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Abstract

Objectives: A recent paper by Doi et al. advocated completely replacing the relative risk (RR) 

with the odds ratio (OR) as the effect measure used to report the association between a treatment 

and a binary outcome in clinical trials and meta-analyses. Besides some practical advantages 

of RR over OR and the well-known issue of the OR being non-collapsible, Doi et al.’s key 

assumption that the OR is “portable” in the meta-analysis, i.e., study-specific ORs are likely not 

correlated with baseline risks, was not well justified.

Study designs and settings: We summarized the Spearman’s rank correlation coefficient 

between study-specific OR and the baseline risk in 40,243 meta-analyses from the Cochrane 

Database of Systematic Reviews (CDSR).

Results: Study-specific ORs are negatively correlated with baseline risk of disease (i.e., higher 

ORs tend to be observed in studies with lower baseline risks of disease) for most meta-analyses in 

CDSR. Using a meta-analysis comparing the effect of oral sumatriptan (100 mg) versus placebo 

on mitigating the acute headache at 2 hours after drug administration, we demonstrate that there 

is a strong negative correlation between OR (RR or RD) with the baseline risk and the conditional 

effects notably vary with baseline risks.

Conclusions: Replacing RR or RD with OR is currently unadvisable in clinical trials and 

meta-analyses. It is possible that no effect measure is “portable” in a meta-analysis. In cases 

where portability of the effect measure is challenging to satisfy, we suggest presenting the 

conditional effect based on the baseline risk using a bivariate generalized linear mixed model. 

The bivariate generalized linear mixed model can be used to account for correlation between the 

effect measure and baseline disease risk. Furthermore, in addition to the overall (or marginal) 

effect, we recommend that investigators also report the effects conditioning on the baseline risk.
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1. Introduction

We congratulate Doi et al.1 for their thought-provoking, yet controversial, paper that 

advocates for the use of the odds ratio (OR) over relative risk (RR) as a measure of 

effect. They suggest that clinical trials and meta-analyses should use the OR instead of RR 

as the effect measure for binary outcomes. Doi et al. demonstrate that the magnitude of 

the RR varies with outcome prevalence. They reached such a conclusion by varying the 

prevalence of a hypothetical outcome and comparing RRs, while assuming a fixed OR that 

was treated as the true measure of associations due to its independence with prevalence, 

(i.e., portability). Although such a recommendation was supported by technically rigorous 

mathematical derivations, we believe that the call to end the primary use of RR in clinical 

trials and meta-analyses and to replace the RR by the OR is misguided.

ORs are notoriously difficult to interpret. When people hear “odds” they think of “risks” 

and this leads to the common misinterpretation of the OR as a RR by scientists and the 

public, which is a serious concern.2–7 For example, an OR of 2 is not generally a doubling 

of risk (if the risk in the control group is 20% and the OR is 2, then the risk in the treated 

group is 33.3% not 40%). In contrast, the RD and RR offer clearer interpretations. A RD 

of 0.1 means that the risk of the outcome in the treated group is simply a 10 percentage 

points higher than the risk of the outcome in the control groups. A RR of 2 means that the 

risk is doubled in the treatment group compared to the control group. Such a distinction in 

ease of description has motivated efforts to transform ORs to RRs, or use various regression 

models to estimate the RR or RD directly.3,8–12 If RR was fully replaced by OR as Doi et 

al. recommend, spurious conclusions might become more common because the OR seems to 

be inevitably interpreted as a RR, and often this will lead people to overestimate the relative 

effect of a treatment.2,7,8,13–15 For example, when the risk is 0.8 in the treatment group 

and 0.4 in the control group, the corresponding OR=6 and RR=2. Because the OR = 6 will 

commonly be misinterpreted as an RR = 6 by the press, clinicians, and other researchers, 

such an exaggerated treatment effect can be misleading to evidence-based practices.2,5,7,14,15

Although Doi et al argue that the variability of the RR (and, by extension, the RD) with 

baseline prevalence is an impediment to using those measures, we argue the opposite: that 

the variability of the RR with baseline prevalence is in fact an appealing feature in the utility 

of these measures. The risk of the outcome in the control group affects the clinical meaning 

of effect measures, as it should.4,16,17 For example, when the baseline risk is extremely low, 

say 0.000,001, and the risk after treatment is 0.000,01, the OR and RR, which are both 

about 10, do not show how rare the outcome is; on the other hand, the RD is 0.000,009 

and conveys the small increase in risk. If the baseline risk is high, say 0.96, and the risk 

is 0.995 for the treatment group, a small effect is expected, which can be reflected by 

RR and RD (RR=1.04, RD=0.035) rather than the corresponding OR (8.29). Because the 
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OR can drastically overstate the magnitude of effect when the outcome is common and is 

approximately the same as the RR if the outcome is rare, we do not see a general need for 

the OR as a default measure of effect. In summary, the interpretation of an effect measure 

should account for the magnitude of the baseline risk.

