
100,000 by 2030 and 2040, respectively [2]. It accounted 
for more than 1 million deaths in 2017, making it the 
9th cause of death in the world [2]. The continuous 
increase in the incidence, prevalence, and mortality of 
diabetes warrants urgent measures to prevent its occur-
rence in non-diabetics.

Type 2 diabetes has a multifaceted onset, encompassing 
a complex interplay of environmental, genetic, and epige-
netic processes with poorly explained mechanisms [4–8]. 
The risk of diabetes is increased by hyperglycemia, increased 
age, high body mass index (BMI), dyslipidemia, unhealthy 
diet, and other lifestyle factors such as alcohol consumption 
and smoking [8–12]. Fasting blood glucose is an important 
indicator of diabetes, as well as a hallmark of diabetes man-
agement [6, 9, 12–14]. It is also a predictor of cardiovascular 
disease risk among diabetics and non-diabetics [15].

Glucose transporter 1 (or GLUT1), also called the 
solute carrier family 2, facilitated glucose transporter 
member 1 (SLC2A1) and thioredoxin-interacting pro-
tein (TXNIP) located on chromosome 1 are notable 
candidate genes for T2D diabetes [16–24]. GLUT1 is a 
well-characterized solute transporter that mainly regu-
lates the cellular uptake of glucose in humans [13, 16]. 
TXNIP is an important modulator of glucose metabo-
lism and mitochondrial activities associated with 
changing glucose levels [17–20]. TXNIP controls glu-
cose uptake in cells, partly by binding to GLUT1, serv-
ing as a glucose-sensitive switch [17–20]. Its expression 
is a key element in glucose uptake mediated by GLUT1 
[19].

Association studies and meta-analyses identified 
GLUT1 rs841853 single nucleotide polymorphism (SNP), 
also known as GLUT1 XbaI polymorphism as one of 
the genetic variants associated with diabetes and diabetic 
nephropathy, a diabetes-related complication [24–35].

DNA methylation, the most studied gene regula-
tory epigenetic process, is affected by environmental [6, 
36, 37] and genetic factors [10, 38–40]. Perturbed DNA 
methylation influences gene expression [41, 42]. Several 
epigenome-wide association studies (EWAS) on meth-
ylation have  identified TXNIP cg19693031 as the top 
diabetes-related methylation site [4, 22, 23, 43–48]. This 
site has also been associated with fasting blood glucose 
[22, 49].

DNA methylation is a strong disease marker that 
appears early during disease onset, especially cancer [50–
52]. Genetic variants are population- and disease-spe-
cific. Hence, the identification of variants and biomarkers 
specific to certain diseases could be helpful in targeted 
therapy [53]. The genome intertwines with the epig-
enome [54] and there is a high probability that genomic 
variations cause diseases by affecting DNA methylation 
[55]. Therefore, the integration of genetic and meth-
ylation data could expand our understanding of disease 
etiology and prognosis. However, this area of research 
is lagging [54]. To our knowledge, no study has investi-
gated the joint effect of genetic and epigenetic factors on 
diabetes and or FBG. In this regard and considering the 
important individual roles of TXNIP and GLUT1 in dia-
betes susceptibility and the direct interplay of both genes 
in glucose metabolism [17–20], we evaluated the interac-
tion between the genetic variant (GLUT1 rs841853) and 
the epigenetic aberration (TXNIP cg19693031 meth-
ylation) on the fasting blood glucose levels of Taiwanese 
without type 2 diabetes. We hypothesized that the asso-
ciation between FBG and TXNIP cg19693031 methyla-
tion among non-diabetics may differ based on GLUT1 
rs841853 genotypes.

Materials and methods
Study participants
We used TWB data collected between 2008 and 2016 
for this study. The biobank contains data on basic demo-
graphics, personal lifestyle activities, dietary status, per-
sonal and family medical history, physical examination, 
methylation, and genotype. Taiwanese men and women 
aged 30 to 70 who have never had cancer were eligi-
ble to participate in the TWB project as explained pre-
viously [56, 57]. More information on the TWB can be 
found at https://​www.​twbio​bank.​org.​tw/​new_​web_​en/​

rs841853 could modulate the association between cg19693031 methylation and FBG. Our results suggest that 
genetic variants may be involved in epigenetic mechanisms associated with FBG, a hallmark of diabetes. Therefore, 
integrating genetic and epigenetic data may provide more insight into the early-onset of diabetes.

