Skip to main content
. 2022 Jan 31;12:799662. doi: 10.3389/fonc.2022.799662

Table 1.

Studies using machine learning in the development of glioblastoma monitoring biomarkers.

Author Target condition Reference standard Dataset(s) Available demographic information Methodology Features selected Test set performance
a Kim J.Y. et al. (34) Early true progression or Early pseudoprogression Mixture of histopathology and imaging follow up Training = 61
Testing = 34
T 1 C, FLAIR, DWI, DSC
Training =
age mean ± SD (range)
58 ± 11 (34–83)
male 38 (62%)
Testing =
age mean ± SD
62 ± 12 male 25 (74%)
Data from Korea
Retrospective
2 centers: 1 train & 1 external test set.
LASSO feature selection with 10-fold CV
Linear generalized model
First-order,
volume/shape, Second-order (texture), wavelet.
ADC & CBV parameters included.
Recall 0.71
Specificity 0.90
Precision 0.83
BA 0.81
F1 0.77
AUC 0.85 (CI 0.71 – 0.99)
Kim J.Y. et al. (35) Early true progression or Early pseudoprogression Mixture of histopathology and imaging follow up Training = 59
Testing = 24
T 1 C, FLAIR, DTI, DSC
Training =
age mean ± SD
61 ± 11
male 37 (63%)
Testing =
age mean ± SD
59 ± 12
male 9 (38%)
Data from Korea
Retrospective
1 center
LASSO feature selection with 10-fold CV
Linear generalized model
First-order,
Second-order
(texture), wavelet.
FA & CBV parameters included.
Recall 0.80
Specificity 0.63
Precision 0.36
BA 0.72
F1 0.50
AUC 0.67 (0.40 – 0.94)
Bacchi S. et al. (36) True progression or PTRE (HGG) Histopathology for progression and imaging follow up for pseudoprogression Training = 44
Testing = 11
T 1 C, FLAIR, DWI
Combined =
age mean ± SD
56 ± 10
male 26 (47%)
Data from Australia
Retrospective
1 center
3D CNN & 5-fold CV
CNN.
FLAIR & DWI
parameters
Recall 1.00
Specificity 0.60
Precision 0.75
BA 0.80
F1 0.86
AUC 0.80
Elshafeey N. et al. (37) True progression or b PTRE Histopathology Training = 98
Testing = 7
DSC, DCE
Training =
age mean ± SD
50 ± 13
male 14 (58%)
No testing demographic information
Data from USA
Retrospective
3 centers
mRMR feature selection. 1 test.
1) decision tree algorithm C5.0
2) SVM
including LOO and 10-fold CV
Ktrans & CBV parameters Insufficient published data to determine diagnostic performance
(CV training results available recall 0.91; specificity 0.88)
Verma G. et al. (38) True progression or Pseudoprogression Mixture of histopathology and imaging follow up Training = 27
3D-EPSI
Training =
age mean ± SD
64 ± 10
male 14 (52%)
Data from USA
Retrospective
1 center
Multivariate logistic regression
LOOCV
Cho/NAA & Cho/Cr No test set
(CV training results available recall 0.94; specificity 0.87)
Ismail M. et al. (39) True progression or Pseudoprogression Mixture of histopathology and imaging follow up Training = 59
Testing = 46
T 1 C, T 2/
FLAIR
Training =
age mean(range) 61 (26–74)
male 39 (66%)
Testing =
age mean (range) 56 (25–76)
male 30 (65%)
Data from USA
Retrospective
2 centers: 1 train & 1 external test set.
SVM & 4-fold CV
Global & curvature shape Recall 1.00
Specificity 0.67
Precision 0.88
BA 0.83
F1 0.94
a Bani-Sadr A. et al. (40) True progression or Pseudoprogression Mixture of histopathology and imaging follow up Training = 52
Testing = 24
T 1 C, FLAIR
MGMT promoter status
Combined =
age mean ± SD
58 ± 11
male 45 (59%)
Data from France
Retrospective
1 center
Random Forest.
Second-order features
+/-
MGMT promoter status
Recall 0.94 (0.71 - 1.00)
Specificity 0.38 (0.09 - 0.76)
Precision 0.36
BA 0.66
F1 0.84
AUC 0.77
& non-MRI:
Recall 0.80 (0.56 - 0.94)
Specificity 0.75 (0.19 - 0.99)
Precision 0.86
BA 0.74
F1 0.83
AUC 0.85
Gao X.Y. et al. (41) True progression or PTRE (HGG) Mixture of histopathology and imaging follow up Training = 34
Testing = 15
(per lesion)
T 1 C, FLAIR
Combined =
age mean ± SD
51 ± 11
male 14 (36%)
(per patient)
Data from China
Retrospective
2 centers
SVM & 5-fold CV
T 1 C, FLAIR
subtraction map parameters
Recall 1.00
Specificity 0.90
Precision 0.83
BA 0.95
F1 0.91
AUC 0.94 (0.78 – 1.00)
Jang B-S. et al. (42) True progression or Pseudoprogression Mixture of histopathology and imaging follow up Training = 59 Testing = 19
T 1 C & clinical features & IDH/MGMT
promoter status
Training =
age median (range)
56 (22–77)
male 41 (70%)
Testing =
age mean ± SD
53 (28–75)
male 10 (53%)
Data from Korea
Retrospective
2 centers
1 train & 1 external test set.
CNN LSTM & 10-fold CV
(compared to Random Forest)
CNN T 1 C parameters
+/-
Age; Gender; MGMT status; IDH mutation; radiotherapy dose and fractions; follow-up interval
Recall 0.64
Specificity 0.50
Precision 0.64
BA 0.57
F1 0.63
AUC 0.69

