
Estimating the High-Arsenic Domestic-Well Population in the 
Conterminous United States

Joseph D. Ayotte*,†, Laura Medalie‡, Sharon L. Qi§, Lorraine C. Backer‖, Bernard T. Nolan⊥

†U.S. Geological Survey, New England Water Science Center, New Hampshire − Vermont Office, 
331 Commerce Way, Pembroke, New Hampshire 03301, United States

‡U.S. Geological Survey, New England Water Science Center, New Hampshire − Vermont Office, 
87 State Street, Montpelier, Vermont 05602, United States

§U.S. Geological Survey, 1300 SE Cardinal Court Bldg., 10 Vancouver, Washington 98683, United 
States

‖Centers for Disease Control and Prevention, National Center for Environmental Health, 4770 
Buford Highway NE, Chamblee, Georgia 30341, United States

⊥U.S. Geological Survey, National Water Quality Program, National Center 413, 12201 Sunrise 
Valley Drive, Reston, Virginia 20192, United States

Abstract

Arsenic concentrations from 20 450 domestic wells in the U.S. were used to develop a logistic 

regression model of the probability of having arsenic >10 μg/L (“high arsenic”), which is 

presented at the county, state, and national scales. Variables representing geologic sources, 

geochemical, hydrologic, and physical features were among the significant predictors of high 

arsenic. For U.S. Census blocks, the mean probability of arsenic >10 μg/L was multiplied by the 

population using domestic wells to estimate the potential high-arsenic domestic-well population. 

Approximately 44.1 M people in the U.S. use water from domestic wells. The population in the 

conterminous U.S. using water from domestic wells with predicted arsenic concentration >10 μg/L 

is 2.1 M people (95% CI is 1.5 to 2.9M). Although areas of the U.S. were underrepresented with 

arsenic data, predictive variables available in national data sets were used to estimate high arsenic 

in unsampled areas. Additionally, by predicting to all of the conterminous U.S., we identify areas 

of high and low potential exposure in areas of limited arsenic data. These areas may be viewed 

as potential areas to investigate further or to compare to more detailed local information. Linking 

predictive modeling to private well use information nationally, despite the uncertainty, is beneficial 

for broad screening of the population at risk from elevated arsenic in drinking water from private 

wells.
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Graphical Abstract

INTRODUCTION

Domestic wells (private or homeowner wells) are the dominant source of drinking water for 

people living in rural parts of the United States.1 Geogenic arsenic affects many domestic 

wells in the U.S.2,3 and is thus a national public health concern.4–6 Recent work in the U.S. 

indicates that low-level arsenic may impact fetal growth7 and may be related to preterm 

birth.8 In the U.S., domestic well water quality is generally not regulated. This means that 

it is largely up to the well owner to understand the arsenic hazard and take steps to mitigate 

any exposure risk. To understand the risk and to make progress on reducing exposure 

in a systematic way, we need better estimates of the population affected by high arsenic 

concentrations.

About 44.1 M people in the conterminous U.S.—14% of the total population—rely on 

domestic wells for household water use.5 The U.S. domestic well population tends to mimic 

the general population distribution throughout the country, serving people not connected to 

public supply distribution systems and people in rural areas.5 Because high concentrations of 

arsenic in water are not evident by taste or smell, the only way to know how much arsenic 

is in drinking water is to have it tested, a precaution utilized infrequently by domestic well 

owners.2,6

Studies of arsenic in domestic wells in the U.S. commonly refer to percentages of wells 

with arsenic >10 μg/L, the U.S. Environmental Protection Agency (USEPA) Maximum 

Contaminant Level (MCL), based on observations from various databases.2,3,7–10 National-

scale maps of arsenic show either observation points or interpolated concentrations where 

gaps in spatial coverage are evident.8,9,11–16 Estimates of the population in the U.S. using 

domestic well water with high concentrations of arsenic may not accurately represent the 

population at risk if they do not account for unsampled areas.