In addition to the potential misleading interpretation of the magnitude of OR as an effect 

size measure, numerous studies have discussed the fact that the OR lacks an important 

and appealing property for interpreting effect estimates, i.e., collapsibility.18–28 In a single 

study with a non-confounding stratification variable, if the stratum-specific effects are 

homogenous, then they are expected to be the same as the crude effect, a desirable property 

known as collapsibility of an effect measure. Both RR and RD have this desirable property, 

while OR does not.19,24,29 We will discuss this noncollapsibility issue of OR in details in 

Section 2.

Furthermore, Doi et al. argued that the OR is a better effect measure of association because 

OR is likely unassociated with the baseline risk. We believe that a careful discussion 

is needed about the practicality of, and empirical support for, this assumption. In meta-

analyses, differences in the baseline risk across studies may explain the treatment effect 

heterogeneity.30–32 Multiple studies suggest that understanding the treatment effect without 

considering potential variation in treatment effects between groups defined by factors 

associated with differences in baseline disease risk, is potentially misleading.31–37 Although 

Doi et al. showed that the OR was independent of the prevalence by pooling 140,620 trials 

across 14,960 meta-analyses altogether, it seems counterintuitive that OR is not related to 

the baseline risk; the analysis did not consider differences in meta-analyses, i.e. stratification 

by each meta-analysis. Hence, it remains unclear whether a general statement that OR better 

reflects the effect of interest can be made.

In this paper, we first expand in detail about how noncollapsibility makes OR an undesirable 

summary measure in Section 2. Then, we evaluate whether the OR is correlated with the 

baseline risk in meta-analysis in Section 3, i.e., whether OR is portable after the differences 

between meta-analyses are removed. Specifically, to investigate if the correlation commonly 

exists, we estimate the Spearman’s rank correlation coefficient for each meta-analysis with 

a large-scale evaluation of the meta-analyses from the Cochrane’s Database of Systematic 

Reviews (CDSR). Then in Section 4, when there is a correlation between the baseline 

risk and the effect measure (e.g. RR, RD or OR) within a meta-analysis, we recommend 

a bivariate generalized linear mixed-effects model (BGLMM). A detailed case study is 

presented to illustrate its implementation.

2. Is OR a better summary effect measure than RD and RR in a single 

study?

Unlike the RD or RR, the OR does not correspond to the proportional changes 

in average odds in the absence of confounding factors, which is known as the 

noncollapsibility.18–21,27,29,38 Consequently, the erroneous assumption that the crude and 

stratum-specific ORs will be equivalent in the absence of confounding can lead to 

substantial confusion. Specifically, when the ORs are homogenous across strata, the crude 
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OR can be different from stratum-specific ORs in the absence of confounding. This is 

not true of the RD or RR which are collapsible in the absence of confounding. Table 1A 

and Table 1B, adapted from Greenland et al (1999), are examples that demonstrate the 

collapsibility of RD and RR in contrast to OR’s noncollapsibility across the covariate Z. It is 

important to note that there is no association between Z and X in these tables: P(Z=1|X=1) = 

P(Z=1|X=0) = 0.5. Because there is no association between Z and X, we know that Z is not 

a confounder. In Table 1A, we see that the RD is collapsible in the absence of confounding 

because its crude value is equal to the constant stratum-specific value, all of which are 

RD=0.2. This is not true for the OR. The stratum specific ORs are both 2.67 and, despite the 

fact that there is no confounding, the crude OR is 2.25. Although both the stratum-specific 

OR and crude OR are correctly calculated, one could falsely assume there is confounding 

bias from OR from Table 1A. Table 1B further demonstrates that RR can be collapsible; its 

crude value is equal to stratum-specific values in the absence of confounding.