Keywords:  Fasting blood glucose, Non-diabetics, Thioredoxin-interacting protein, Glucose transporter 1, rs841853, 
cg19693031, Epigenetics, Genetic variants, Interaction
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about-​export.​php. Data collection in the TWB was done 
following standard procedures. Initially, we recruited 
1442 participants with data on methylation. However, 
we excluded people with diabetes (n = 115) and those 
with incomplete genotypes (n = 27). The final study par-
ticipants included 1300 individuals. All participants 
provided written informed consents. This study was car-
ried out in accordance with the Declaration of Helsinki 
and was approved by the Institutional Review Board of 
Chung Shan Medical University Hospital (CS1-2212).

Definition of variables
In our study, diabetes was defined by (1) fasting blood 
glucose levels above 126  mg/dl, (2) hemoglobin A1c 
(HbA1c) levels of at least 6.5% [58], and (3) self-report of 
a previous clinical diagnosis with diabetes. We defined 
hypertension using the following criteria: (1) systolic 
blood pressure 140  mmHg; (2) diastolic blood pressure 
90  mmHg) [59] or (3) self-report of prior hypertension 
diagnosis. The Hitachi LST008 analyzer was used to 
determine fasting blood glucose, high-density lipoprotein 
cholesterol (HDL-C), low-density lipoprotein cholesterol 
(LDL-C), and triglycerides. BMI was calculated using 
the standard formula: weight in kilograms divided by 
height in meters squared (kg/m2). Other variables were 
self-reported and were defined as follows: (1) cigarette 
smoking: habitual smoking for over 6 months; (2) alcohol 
drinking: habitual alcohol consumption of over 150  ml 
per week for the past 6 months; (3) regular exercise: any 
physical activity lasting over 30  min a day and taken at 
least three times a week; (4) tea drinking: habitual daily 
consumption of tea; (5) coffee drinking: consumption of 
coffee at least three times a week; (6) vegetarian: main-
tained a vegetarian diet for the past 6 months.

SNP and DNA methylation assessments
We chose GLUT1 rs841853 and TXNIP cg19693031 
due to their well-established links with T2DM. DNA 
methylation and SNP genotyping were conducted at 
Academia Sinica. Genotyping was done using custom 
TWB chips (versions 1 and 2) and imputed using SHA-
PEIT2 (v2.r790) and IMPUTE2 (v2.3.1) software. SNP 
genotyping and imputation details have been described 
elsewhere [60]. Briefly, the TWB version 1 chip con-
tains about 650,000 SNPs for GWAS typed on the Axiom 
genome-wide CHB 1 Array plate (Affymetrix, Inc., Santa 
Clara, CA, USA). The TWB version 2 chip (Thermo 
Fisher Scientific, Inc., Santa Clara, CA, USA) can detect 
approximately 714,431 SNPs. GLUT1 rs841853 passed 
quality control tests: call rate > 95%, the Hardy–Wein-
berg equilibrium (p-value > 1.0 × 10–6), and a minor allele 
frequency > 0.01. DNA methylation was assessed with 
the Infinium  MethylationEPIC BeadChipEPIC array 

(Illumina Inc. San Diego, CA, USA) using whole blood 
DNA treated with sodium bisulfite. The R software with 
the ChAMP package was used to process methylation 
data, including normalization and correction for batch 
effect and cell-type heterogeneity.

Statistical analyses
We divided the TXNIP cg19693031 methylation lev-
els into quartiles. The cut-offs were 0.738592 (25th per-
centile or Q1), 0.769992 (50th percentile or Q2), and 
0.800918 (75th percentile or Q3). For GLUT1 rs841853, 
we used the dominant model and classified the genotypes 
into CC and CA + AA. Differences between discrete and 
continuous variables stratified by the GLUT1 rs841853 
genotypes (CC and CA + AA) were compared using the 
Chi-square test and the t-test, respectively. The asso-
ciation of cg19693031 methylation, rs841853, and other 
variables with fasting blood glucose, as well as the inter-
action between cg19693031 methylation and rs841853 
was determined by multiple linear regression analysis. 
We used ≥ Q3 as the reference group. Plink 1.9 and SAS 
9.4 (SAS Institute, Cary, NC, USA) were used for data 
analyses.