A modeling approach can directly incorporate potentially important numeric or categorical 

factors, such as geologic, geochemical, physical, and hydrologic/climatic data, that are 

available at the national scale. Although local-to regional-scale models have been developed 

for arsenic in groundwater in the U.S., indicating strong regional (102 to 103 km2) to 

local (10° to 101 km2) patterns,10,15,17–24 and some have looked at national occurrence of 

arsenic,2,8,11–13,16 few studies have attempted to scale these factors upward to a national 

level,8,10,13,15 such as has been done for nitrate25,26 and atrazine.27
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Arsenic in groundwater reflects geologic sources, aquifer geochemistry, and national-to-

local scale processes, such as climatic, physiochemical, and geochemical variation.12,24 

Primary geochemical factors generally include (1) reductive dissolution and desorption, 

(2) pH-driven desorption, (3) ion concentration in low recharge areas, and (4) ion 

competition.12,24

For example, arid oxidizing environments, as in the southwest part of the U.S. are 

susceptible to increased likelihood of high arsenic through evaporative concentration, 

increasing pH, and increasing dissolved solids along flow paths, and redox 

differences,17,28,29 whereas humid reducing environments also are related to increased 

likelihood of high arsenic, such as in the northeast U.S, where alkaline pH, reducing 

environments, and dissolution of sulfide minerals are important.30–35

This understanding of the controls on high concentrations of arsenic in various parts of 

the U.S. can be applied to other, unsampled parts of the U.S. The extent to which these 

and other factors interplay across the U.S. (to produce high arsenic groundwater) is a 

knowledge gap that this study seeks to fill. By using a model to predict the probability of 

high arsenic, we take advantage of previous understanding of regional processes and apply it 

in a multivariate sense to areas that have not been characterized, similar to approaches used 

elsewhere.36

There are a number of challenges associated with modeling concentrations of arsenic in 

private wells. Available data on concentrations of arsenic in domestic wells in the U.S. are 

simultaneously rich in number but spotty in geographic extent. While we understand many 

of the processes that control the presence of arsenic in groundwater and wells, we do not 

yet understand the complex interplay of factors that lead to high concentrations in some 

areas. For example, wells in close proximity to one another (10° to 101 m) may produce 

water with vastly different concentrations of arsenic. Another potential modeling challenge 

is the 3-dimensional aspect of groundwater, where adjacent domestic wells draw water 

from distinct aquifers, one overlying another, with differing composition and geochemical 

properties.37,38

The goal of this paper is to produce estimates of the population of domestic well users with 

high arsenic concentrations in their drinking water at the national scale. We use a model to 

predict the probability of well water arsenic concentrations greater than 10 μg/L (the USEPA 

MCL) across the U.S. using geologic, geochemical, and hydrologic information. Information 

gained from model generation can improve our understanding of important spatial and 

physical features that contribute to high arsenic concentrations in domestic wells and will 

be a first attempt to geographically describe the potentially affected population based on 

a national-scale predictive model. Using domestic well arsenic data and a national-scale 

modeling approach will expand our knowledge of potential exposure to arsenic in drinking 

water from what is currently available only from regional- and local-scale models and will 

allow for comparisons between regions.
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MATERIALS AND METHODS

Arsenic in Private Well Water.

Arsenic concentrations from 20 450 U.S. domestic well samples (Figure 1; Table 1) 

collected between 1970 and 2013 were used to develop our model. Concentrations of 

arsenic from 18 700 domestic wells and other ancillary data, such as latitude and longitude 

were obtained from the USGS National Water Information System.39 Additional arsenic 

concentrations from domestic wells in Maine (750 wells) and Minnesota (1000 wells) 

were used.40,41 The data representing arsenic concentrations are variably clustered but 

declustering was not applied because potential biases were unclear and well-to-well 

variability in arsenic concentrations was large. Also, it is assumed that, in general, the wells 

were not specifically installed to monitor arsenic, so the clustering is random with respect 

to arsenic. Further, predicting an exceedance of a threshold as was done here (arsenic >10 

μg/L) has the effect of de-emphasizing high concentrations and also high-arsenic events are 

rare, so it is reasonable, if not desirable, to retain data.

Several preliminary data processing steps were undertaken. If a given sample had results 

from both filtered and unfiltered samples, the unfiltered result was preferentially retained. 

Where there were multiple results per site (about 15% of sites), only the maximum arsenic 

concentration, being the most noteworthy value, was retained. Arsenic concentrations were 

converted to a binary variable of less than or equal to (nonevent) and greater than (event) 

10 μg/L, with 0 as a nonevent and 1 as an event for use in logistic regression models.42 

Measurements with reporting levels higher than 10 μg/L were not used because it is not 

possible to determine whether they were higher or lower than the 10 μg/L threshold.

We randomly selected a “hold-out” data set (about 15%) to set aside for model testing.