Such noncollapsibility of OR may undermine the interpretability of a summary measure 

of association from a randomized controlled trials (RCTs) when considering the treatment 

effect within a subgroup of the treated. If potential confounders are well-controlled for by 

randomization, covariate adjustment is generally not necessary; and, often it is desirable to 

be able to interpret the crude treatment effect estimate as the stratum-specific effects.39 In a 

review of 288 RCT with binary outcomes, 12.4% of them evaluated the primary outcome by 

the crude OR.40 One may interpret these crude ORs as the amount the odds of the outcome 

would change under the intervention in the whole population; however, that same OR does 

not apply to any specific stratum of the population even if there is no effect modification or 

confounding. The admitted mathematical niceties of the OR are not reason enough to accept 

such a confusing state of affairs. Of course, when the outcome is rare, the OR approximates 

the RR and is, therefore, approximately collapsible.

The noncollaposibility of OR also brings additional difficulties to its conversion into the 

RR, RD and the number needed to treat (NNT). Contrary to the ease with which Doi et 

al suggest that other effect measures can be readily-derived from OR, the simple algebraic 

conversion noted by Doi et al. converting stratum-specific ORs to stratum-specific RR and 

RD will not yield the crude RR, RD and NNT one might calculate, for example, by classical 

Mantel-Haenszel methods.38,41

3. Is OR “portable” with varying baseline risks in meta-analyses?

Because the values of the aforementioned ORs are highly dependent on the population they 

are evaluated at, its violation of portability seems inevitable. In fact, effect modification and 

confounding bias are common in practice such that a direct inference based on estimated 

measures about external populations, i.e., portability, is hardly satisfied. Doi et al. examined 

the correlation between ORs and baseline risks in all studies across distinctive meta-analyses 

and found no correlation. However, they did not examine whether there was a correlation 

between ORs and baseline risks within individual meta-analyses, which is a more relevant 

question. We argue that the true dependence of the OR on the baseline risk may be masked 

by merging miscellaneous meta-analyses. Without considering the differences between 
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meta-analyses, the conclusion in Doi et al., that no correlation between OR with the baseline 

from a mixture of distinctive meta-analyses implies portability, is concerning.

We suspect that such an assumption may be easily violated if ORs correlate with baseline 

risks within the same meta-analysis. Hence, we assessed the correlation of the ORs with 

the baseline risks within each meta-analysis using the Cochrane Database of Systematic 

Reviews (CDSR), which is updated to January 2020. A total of 40,243 meta-analyses 

containing at least 3 studies with binary outcomes were included. For studies with zero 

counts where OR is not defined in the corresponding 2×2 table, rather than omitting the 

studies with the information about rare outcome as in Doi et al., we added 0.5 to all cells 

of the 2×2 table of the studies with at least one zero count as recommended by a recent 

study.42 The Spearman’s rank correlation coefficient (Spearman’s ρ) was used to capture 

both the linear and nonlinear correlation between the OR and the baseline risk for studies in 

each meta-analysis. To detect whether such correlation changes with the number of studies 

per meta-analysis, the quantiles of the Spearman’s ρ were summarized, after stratified by 

number of studies in a meta-analysis. Our summary over CDSR and visualizations were 

implemented in R (version 3.5.3).

Figure 1 presents the correlation of the OR with the baseline risk with the varying number 

of studies (≥3) per meta-analysis. The OR is noticeably correlated with the baseline risk. 

In nearly half of 40,243 meta-analyses, the absolute values of Spearman’s ρ are larger than 

0.5, a threshold corresponding to moderate correlation.43 Although the portability appears to 

hold for OR across varying levels of prevalence from the Figure 3 in Doi et al., our results 

show that the correlation between the OR and the baseline risk is clearly not negligible in 

most of the meta-analyses (Figure 1). In fact, those correlations are generally negative; most 

75% quantiles of Spearman’s ρ are negative across all number of studies.