Results
Table  1 shows a summary of the demographic char-
acteristics of the study participants classified into the 
rs841853 CC and CA + AA genotypes. There were 
735 and 565 participants with CC and CA + AA geno-
types, respectively. FBG levels (mean ± SD) between 
the genotypes (92.07 ± 7.78 for CC and 91.62 ± 7.14 
for CA + AA) did not differ significantly. However, the 
cg19693031 methylation levels were significantly differ-
ent in the two groups (0.7716 ± 0.05 in CC individuals 
and 0.7631 ± 0.05 in CA + AA individuals (p = 0.002). 
The cg19693031 methylation levels according to quartiles 
were β < 0.738592 (< Q1), 0.738592 ≤ 0.769992 (Q1–Q2), 
0.769992 ≤ 0.800918 (Q2–Q3), and β ≥ 0.800918 (≥ Q3). 
Demographic characteristics of the study participants 
grouped into GLUT1 rs841853 genotype (CC, CA, and 
AA) are shown in Additional file 1: Table S1.

Table  2 shows the association of cg19693031 meth-
ylation and the rs841853 variant with FBG. FBG 
increased with decreasing cg19693031 methylation 
levels in a dose–response manner (ptrend = 0.005). The 
β (p-value) was −  0.0236 (0.965) for Q2–Q3, 1.0317 
(0.058) for Q1–Q2, and 1.3336 (0.019) for < Q1 com-
pared to the reference quartile (≥ Q3). The rs841853 
variant was not significantly associated with fasting 
blood  glucose (β = −  0.4576, p = 0.232). However, its 
interaction with cg19693031 methylation (i.e., rs841853 
genotypes*cg19693031 quartiles) was significant 
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(p = 0.036) as shown in Table  3. Additionally, the addi-
tive model revealed a significant association between the 
AA genotype (reference: CC) and FBG (β = −  1.7643, 
p-value = 0.036) as shown in Additional file 1: Table S2. 

When we examined the association between 
cg19693031 and FBG based on rs841853 genotypes 
(Table  3), the cg19693031 methylation levels were 

inversely associated with FBG in both groups but 
only the CC genotype showed significant results (β; 
p-value = 0.8082; 0.255 for Q2–Q3, 1.6930; 0.022 for Q1–
Q2, and 2.2190; 0.004 for < Q1) compared to the refer-
ence quartile (≥ Q3). The trend test was significant only 
for the CC genotype (ptrend = 0.002).

Table 1  Demographic characteristics of the study participants based on GLUT1 rs841853 genotypes (CC and CA + AA)

Minimum and maximum TXNIP cg19693031 β = 0.510186 and 0.918557, respectively

Continuous variables are represented by mean ± SD and categorical variables by n (%)

GLUT1 glucose transporter 1, SD standard deviation, β beta-value, TXNIP thioredoxin-interacting protein, BMI body mass index, HDL-C high-density lipoprotein 
cholesterol, LDL-C low-density lipoprotein cholesterol

rs841853-CC rs841853-CA + AA p-value
 (n = 735)  (n = 565)

Fasting blood glucose (mg/dL) 92.07  ± 7.78 91.62  ± 7.14 0.278

TXNIP cg19693031 (β) 0.7716 ± 0.05 0.7631 ± 0.05 0.002

TXNIP cg19693031 quartiles 0.005

 Q3 (β ≥ 0.800918) 210 (28.57) 117 (20.71)

 Q2–Q3 (0.769992 ≤ 0.800918) 187 (25.44) 140 (24.78)

 Q1–Q2 (0.738592 ≤ 0.769992) 168 (22.86) 158 (27.96)

 Q1 (β < 0.738592) 170 (23.13) 150 (26.55)

Sex 0.309

 Women 385 (52.38) 312 (55.22)