Training and testing data sets used to develop the arsenic probability model had identical 

minimum and percentile statistics and similar maximum concentrations (Table 1). Event 

statistics (percent >10 μg/L) for the two data sets also were similar.

Considerable spatial variability in arsenic concentrations across the U.S. is characterized by 

patterns of high concentrations in coastal New England, eastern Pennsylvania, the upper 

Midwest, southern Idaho, West Texas, and parts of the Southwest (Figure 1), among 

others. Processes that affect high concentrations vary but often are a mix of factors that 

shift in importance depending on the area. For example, oxidation of sulfides, evaporative 

concentration, and pH-driven desorption may be more important in the southwest, whereas 

sulfide mineral sources and reductive dissolution may be more important in humid 

regions.12,13,17,43 Also, specific crystalline bedrock types in New England, black shale in 

Ohio, and specific glacial aquifer source materials (from various Pleistocene glacial lobes 

in the Midwest) also have been associated with arsenic in groundwater.12,13,30,44–46 Sulfide 

enriched sandstones in Wisconsin47,48 and geothermal sources and volcanic rocks in New 

Mexico can be sources of high arsenic concentrations.12
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Source- and Process-Based Extrapolation.

Potential factors that might influence arsenic concentrations in groundwater were identified 

by literature review. Digital data sets for these factors that were available at the national 

scale were assembled to test for significance as independent variables in the logistic 

regression model (Supporting Information SI 1). A Geographic Information System (GIS) 

was used to overlay the point data set of wells with these potential independent variables 

resulting in the assignment of the full set of independent variables to each well. In cases 

where factors related to sources or processes were not available directly as variable layers, 

related national-scale data layers were tested as potential surrogates (e.g., areas of tile 

drainage to indicate aquifer hydraulic properties). Model variables fall into four major 

groups: (1) geologic and geochemistry variables, such as bedrock and surficial geologic 

units, and soil geochemistry concentrations; (2) hydrologic variables, such as precipitation, 

evapotranspiration, and recharge to groundwater; (3) process variables, such as position in 

a watershed, aquifer permeability, and water table depth; and (4) other features, such as 

elevation, slope, land use, and percent of areas with tile drainage.

Logistic Regression Model.

We used logistic regression (LR), a linear classifier that has been widely used in studies to 

simulate arsenic probability in groundwater, to generate models of arsenic concentrations 

greater than 10 μg/L, the USEPA MCL for arsenic.49–51 It is well suited to use with 

a heavily censored response variable (groundwater arsenic) and for identifying general 

controlling factors, such as sources and processes. The form of the equation has been 

presented previously.18,51 We used backward stepwise logistic regression and parameters 

were retained if they met criteria for inclusion based on Akaike’s Information Criteria 

and Wald p-values (p < 0.05). Although LR may have limitations with nonlinearity of 

independent variables, it can provide much insight into the importance of those variables51 

and is not as prone to over fitting as tree-based approaches, which can reduce generality52 

despite potential higher sensitivity.

A total of 321 potential individual variables were tested for significance as predictors 

in the LR models, most of which were binary geologic and other variables (Supporting 

Information SI 1). Independent variables were selected for inclusion by running multiple LR 

iterations and comparing results of automated selection procedures (backward, forward, or 

stepwise selections) with unspecified selection of variables. The set of variables ultimately 

selected had significance in most (or all) of the tested models. Potential multicollinearity 

was addressed by removing variables with a large variance inflation factor (generally greater 

than 4). In part, because few (11%) arsenic observations had concentrations greater than 

10 μg/L (events), the ability to correctly predict events (sensitivity) was low. Sensitivity 

is mainly a function of group size (number of events), which is controlled by probability 

threshold; however, the receiver operating characteristics (ROC) curve integrates over all 

thresholds. High well-to-well arsenic variability and missing variables also contribute to low 

sensitivity.18,26

Several regression model fit criteria were used to assess fit of the overall model. 