4. What to do next? Estimating overall and conditional effects from a 

bivariate generalized linear mixed model (BGLMM)

To account for potential correlation of the baseline risk with a treatment (or exposure) 

effect measure, meta-regression has been widely used to obtain the effects conditioning 

on the baseline risk in medical literatures.30,44,45 However, several pitfalls of a naïve meta-

regression have been criticized, because the baseline risk itself is a post-randomization 

variable rather than a fixed covariate.46–49 Alternatively, several studies have recommended 

using generalized linear mixed-effects models (BGLMMs) to jointly model the effect size 

and the baseline risk.33,36,50

4.1 The BGLMM

In this section, we describe the BGLMM model and discuss how to obtain the overall 

(marginal or population average effect) and the effect conditioning on varying baseline risks 

to account for potential correlation. To be general, we discuss estimation of both marginal 

and conditional OR, RR and RD from the BGLMM model. Consider a meta-analysis with 

N studies, BGLMM will jointly model the underlying event risks from the baseline and 

treatment (or exposure) group.51 For the ith study i = 1…, N, let pi0 denote the baseline 
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risk, and pi1 the risk in the treatment group. As a result of potential correlation of the 

study-specific treatment effect with the corresponding baseline risk pi0, the underlying true 

baseline and exposure risks pi0 and pi1 may be correlated. They can be jointly modeled by a 

BGLMM as:

g pi0 = μ0 + vi0and g pi1 = μ1 + vi1, vi0, vi1
T ∼ N 0, 0 T , Σ (1)

Here, g(⋅) denotes the link function which transforms the event probabilities to linear forms, 

and Σ =
σ0

2 rσ0σ1

rσ0σ1 σ1
2  denotes the covariance. Although one can apply other link functions, 

we choose the most commonly used link function, the logit link. The study-specific 

treatment effect in the logit scale is therefore expressed as logit(pi1) − logit(pi0), i.e., the 

log(ORi). The parameters μ0 and μ1 are fixed effects and represent the average baseline and 

treatment risks in the logit scale. The corresponding study-specific parameters vi0 and vi1 

are random effects and assumed to follow a bivariate normal distribution with covariance Σ. 

The parameters σ0
2 and σ1

2 are between-study variances for the baseline and treatment odds, 

logit(pi1) and logit(pi0). The r is the correlation between the baseline and treatment risks 

in the logit scale, such that the covariance is rσ0σ1. Hence, the variance of the log(ORi) 

is σ1
2 + σ0

2 − 2rσ0σ1 and its correlation with the baseline risk (pi0) in the logit scale r0 (i.e., 

baseline log odds) is implied as:

r0 =
cov log ORi , logit pi0
var log ORi var logit pi0

=
rσ0σ1 + σ1

2

σ0 σ1
2 + σ0

2 − 2rσ0σ1
.

4.2 Estimating the marginal effects from the BGLMM

From a BGLMM model with a logit link, the marginal treatment and 

baseline risks p1 and p0 are estimated by p1 = E p1i ≈ 1/(1 + exp( −
μ1

1 + c2σ1
2 )) and 

p0 = E p0i ≈ 1/(1 + exp( −
μ0

1 + c2σ0
2 )) where c = 16 3

15π .52 Then, the marginal estimate of OR, 

RR and RD for any meta-analysis are given by 
p1

1 − p1
/

p0
1 − p0

, p1/p0, and p1 − p0.

4.3 Estimating the conditional effects from the BGLMM

Similarly, for any given baseline risk p in the study i (for the prediction purpose i can be 

any integer greater than N in the mixed-effect model), we can obtain the conditional effect 

estimate based on the conditional mean of the treatment risk E(p1i|p0i). According to the 

bivariate normality assumption between the vi0 and vi1, the conditional mean of treatment 

risk p1 in the logit scale is given by:
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E logit p1i ∣ p0i = p = μ1 − μ0r0σ1
σ0

+ r0σ1
σ0

logit p (2)

Because the expression to solve for E(p1i|p0i = p) from equation (2) is complex and the 

median is more robust to skewed distribution than the mean, we follow previous studies and 

use the median as an estimate of p1i conditioned on p0i = p.53 The conditional median of p1i, 

i.e., M(p1i|p0i = p), is given by:

M p1i p0i = p = eμ1 −
μ0r0σ1

σ0
+

r0σ1
σ0

logit(p)

1 + eμ1 −
μ0r0σ1

σ0
+

r0σ1
σ0

logit p
(3)

Therefore, the conditional estimate of OR, RD, RR are 
M p1i p0i = p

1 − M p1i p0i = p / p
1 − p , M p1i p0i = p − p and M(p1i|p0i = p)/p, respectively. With all the 

estimates of fixed-effect parameters, between-study variances, and correlation coefficients 

from (1), the 95% prediction intervals and confidence intervals (CI) for both the marginal 

and conditional OR, RD, and RR can be obtained through the delta method and normal 

approximation.