& non-MRI:
Recall 0.72
Specificity 0.75
Precision 0.80
BA 0.74
F1 0.76
AUC 0.83
Li M. et al. (43) True progression or b PTRE Imaging follow up Training = 84
DTI
No demographic information
Data from USA
Retrospective.
1 center
DC-AL GAN CNN
with SVM including 5 and 10 and 20-fold CV
(compared to DCGAN, VGG, ResNet, and DenseNet)
CNN. DTI No test set
(CV training results only available: Recall 0.98
Specificity 0.88
AUC 0.95)
Akbari H. et al. (44) True progression or Pseudoprogression Histopathology Training = 40
Testing = 23
Testing = 20
T 1 C, T 2/FLAIR, DTI, DSC, DCE
Combined
internal =
age mean (range)
57 (33–82)
male 38 (60%)
No external demographic information
Data from USA
Retrospective
2 centers. 1 train & test. 1 external test set.
imagenet_vgg_f CNN SVM & LOOCV
First-order, second-order (texture).
CBV, PH, TR, T 1 C, T 2/FLAIR
parameters included.
Recall 0.70
Specificity 0.80
Precision 0.78
BA 0.75
F1 0.74
AUC 0.80
Li X. et al. (45) Early True progression or early pseudoprogression (HGG) Mixture of histopathology and imaging follow up Training = 362
T 1 C, T 2, multi-voxel & single-voxel 1H-MRS, ASL
Training = age mean (range) 50 (19–70)
male 218 (60%)
Data from China
Retrospective
Gabor dictionary and sparse representation classifier (SRC)
Sparse representations No test set
(CV training results only available:
Recall 0.97
Specificity 0.83)
Manning P et al. (46) True progression or pseudoprogression Mixture of histopathology and imaging follow up Training = 32
DSC, ASL
Training = age mean ± SD
56 ± 13
male 22 (69%)
Data from USA
Retrospective
1 center
Linear discriminant analysis & LOOCV
CBF and CBV parameters included. No test set
(CV training results only available:
Recall 0.92
Specificity 0.86 AUC 0.95)
Park J.E. et al., 2020 (47) Early True progression or early pseudoprogression Mixture of histopathology and imaging follow up Training = 53
Testing = 33
T 1 C
Training = age mean ± SD
56 ± 11
male 31 (59%)
Testing = age mean ± SD
62 ± 12
male 25 (76%)
Data from Korea
Retrospective
2 centers. 1 train & test. 1 external test set.
Random Forest feature selection with 10-fold CV (Automated segmentation)
First-order, volume/shape, Second-order (texture), wavelet parameters included. Recall 0.61
Specificity 0.47
Precision 0.58
BA 0.54
F1 0.59
AUC 0.65 (0.46 – 0.84)
Lee J. et al. (48) True progression or b PTRE (HGG) Histopathology Training = 43
T 1, T 1 C, T 2, FLAIR, (subtractions: T 1 C - T 1, T 2- FLAIR) ADC parameters.
Training =age mean ± SD (range)
52 ± 13 (16–74)
male 24 (56%)
Data from USA
Retrospective
1 center
CNN-LSTM.
3-fold CV
CNN-LSTM parameters. No test set
(CV training results only available:
AUC 0.81 (0.72 - 0.88))
Kebir S. et al. (49) True progression or b PTRE Imaging follow up Training = 30
Testing = 14
O-(2[18F]-fluoroethyl)-L-tyrosine (FET)
Combined = age mean ± SD (range)
57 ± 11 (34-79)
male 34 (77%)
Data from Germany
Retrospective
1 center
Linear discriminant analysis.
3-fold CV
TBRmean
TBRmax
TTPmin
parameters.
Recall 1.00
Specificity 0.80
Precision 0.90
BA 0.92
F1 0.95
AUC 0.93 (0.78 - 1.00)
Cluceru J. et al. (50) Early True progression or early pseudoprogression (HGG) Histopathology Training = 139
DSC, MRSI, DWI, DTI
Training = age median (range)
52 (21–84)
Male 83 (60%)
Data from USA
Ethnicity:
White 112 (80%)
American Indian 1 (1%)
Asian 6 (4%(
Pacific Islander 2 (1%)
Other 18 (13%)
Retrospective
1 center
Multivariate logistic regression.
5-fold CV
Cho, Cho/Cr, Cho/NAA & CBV parameters. No test set
(CV training results only available:
Recall 0.65 (0.33 - 0.96);
Specificity 0.62 (0.21 - 1.00)
AUC 0.69 (0.51 - 0.87))
Jang B.S. et al. (51) True progression or b PTRE Mixture of histopathology and imaging follow up (including PET) (i) (trained model = 78)
testing = 104
(ii) all training = 182
T 1 C & clinical, molecular, timings, radiotherapy data
Testing = age median (range)
55 (25-76)
male 59 (67%)
Data from Korea
Retrospective
(i) 6 centers
1 external test set.
CNN LSTM
(ii) 7 centers
1 training set
CNN LSTM & 10-fold CV
CNN T 1 C parameters and Age; Gender; MGMT status; IDH mutation; radiotherapy dose and fractions; follow-up interval (i) Insufficient published data to determine diagnostic performance
(ii) No test set
(CV training results available AUPRC 0.87)
a