Classification tables for selected cut-points were used to provide information on model 
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accuracy by showing overall correct classifications, model sensitivity, and specificity, false 

positives, and false negatives. The area under the ROC curve (AUC), indicated numerically 

by the c statistic, showed how well the model discriminated between observations at 

different prediction probabilities. Values of the c statistic close to 0.5 indicate no predictive 

power and between 0.8 and 0.9 are considered excellent.51 The pseudo r-squared value is 

a goodness-of-fit statistic for logistic regression, similar to the r-squared value in ordinary 

least-squares regression, in that larger values between 0 and 1 indicate greater improvements 

to the model over a model with no predictors.53 R-squared values for LR are not as easy to 

interpret as for linear regression; for example, values can be close to 0 for models that fit 

well.54 The “percent deviance explained,” as the difference between the −2 log likelihood 

of the specified model and the intercept-only model, divided by the −2 log likelihood of the 

null model, also is presented as a measure of model performance (Table 4).52

The influence of individual observations was assessed by using output from the influence 

diagnostics routine within the SAS Institute’s Logistic procedure, such as the standardized 

Pearson chi-squared residuals and leverage.55,56 Model statistics were compared with and 

without potentially influential observations. Potential outliers were mapped and inspected; 

however, we did not identify a systematic influence of observations. We also examined 

graphical output from the Logistic procedure with influence option, as described in 

Supporting Information SI 5.

Layered Aquifers.

The presence of layered aquifers, such as unconsolidated sand and gravel of glacial or 

alluvial origin above porous or fractured bedrock might obscure the arsenic signal by aquifer 

type in the regression models. This is particularly true if the concentrations of arsenic in 

the layered aquifers are significantly different.57 For the 82% of 20 450 wells where some 

kind of aquifer information was available in the USGS NWIS database, we developed a 

methodology (Supporting Information SI 2) to look at distributions of arsenic concentrations 

greater than 10 μg/L by state and generalized aquifer. Where domestic wells were located in 

aquifers that differed by vertical position (layered), the aquifer with the largest percentage 

of domestic wells with high arsenic was flagged as the potentially dominant domestic 

well aquifer. Areas with potentially dominant aquifers were examined visually in a GIS 

and evaluated based on other criteria (Supporting Information SI 2) to decide whether to 

take action by removing wells (that could potentially confound the arsenic “signal”) for 

the LR analysis. From this evaluation, we removed 208 well records from five states that 

met the criteria (Supporting Information SI 2) for removal. A comparison of regression 

results between the full data set and the data set with these 208 wells removed showed 

no improvement attributable to this accounting for layered aquifers, probably because the 

adjustment, which pertained specifically to layered aquifers, ultimately affected only about 

1% of the data.

Private Domestic Water Use.

At the level of U.S. census block groups (BG), the mean probability of arsenic greater 

than 10 μg/L (Prob_As10; eq 1) was multiplied by the population using domestic wells 

(Pop_Wells) to estimate the potential population using domestic wells with high arsenic 
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concentrations (PotentialPop_As10). The mean probability of arsenic greater than 10 μg/L 

was generated from the arsenic probability map using the “zonal statistics as table” tool 

in ArcMap (release 10.1, Environmental Systems Research Institute, Redlands, CA) where 

the zones were block groups with statistic type of mean. We estimated 2010 block-group 

populations that used domestic wells for water supply by multiplying 2010 census block-

group populations58 by the percentage of block-group populations that used well water for 

domestic use according to the most recently available information (1990) on that statistic 

from the U.S. Census Bureau.59 Although that percentage (of block-group populations using 

wells for domestic use) has undoubtedly shifted over the 20 years between 1990 and 2010, 

the change is no more than 20% for 80% of U.S. counties (http://waterdata.usgs.gov/nwis/

wu). On a statewide basis, Michigan saw the largest increase (9%) in the percentage (5 

counties increased by more than 50%) and Arkansas the largest decrease (−19%; 7 counties 

decreased by more than 50% for domestic use). Estimates of populations with high arsenic 

concentrations in their well water by block groups are aggregated to county and state levels 

by using county and state code information in ArcMap. Uncertainty, as 95% upper and lower 

confidence limits for high arsenic probabilities, also was mapped and used in combination 

with block-group populations using well water for domestic water supplies to get upper and 

lower bounds on the estimates of potential high-arsenic population.

PotentialPop_As10(BG) = Pop_Wells(BG) × Prob_As10(BG) (1)

RESULTS AND DISCUSSION

Estimates of the Probability of High Arsenic.

Two models initially were developed for arsenic >10 μg/L: a complex (67 variable) model 

with all significant predictor variables at α = 0.05 and a simpler (42 variable) model with 

significant predictor variables at α = 0.001. The LR models had log likelihood ratio p-values 

that indicated a highly significant model (p < 0.0001) for arsenic >10 μg/L. Because 

the simple model performed similarly to the complex model according to nearly every 

metric, the simple model was used for estimating probabilities for this study (Supporting 

Information SI 3).