 Men 350 (47.62) 253 (44.78)

Age (years) 48.87 ± 11.03 48.22 ± 11.06 0.288

BMI (kg/m2) 23.95 ± 3.36 24.31 ± 3.75 0.071

Cigarette smoking 0.191

 No 559 (76.05) 447 (79.12)

 Yes 176 (23.95) 118 (20.88)

Alcohol drinking 0.889

 No 667 (90.75) 514 (90.97)

 Yes 68 (9.25) 51 (9.03)

Triglyceride (mg/dL) 112.56 ± 95.94 112.60 ± 103.11 0.994

HDL-C (mg/dL) 55.96 ± 14.27 54.42 ± 13.70 0.051

LDL-C (mg/dL) 122.67 ± 32.36 123.38 ± 33.55 0.699

Hypertension 0.294

 No 603 (82.04) 476 (84.25)

 Yes 132 (17.96) 89 (15.75)

Regular exercise 0.709

 No 420 (57.14) 317 (56.11)

 Yes 315 (42.86) 248 (43.89)

Tea intake 0.460

 No 451 (61.36) 358 (63.36)

 Yes 284 (38.64) 207 (36.64)

Coffee intake 0.997

 No 471 (64.08) 362 (64.07)

 Yes 264 (35.92) 203 (35.93)

Vegetarian diet 0.405

 No 671 (91.29) 588 (92.57)

 Yes 64 (8.71) 49 (7.43)
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When we combined the rs841853 genotypes and 
cg19693031 methylation quartiles using CC and ≥ Q3 as 
the reference group (Table  4), FBG levels were signifi-
cantly higher among individuals carrying the CC geno-
type in the Q1–Q2 (β = 1.7709, p-value = 0.013) and < Q1 
(β = 2.3116, p-value = 0.001) quartiles.

Discussion
The heritability of diabetes is estimated at 20–80% [61, 
62]. However, only 5–15% of this heritability has been 
explained [63]. Some methylation sites are believed to 
be heritable [64, 65]. Therefore, SNPs alone cannot fully 
delineate genetic heritability [6]. To our knowledge, this 
is the first study on blood sugar levels based on a genetic 

variant (rs841853) and an epigenetic modification 
(cg19693031 methylation) among non-diabetics.

In our study, we found significant differences in base-
line TXNIP cg19693031 methylation levels between 
GLUT1 rs841853 genotypes (CC and CA + AA). There 
were no differences in FBG between these genotypes. 
Multiple linear regression analyses showed an inverse 
association between FBG and cg19693031 methylation 
levels in a dose–response manner. These results are con-
sistent with those from numerous studies in which dia-
betes patients (higher FBG) had lower levels of TXNIP 
methylation [4, 22, 23, 43–49].

Table 2  Association of TXNIP cg19693031 methylation and 
GLUT1 rs841853 with fasting blood glucose

TXNIP thioredoxin-interacting protein, GLUT1 glucose transporter 1, β beta 
coefficient, ref reference, BMI body mass index, HDL-C high-density lipoprotein 
cholesterol, LDL-C low-density lipoprotein cholesterol, *: interaction term

β p-value

TXNIP cg19693031 (ref: ≥ Q3)

 Q2–Q3 − 0.0236 0.965

 Q1–Q2 1.0317 0.058

 < Q1 1.3336 0.019

P for trend 0.005

GLUT1 rs841853 (ref: CC)

 CA + AA − 0.4576 0.232

Sex (ref: Women)

 Men 2.4784  < .001

Age 0.1935  < .001

BMI 0.1647 0.006

Cigarette smoking (ref: No)

 Yes 0.7118 0.166

Alcohol drinking (ref: No)

 Yes 1.2013 0.086

Triglyceride 0.0031 0.146

HDL-C − 0.0338 0.037

LDL-C 0.0094 0.112

Hypertension (ref: No)

 Yes 0.3245 0.540

Exercise (ref: No)

 Yes − 0.3790 0.362

Tea intake (ref: No)

 Yes 0.1308 0.742

Coffee intake (ref: No)

 Yes − 0.2297 0.564

Vegetarian diet (ref: No)