4.4 A case study illustrating the implementation of the BGLMM

As a case study illustrating how to implement BGLMM, we reanalyzed a meta-analysis 

with 20 studies on comparing the effect of oral sumatriptan (100 mg) versus placebo on 

mitigating the acute headache at 2 hours after drug administration from the CDSR.54 We 

used PROC NLMIXED in SAS (version 9.4) to fit the BGLMM. The random effects 

were approximately integrated by the default adaptive Gaussian quadrature, and likelihood 

maximization used the default dual quasi-Newton optimization algorithm. We also compared 

the marginal effects estimated from the BGLMM with the overall OR, RR and RD estimated 

from a standard two-step random-effects meta-analysis without considering correlation as 

implemented by the rma command in R package “metafor”.55 The Spearman’s ρ was 

calculated based on the sample data for each effect summary measure and the corresponding 

95% confidence intervals were obtained from Fisher’s z-transformation with the variance of 

z estimated by 
1 + ρ2

2
n − 3 .56

The Spearman’s ρ for all effect measures versus baseline risks are all nonzero. In particular, 

the Spearman’s ρ correlation estimates between the baseline risk and OR, RR and RD are 

−0.74 (95% CI, −0.90 to −0.39), −0.90 (95% CI, −0.97 to −0.71) and −0.54 (95%, −0.81 to 

−0.10), respectively. Thus, we fitted the logit BGLMM and Figure 2 shows that the observed 

OR, RR, RD matched well with the BGLMM. The model obtained an overall (or marginal) 

OR of 3.48 with 95% CI (2.93 to 4.14), RR (2.05; 95% CI, 1.80 to 2.30) and RD (0.30; 95% 

CI, 0.26 to 0.33) which are very similar to the OR (3.50; 95% CI, 2.94 to 4.16), RR (2.02; 

95% CI, 1.79 to 2.27), and RD (0.29; 95% CI, 0.26 to 0.33) estimated from the two-step 

random-effect meta-analysis ignoring the correlation.
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As shown in Figure 2a, the OR is not stable as the baseline risk changes. The OR estimate 

from the BGLMM decreases from 6.73 to 2.56 when the baseline risk increases from 0.10 

to 0.43 (Figure 2a). The conditional RR and RD obtained from the BGLMM show similar 

trends, although the pattern is less obvious for the conditional RD (Figure 2b and 2c). 

Furthermore, the estimated correlation r0 between the log OR and the log baseline odds from 

the BGLMM is −0.68 (95% CI, −0.91 to −0.14), which strengths the evidence that there is a 

significant correlation between the treatment effect and the baseline risk. Combined with the 

fact that most of the observed OR (or RR and RD) as in Figure 2a (or Figure 2b and 2c) are 

within the 95% prediction interval by BGLMM, it is clear that the correlations between the 

effect measures and baseline risks are not negligible.

5. Discussion

Because of the interpretability issues and lack of collapsibility, we urge researchers to 

avoid ORs when either the RD or RR is available. Furthermore, through a systematic 

evaluation of the CDSR and a real-world meta-analysis example, our results suggest that 

the value of OR depends on the baseline risk when the differences between meta-analyses 

are considered. Not only may the baseline risk of the outcome be correlated with the 

corresponding effect measure in the meta-analysis, but it also dictates the meaningfulness 

of those effect measures for a single study. This dependency underscores the importance 

to report the baseline measure for a correct effect interpretation. The assumption that OR 

is likely “portable”, which seems to be the main reason why Doi et al prefer OR over 

RR, is easily violated when the OR correlates with the risk in the control group within the 

same meta-analysis. In summary, the recommendation of replacing RR with OR appears 

misguided.

Even if the OR is not correlated with the baseline risk in a meta-analysis, only relying 

on a single aspect to replace one measure with the other is near-sighted; other issues such 

interpretability and collapsibility ought to impact the choice of effect measure. Rather than 

attempting to set one method aside when the correlation with the baseline risk is of concern, 

perhaps a more meaningful step is to include the baseline risk and report the variation in 

the effect measure with baseline risks in addition to the marginal effect, regardless of the 

measure of choice.
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What is New?