Hotspots where the probability of As > 10 μg/L in domestic well water can exceed 0.5 

(Figure 2) generally reflect areas in the U.S. with high observed concentrations including 

New England (predominantly Maine and New Hampshire), a band in the upper Midwest, 

the southwest (most notably Nevada, southern Arizona, southern and central California, 

and isolated regions in all western states), and southern Texas.42 Probabilities of As > 10 

μg/L are less than 0.5 throughout most of the southern Midwest and the east except for 

New England and coastal areas. Maps of the lower and upper confidence bounds convey 

additional information to support the probability estimates.42

Predictor Variables.

Many factors predicted high concentrations of arsenic in groundwater in the U.S. At the 

national scale, the most fundamental were climate-related. The top two variables based 

on standardized coefficients were precipitation (negative coefficient) and recharge (positive 
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coefficient) (Supporting Information Table 3), consistent with findings from national-scale 

occurrence studies and other work that show that arsenic is related to climate regime and that 

the majority of high arsenic concentrations are found in the more arid western half of the 

U.S.2,3,10,15 Thus, we interpret the inverse relation with precipitation as a partial indicator of 

climate regime. Coupled with other factors in the models such as stream density, base-flow 

index, slope, and relief, we account for humid to arid climate regions. The positive relation 

with recharge, coupled with other model variables, is interpreted as a potential mechanism 

for reductive desorption and (or) dissolution of arsenic from iron oxides.15 It also may 

represent cycling of wetting and nonwetting conditions that can flush arsenic after periods of 

low or no recharge,60 possibly more important in the eastern U.S.

As in previous studies,15 the variable precipitation minus potential evapotranspiration 

(PMPE) was significant in some of our models but in our best models, precipitation and 

recharge, as determined in model testing, produced better models. Studies that identified 

PMPE15 or precipitation10 as primary variables (inverse relation) also identify secondary 

variables such as pH (in arid regions) and iron (humid regions) or evapotranspiration as 

important. In our model, the positive relation with recharge (like iron) provides a mechanism 

for dissolution of arsenic-containing iron oxides and (or) desorption of arsenic from iron 

oxides. Also, because there are no national-scale models of iron in groundwater for domestic 

wells, we did not use that variable in our model, given that our goal was to map arsenic 

probabilities for the conterminous U.S. (CONUS). We use regions of glaciated terrain, 

bedrock geology, base-flow index, slope, relief, stream density, and other features, to further 

differentiate arid climate factors. Stream density (positive coefficient) is interpreted to 

indicate a correlation with discharge areas, and increasingly anoxic conditions, particularly 

in humid parts of the U.S. Anoxic conditions have been related to reductive oxyhydroxide 

dissolution (e.g., dissolved iron and manganese) and elevated arsenic at regional and 

national scales.15,46

Additionally, other variables representing processes and mechanisms related to 

arsenic mobility have improved our understanding in other studies and in this 

one.10,12,15,17–20,22,23,36,43,45,61 Features such as soil hydrologic group (hga, negative 

coefficient), soil tile drainage (percent_ti, positive coefficient), and water table depth 

(wtdepave, negative coefficient) collectively suggest surrogates for long residence time, poor 

drainage, and areas of groundwater discharge, which are consistent with findings from other 

studies in the U.S.10,15,36 and elsewhere.10,36,62

The model used in this study also identifies geologic units63 that are significant nationally 

as well as locally. There are geologic units where predictions of high arsenic concentrations 

in our national model are corroborated with observations of high arsenic concentrations, 

such as the Triassic marine stratified sequence (Tr) in northwestern New Jersey, and where 

probabilities from our model are similar to results from regional models, such as the 

Quaternary marine stratified sequence (Q) in the southwestern basin and range area17 and 

the Central Valley of California.43

In one regional study, arsenic in domestic wells has been associated broadly with underlying 

Paleozoic sedimentary bedrock units in Illinois, Indiana, Ohio, Michigan, and Wisconsin 
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but it was not directly associated with bedrock subcrops.32 One exception was in southwest 