 Yes − 1.9887 0.004

TXNIP cg19693031*SLC2A1 rs841853 p-value = 0.036

Table 3  Association between TXNIP cg19693031 methylation 
and fasting blood glucose stratified by GLUT1 rs841853 
genotypes

TXNIP thioredoxin-interacting protein, GLUT1 glucose transporter 1, β beta 
coefficient, ref reference

Adjusted for body mass index, cigarette smoking, alcohol drinking, triglyceride, 
high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, 
hypertension, regular exercise, vegetarian diet, and coffee and tea intake

rs841853-CC rs841853-CA + AA

β p-value β p-value

TXNIP cg19693031 (ref: ≥ Q3)

 Q2–Q3 0.8082 0.255 − 1.1672 0.160

 Q1–Q2 1.6930 0.022 0.0322 0.969

 < Q1 2.2190 0.004 0.1037 0.905

P for trend 0.002 0.491

Sex (ref: Women)

 Men 2.5831  < .001 2.2765 0.001

Age 0.1863  < .001 0.1980  < .001

Table 4  Fasting blood glucose levels based on a combination of 
GLUT1 rs841853 genotypes and TXNIP cg19693031methylation 
quartiles

GLUT1 glucose transporter 1, TXNIP thioredoxin-interacting protein, β: beta 
coefficient (denotes level of fasting blood sugar [mg/dL] for each category), ref: 
reference

Adjusted for sex, age, body mass index, cigarette smoking, alcohol drinking, 
triglyceride, high-density lipoprotein cholesterol, low-density lipoprotein 
cholesterol, hypertension, regular exercise, tea intake, coffee intake, and 
vegetarian diet

β p-value

GLUT1 rs841853 genotypes and TXNIP
cg19693031 quartiles (ref: CC, ≥ Q3)

CC, Q2–Q3 0.7815 0.254

CC, Q1–Q2 1.7709 0.013

CC, < Q1 2.3116 0.001

CA + AA, > Q3 1.2367 0.117

CA + AA, Q2–Q3 − 0.1411 0.849

CA + AA, Q1–Q2 1.0363 0.152

CA + AA, < Q1 1.0330 0.167
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FBG did not differ between the GLUT1 rs841853 geno-
types as previously reported [24]. The dominant model 
showed no significant association between rs841853-
CA + AA genotype and FBG in our study. However, the 
additive model revealed a significant association between 
the rs841853-AA genotype and FBG. Previous litera-
ture contains contradictory findings regarding rs841853 
and diabetes. For instance, rs841853 was not signifi-
cantly associated with diabetes in several studies [24, 
66–68]. Contrarily, the variant was confirmed as a diabe-
tes-related SNP in Japanese [33, 69], Tunisian [34], and 
Bangladeshi [35] women. Some meta-analyses reported 
significant associations between rs841853 and diabetes 
[26, 30]. However, a meta-analysis found an association 
only among Asians, not Blacks or Caucasians. This sug-
gests that the effect of the variant on T2DM varies across 
races [25]. Additional investigations of other diabetes-
associated SNPs, including the recently reported poly-
morphism rs1800977 (C69T) within the ATP-binding 
cassette transporter A1 (ABCA1) [70] gene are necessary.

Even though the dominant model suggested that the 
rs841853-CA + AA genotype might not be indepen-
dently associated with FBG in our study, the additive 
model showed a significant association between the AA 
genotype and FBG. Furthermore, the interaction between 
rs841853 and cg19693031 methylation was significant. 
The presence of a significant interaction between the 
genetic variant and the epigenetic process implies that 
rs841853 might be involved in the epigenetic mechanism 
(cg19693031 methylation) underlying diabetes. When 
we stratified the participants by the rs841853 genotypes, 
the dose–response and inverse association between 
FBG and cg19693031 methylation was retained only 
in the CC genotype. That is, in the presence of the CC 
genotype, lower levels of methylation (i.e., β < 0.738592 
and 0.738592 ≤ 0.769992 corresponding to Q1–Q2 
and < Q1) were associated with an increase (1.6930 for 
Q1–Q2 and 2.2190 for < Q1) in FBG levels. The increase 
in FBG (a hallmark of diabetes) indicates a higher prob-
ability of exposure to diabetes among non-diabetics 
with the rs841853 CC genotype who had lower levels of 
cg19693031 methylation. This could also imply that the 
GLUT1 rs841853 CC genotype and cg19693031 meth-
ylation might jointly influence the expression of TXNIP. 
However, we cannot clearly state the underlying mecha-
nism. Notwithstanding, TXNIP is a gatekeeper for glu-
cose metabolism which enhances glucose toxicity and 
pancreatic β cell apoptosis when highly expressed [17, 
18, 20, 71, 72]. This gene is highly expressed in diabe-
tes, which is characterized by impaired glucose-induced 
insulin production [71] and its inhibition could reduce 
glucotoxicity-related β-cell loss [73]. It is regarded as the 
main regulatory channel and an endocytosis adaptor for 