Key findings

• In most meta-analyses in Cochrane Database of Systematic Reviews, there is 

notable negative correlation between ORs and baseline risks.

• When such a correlation is not negligible, the OR is not “portable” across 

studies with different baseline risks.

• When an effect measure is not “portable”, one may derive the effects 

conditioning on the baseline risk from a bivariate generalized linear mixed 

model.

What this study adds to what was known

• The recommendation to replace the RR with the OR in clinical trials and 

meta-analyses is misguided.

• The OR is not a better effect summary than RR and RD in a single study or in 

meta-analyses; the noncollapsibility of OR can lead to misleading results in a 

single study and the OR is generally not portable in the meta-analysis.

• In addition to reporting effect measures such as the OR, RR or RD, it is also 

important to present the baseline risk.

What is the implication and what should change now?

• When none of the effects are “portable” in a meta-analysis, in addition to 

report the overall (or marginal) effect, one should also report the effects 

conditioning on the baseline risk, regardless of the measure of choice.
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Figure 1: 
Quantiles of the Spearman’s rank correlation coefficient ρ between the odds ratio and 

baseline risk among meta-analyses, stratified by number of studies in a meta-analysis.
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Figure 2: 
Plot of the observed OR, RR, and RD versus the nonlinear fit from BGLMM with varying 

levels of baseline risks; BGLMM: bivariate generalized linear mixed-effects model; OR: 

odds ratio; RD, risk difference; RD, relative risk.
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Table 1:

An illustration example to demonstrate the collapsibility of the RD and RR, and noncollapsibility of OR 

between outcome (Y), treatment (X) and strata (Z).

A. The crude RD equals to a constant stratum-specific RD value

Z=1 Z=0 Crude

X=1 X=0 X=1 X=0 X=1 X=0

Y=1 80 60 40 20 120 80

Y=0 20 40 60 80 80 120

Risk 0.80 0.60 0.40 0.20 0.60 0.40

RD 0.20 0.20 0.20

RR 1.33 2.00 1.50*

OR 2.67 2.67 2.25

B. The crude RR equals to a constant stratum-specific RR value

Z=1 Z=0 Crude

X=1 X=0 X=1 X=0 X=1 X=0

Y=1 60 30 40 20 100 50

Y=0 40 70 60 80 100 150

Risk 0.60 0.30 0.40 0.20 0.50 0.25

RD 0.30 0.20 0.25*

RR 2.00 2.00 2.00

OR 3.50 2.67 3.00

*
RR varies across the two strata, but it can still be collapsible across Z as it can be computed as the ratio of weighted averaged risks, i.e., 

RRcrude =
averaged riskX = 1
averaged riskX = 0

=
riskX = 1, Z = 1P Z = 1 X = 1 + riskX = 1, Z = 0P Z = 0 X = 1
riskX = 0, Z = 1P Z = 1 X = 0 + riskX = 0, Z = 0P Z = 0 X = 0 = 0.8∗0.5 + 0.4∗0.5

0.6∗0.5 + 0.2∗0.5 = 1.50. 

RD: risk difference; RR: relative risks; OR: odds ratio.

*
RD can still be collapsible from different stratum-specific values in Table 1B by being the difference of weighted averaged risks, i.e., 

RDcrude = averaged riskX = 1 − averaged riskX = 0 = riskX = 1, Z = 1P Z = 1 X = 1 + riskX = 1, Z = 0P Z = 0 X = 1
− riskX = 0, Z = 1P Z = 1 X = 0 + riskX = 0, Z = 0P Z = 0 X = 0 = 0.6∗0.5 + 0.4∗0.5 − 0.3∗0.5 + 0.2∗0.5

= 0.25

. 

On the contrary, OR is still not collapsible across Z because 

averaged oddsX = 1
averaged oddsX = 0

=
oddsX = 1, Z = 1P Z = 1 X = 1 + oddsX = 1, Z = 0P Z = 0 X = 1
oddsX = 0, Z = 1P Z = 1 X = 0 + oddsX = 0, Z = 0P Z = 0 X = 0 =

0.6
1 − 0.6∗0.5 + 0.4

1 − 0.4∗0.5
0.3

1 − 0.3∗0.5 + 0.2
1 − 0.2∗0.5

= 3.19

≠ ORmarginal = 3.0

. 

RD: risk difference; RR: relative risks; OR: odds ratio.
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