Ohio where Silurian carbonates may be related to high groundwater arsenic.32 Although 

similar geologic units in Ohio were not significant in this model, areas of northern 

and central Ohio with low probabilities of having arsenic concentrations >10 μg/L were 

associated with the Upper Silurian marine stratified deposits (Supporting Information S3) 

unit. In other cases, local aquifers, such as the Mahomet aquifer in Illinois,34,35,64 were 

not represented in our model, but the map of probabilities from our model reflects a 

general likelihood of having arsenic concentrations >10 μg/L in these areas. Overall, the 

probabilities of arsenic concentrations >10 μg/L in Illinois are similar in pattern to those 

published elsewhere.65

For various reasons (data gaps or model scale), some geologic units lacked significance 

and were not included in the model but may be locally important at predicting high arsenic 

concentrations. For example, in North Carolina, the variable for Cambrian eugeosynclinal 

(deep marine environment) deposits,63 associated with arsenic-containing slates, was not 

significant, but variables representing nearby rocks described as Paleozoic mafic intrusive 

rocks and Cambrian volcanic rocks were significant. Local model results include faults, 

specific rock types, and well depth as factors related to high arsenic in groundwater 

underlain with all three rock types in North Carolina.20,23

The use of bedrock geologic information to help understand the groundwater arsenic hazard 

in unsampled areas has precedent. In New England, generalization of rock groupings had 

previously resulted in predictions of high arsenic in some areas that were not known to 

have high arsenic or where observations suggested lower concentrations of arsenic.18 A 

recent study of arsenic in private wells in parts of southeast and north central Connecticut 

indicates that there are high concentrations of arsenic in previously unsampled areas.66 Our 

model predicts high arsenic in parts of eastern New Mexico and northern Wisconsin where 

domestic well maps indicate no or sparse data;67 these may be areas to watch as new data 

become available.

Geochemical information from the National Soil Geochemical database,68 particularly 

concentrations of antimony, arsenic, and beryllium, in the C-horizon, also were among the 

top predictors. These data indicate national-scale geochemical and mineralogical patterns 

that relate to underlying soil parent materials and potentially aquifer materials.69 Antimony 

and arsenic commonly occur in sulfide minerals. In the model training data and in the 

predictor variable data for the conterminous U.S., antimony and arsenic in C-horizon soils 

correlated strongly (Spearman’ rho = 0.69 and 0.74, respectively). Antimony and arsenic 

also can substitute for sulfur in metal sulfide minerals, forming arsenides or antimonides; or 

can partially substitute for other metals in sulfides, as in minerals in the sulfosalt group.70 

It is possible that co-occurrence of antimony and arsenic sulfides in some areas and the 

potential for arsenic to dissolve in groundwater leads to the predictive power of the antimony 

variable. Another possibility is that iron hydroxides may contain both antimony and arsenic 

and that the arsenic can desorb from iron or manganese oxides coatings on aquifer materials 

(under reductive or alkaline pH conditions, particularly for pentavalent arsenic)71 or dissolve 

(under reductive geochemical conditions).24 Ion competition in some areas, such as in the 

southwest or where road salt is used for deicing, may also support desorption.72 Soil arsenic 
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concentrations align generally but not always with predicted probability of high groundwater 

arsenic, suggesting that although this data layer is a source indicator, there often are 

other variables influencing probability estimates. Bismuth and molybdenum had negative 

coefficients, indicating an inverse relation to arsenic probability. Although relatively coarse 

in scale, these features are among the most predictive (having high standardized coefficients) 

of the variables. These results are consistent with a recent model of the Central Valley of 

California.43

In addition to climate, geology, and geochemical variables, other important predictor 

variables, as identified by standardizing (Supporting Information Table 3) regression 

coefficients, include variables for average water table depth, slope, and relief. Collectively, 

these variables capture effects of potential flow path, recharge and discharge zones, and 

groundwater residence time on arsenic concentrations. More specifically, important arsenic 

mobility processes such as pH-driven desorption and redox can be captured in a variety of 

surrogate variables that are predictive of high arsenic concentrations.10,17,43,45,46,73,74 For 

example, precipitation, recharge, stream density, and base flow index (long-term percentage 

of groundwater discharge in streamflow) suggest broad-scale (national) hydrologic 

conditions that relate to groundwater flux and residence time, which influences pH, which in 

turn influences concentrations of arsenic.10,15,17,43

Model Performance.