Within publication some data appears mathematically discrepant.

b

Within publication discrepant or unclear information (e.g. interval after radiotherapy).

Unless otherwise stated, glioblastoma alone was analyzed.

PTRE, post-treatment related effects; HGG, high-grade glioma.

MRI sequences: T1 C, postcontrast T1-weighted; T2, T2-weighted; FLAIR, fluid-attenuated inversion recovery; DSC, dynamic susceptibility-weighted; DCE, dynamic contrast-enhanced; DWI, diffusion-weighted imaging; DTI, diffusor tensor imaging; ASL, arterial spin labelling; MRI parameters: ADC, apparent diffusion coefficient; FA, fractional anisotropy; TR, trace (DTI); CBV, cerebral blood volume; PH, peak height; Ktrans, volume transfer constant.

Magnetic resonance spectroscopy: 1H-MRS, 1H-magnetic resonance spectroscopy; 3D-EPSI, 3D echo planar spectroscopic imaging.

1H-MRS parameters: Cr, creatine; Cho, choline; NAA, N-acetyl aspartate.

Nuclear medicine: TBR, tumor-to-brain ratio; TTP, time-to-peak.

Molecular markers: MGMT, O6-methylguanine-DNA methyltransferase; IDH, isocitrate dehydrogenase.

Machine learning methodology: CV, cross validation; LOOCV, leave-one-out cross validation; SVM, support vector machine; CNN, convolutional neural network; LASSO, least absolute shrinkage and selection operator; LSTM, long short-term memory; mRMR, minimum redundancy and maximum relevance; VGG, Visual Geometry Group (algorithm); DCGAN, deep convolutional generative adversarial network; DC-AL GAN, DCGAN with AlexNet.

Statistical measures: CI, confidence intervals; BA, balanced accuracy; AUC, area under the receiver operator characteristic curve; AUPRC, area under the precision-recall curve.