GLUT1 in glucose metabolism and the resulting mito-
chondrial actions in response to fluctuating glucose 
levels. That is, TXNIP is a signal regulation channel in 
glucose metabolism where it reduces glucose uptake by 
promoting GLUT1 endocytosis [18, 20].

An increase in GLUT1 mRNA expression is associated 
with an increase in glucose uptake [18]. However, TXNIP 
expression appears to be negatively associated with glu-
cose levels and GLUT1. In the brain, GLUT1 is overly 
expressed, while TXNIP expression is very low [20]. 
TXNIP degradation resulting from glucose uptake was 
associated with the release of GLUT1 from endocytosis 
[17]. Furthermore, its overexpression in cultured adipo-
cytes was associated with inhibited glucose uptake and 
vice versa [18]. TXNIP inhibits glucose influx directly 
or indirectly. The indirect mechanism involves the pro-
motion of GLUT1 endocytosis by TXNIP that is tran-
scriptionally induced by glucose [17, 18, 20]. The direct 
mechanism involves the binding of TXNIP to GLUT1 
which inhibits the transport of glucose by GLUT1 at the 
plasma membrane [17]. In diabetes pathogenesis, slightly 
elevated blood sugar levels early in the  disease onset 
enhance TXNIP expression and suppress glucose uptake 
by cells. This leads to increased blood sugar levels and 
subsequent overexpression of TXNIP, which down-regu-
lates GLUT1 function and reduces glucose uptake in the 
periphery [18].

Our study was limited to participants without dia-
betes. However, when we included an additional model 
to determine FBG levels in diabetic patients (n = 114) 
based on GLUT1 TXNIP cg19693031 and variant 
rs841853 (data not shown), we found that (1) FBG levels 
decreased significantly with increasing methylation levels 
(β = − 377.4484, p < 0.001); (2) Compared to CC homozy-
gotes, FBG levels were higher in patients with CA geno-
type (β = 11.0338) but lower in those with AA genotype 
(β = −  25.9662) even though these results were not sig-
nificant (p > 0.05). Despite these, selection bias cannot be 
ruled out due to the retrospective nature of our study.

DNA methylation is a strong disease marker that 
appears early during disease onset, especially cancer [50–
52]. Genetic variants are population and disease-specific. 
Therefore, identifying specific variants and biomarkers 
for certain diseases could be useful in targeted therapy 
[53]. Therefore, monitoring the methylation patterns of 
diabetes-related genes in non-diabetics with a specific 
genetic variation could help in the identification of indi-
viduals at risk of diabetes.

Conclusion
TXNIP cg19693031 methylation was inversely asso-
ciated with FBG in a dose-dependent manner. The 
rs841853 variant was not independently associated 
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with fasting blood glucose but had a significant interac-
tion with cg19693031 methylation. The inverse associa-
tion between TXNIP cg19693031 methylation and FBG 
became more prominent in the presence of the GLUT1 
rs841853 CC genotype, suggesting that rs841853 could 
modulate the association between cg19693031 meth-
ylation and FBG. Both genetic variants and epigenetic 
changes associated with FBG could help in the early 
identification of individuals at risk of T2DM. Hence, 
considering the methylation patterns of diabetes-
related genes in non-diabetics with specific genetic var-
iants is essential when investigating the pathogenesis of 
T2DM.
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