Model performance information (Table 2) shows that overall accuracy (total correct 

predictions) at the 0.5-probability cut point was 90% for both training and testing data, 

indicating that the model validated well. Other cut points could be used and may be 

warranted. The cut point 0.2 also is shown in Table 2, indicating that lower cut points 

increase sensitivity but decrease specificity and overall percent correct. As expected, given 

the larger number of nonevents compared to events, specificity is greater than sensitivity 

for both cut points. The unadjusted Hosmer−Lemeshow (H−L) statistic had a low p-value 

(0.0182) indicating poor model fit, but this statistic is affected by large sample sizes. After 

adjusting (increasing) the number of groups for the H−L test because of the large number of 

observations used (20 450), the H−L test p-value increased to 0.1086, suggesting reasonable 

model fit.75 The H−L p-value for the testing data set was 0.1601. The percent deviance 

explained was 20% for both training and testing data. The fact that model fit criteria were 

the same or similar for the testing and training data sets demonstrates that the model 

generalizes well to new data, which increases confidence in the mapped probabilities.

The range in Pearson residuals for the As > 10 μg/L model is −3.3 to 30.3, the 5th and 95th 

percentiles are −0.6 and 1.9, and the median is −0.2 (Supporting Information SI 4). Darker 

points (red and blue) show that values outside of the “acceptable” bounds of ±354 are most 

frequent in the northeast, with small clusters in Minnesota, Oklahoma, Idaho, Washington, 

and California. Very few residuals were less than −3.

Graphical results from SAS influence diagnostics reveal that two observations are consistent 

outliers among the influence and predicted probability diagnostic plots (Supporting 

Information SI 5). When the model is run without these observations, 18 points appear 

to be potentially influential. Because there is negligible difference between model results 
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(Supporting Information SI 5) using (1) the full model, (2) the full model less removal of the 

2 most influential observations, and (3) the full model less removal of the 20 most influential 

observations, the full model is used without removal of any values. Additional screening 

revealed that none of the numerical variable values associated with these two observations 

were the maximum or minimum of the full data set, which might have indicated erroneous 

variable assignment.

Further, the differences in logistic regression model results when some wells were removed 

from the data set based on the analysis of stacked aquifers were small. For predictions of 

arsenic >10 μg/L, differences in the total number of correct predictions and specificity were 

negligible; however, sensitivity increased by 1% and the overall error rate decreased by 

3.6%, suggesting that this is an area of potential important improvement for future efforts.

Estimates of the Domestic Well Population with High Arsenic.

Approximately 44.1 M people in the conterminous U.S. use water from domestic wells 

(Figure 3a).5 The subset of this population with estimated arsenic concentration >10 μg/L 

(Figure 3b) is 2.1 M (4.8% of domestic well users); with 95-percent certainty on the arsenic 

probabilities, the estimate is between 1.5 and 2.9 M people (3.4−6.6% of domestic well 

users) (Table 3).42 Broadly speaking, our model shows that the parts of the U.S. with the 

greatest domestic well use are also likely to be the parts of the U.S. with the greatest 

numbers of domestic well use population with high arsenic in their well water. Exceptions 

occur locally where there are high probabilities of arsenic and small numbers of people 

using domestic wells, or low probabilities of arsenic and large numbers of people using 

domestic wells.

States with the largest estimated population using domestic well water with arsenic >10 

μg/L are Michigan, Ohio, and Indiana with 0.193, 0.189, and 0.151 M people, respectively 

(Table 3). States with the largest estimated percentages of domestic well population with 

arsenic >10 μg/L are Maine (18%), and New Hampshire and Nevada both at 14% (Table 

3), which is more than 3% of the total statewide population (Figure 4) in each of the three 

states. The county map of high-arsenic population distribution within these states (Figure 

3b) shows that hotspots cover much of Maine except for eastern and central counties; 

southeastern New Hampshire; and areas of southwestern, eastern, and northern Idaho. In 

Maine and New Hampshire, county estimates of populations with high-arsenic domestic 

wells generally match those from other studies18,76 (Figure 3a) but may overestimate the 

population in parts of northern Maine.76 Some states have both relatively large estimates 

of statewide populations (>100 000) and comparatively higher percentages (>1%) of total 

state populations with arsenic >10 μg/L (Figure 4). County-level information indicates that 

6 of the 10 counties with the largest number of people with high-arsenic wells are in New 

England; other top-10 counties are in Ohio, North Carolina, California, and Idaho.42 States 

with the estimated lowest numbers of people with high-arsenic wells are the Dakotas, Rhode 

Island, Utah, and southeastern and south-central states, except for Texas and those along the 

Atlantic coast (Figure 4; Table 3).

Comparing statewide estimates of populations with arsenic >10 μg/L from this model with 

those calculated from various published state-level information provides the opportunity to 
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evaluate the potential arsenic hazard at different scales and to identify areas that may have 

been overlooked or otherwise not identified as having a high probability of high arsenic in 

domestic wells. In most cases, this meant multiplying statewide estimates of the percent of 

domestic wells with high arsenic by the domestic well population (Table 4). Some states 

have estimates of the proportion of domestic wells with high arsenic concentrations but 

generally do not provide confidence intervals on those estimates. Out of the 10 states that we 

found with information, 5 (Maine, Michigan, New Hampshire, New Mexico, and Vermont) 

were within the bounds estimated from this study, 3 (Illinois, Minnesota, and Texas) were 

above the upper bound, and 2 (Connecticut and North Carolina) were below but close to 

the lower bound. The estimates from this study of the domestic well population with high 

arsenic by county or state are the first nationally consistent, model-predicted look at where 

the potentially most affected populations are located throughout the U.S. (Table 4).

Uses and Limitations.

We emphasize that although this study resulted in estimates of the domestic well use 

population that may have high arsenic concentrations in their drinking water, those numbers 

should be viewed with an understanding of the limitations of the study. We addressed model 

uncertainties through use of confidence intervals on arsenic probability estimates. Estimates 

of county-level domestic well use are the basis for estimating the population affected by 

high arsenic (arsenic probability), which also carry with them uncertainty that is not easily 

quantified. Thus, the reported error in the estimates does not reflect all potential error.

Well depth was accounted for broadly and indirectly by selecting only domestic wells to 

train the model, thus constraining the model to well depths used for domestic supply. In 

some cases, wells may penetrate and draw water from different aquifers with different 

arsenic distributions; where available, we used aquifer type information (in lieu of depth) to 

assess the effects on the modeled probabilities and found minimal effect. The outcomes 

of this national-scale study include advancing our understanding of predictive factors 

by confirming previously reported factors,3,8,10,15 identifying new factors (geology and 

geochemistry variables), and identifying gaps in predictive factors (e.g., well or aquifer 

depth and flow path information).17,43 Also, a possible future refinement could include 

regional interaction terms or spatially varying model coefficients.

The major results of this study are estimates of the total population in the conterminous U.S. 

potentially exposed to high arsenic, based on a model of arsenic probability for domestic 

wells. Many areas of the U.S. were underrepresented with arsenic data in our study, such 

as parts of Iowa and New Mexico, but through extrapolation, the model also identified a 

potential arsenic hazard in these unsampled areas and potential hotspots that may warrant 

further investigation. Further, combining hazard information with data on the domestic well 

population shows a potential for exposure. We reiterate that these findings should be used 

cautiously and in conjunction with more detailed local and regional information, where 

they exist. These results can be used directly in future public health activities, including 

targeting specific areas for additional testing and national-scale ecological studies of 

potential human-health outcomes, as has been done in regional studies.21,65,83,84 Anticipated 
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future refinement of models and the methods used here will serve to provide improved 

estimates of the potential affected population.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Locations of domestic wells and As concentration ranges for data used to develop the 

logistic regression model.
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Figure 2. 
Probabilities of (a) arsenic >10 μg/L (b) 95-percent confidence lower bound for arsenic >10 

μg/L; and (c) 95-percent confidence upper bound for arsenic >10 μg/L.
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Figure 3. 
County-level (a) domestic well population and (b) domestic well population with As > 10 

μg/L based on probability estimates.
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Figure 4. 
State populations and percent of state populations with arsenic >10 μg/L based on the 

probability modeling.
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Table 2.

Summary of model fit criteria and classification tables for probability of As > 10 μg/L

metric training data testing data

N 17 354 3095

% deviance explained 20.3 19.2

ROC 0.81 0.82

pseudo r2 0.26 0.29

coefficient of discrimination 0.18 0.21

H–L probability 0.0035 0.1601

adjusted H–L p-value 0.1086

Cut Point = 0.2

% total correct 84.5 85.7

% sensitivity 52.3 50.5

% specificity 88.4 89.8

% false positive 64.6 63.5

% false negative 6.2 6.0

Cut Point = 0.5

% total correct 89.9 90.1

% sensitivity 12.7 13.9

% specificity 99.3 99

% false positive 29.2 37.5

% false negative 9.7 9.2
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