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BACKGROUND: Insulin resistance (IR) affects the development of type 2 diabetes mellitus (T2DM), which is also influenced by accumulated fine parti-
cle air pollution [particulate matter (PM) with aerodynamic diameter of <2:5 lm (PM2:5)] exposure. Previous experimental and epidemiological stud-
ies have proposed several potential mechanisms by which PM2:5 contributes to IR/T2DM, including inflammation imbalance, oxidative stress, and
endothelial dysfunction. Recent evidence suggests that the imbalance of the gut microbiota affects the metabolic process and may precede IR.
However, the underlying mechanisms of PM2:5, gut microbiota, and metabolic diseases are unclear.

OBJECTIVES: We investigated the associations between personal exposure to PM2:5 and fasting blood glucose and insulin levels, the IR index, and
other related biomarkers. We also explored the potential underlying mechanisms (systemic inflammation and sphingolipid metabolism) between
PM2:5 and insulin resistance and the mediating effects between PM2:5 and sphingolipid metabolism.
METHODS: We recruited 76 healthy seniors to participate in a repeated-measures panel study and conducted clinical examinations every month from
September 2018 to January 2019. Linear mixed-effects (LME) models were used to analyze the associations between PM2:5 and health data (e.g.,
functional factors, the IR index, inflammation and other IR-related biomarkers, metabolites, and gut microbiota). We also performed mediation analy-
ses to evaluate the effects of mediators (gut microbiota) on the associations between exposures (PM2:5) and featured metabolism outcomes.

RESULTS: Our prospective panel study illustrated that exposure to PM2:5 was associated with an increased risk of higher IR index and functional biomarkers,
and our study providedmechanistic evidence suggesting that PM2:5 exposuremay contribute to systemic inflammation and altered sphingolipidmetabolism.

DISCUSSION: Our findings demonstrated that PM2:5 was associated with the genera of the gut microbiota, which partially mediated the association
between PM2:5 and sphingolipid metabolism. These findings may extend our current understanding of the pathways of PM2:5 and IR. https://doi.org/
10.1289/EHP9688

Introduction
Insulin resistance (IR) refers to the ability of insulin to stimulate
glucose uptake and affects the development of type 2 diabetes
mellitus (T2DM) (Dang et al. 2018; Liu 2019; Yang et al. 2018),
which contributes to the global burden of diseases and premature
death (Health Effects Institute 2019). In China, diabetes mellitus
was the 19th leading cause of allage disability adjusted life years
(DALYs) in 1990, increasing dramatically to eighth in 2017
(Zhou et al. 2019). Additionally, fine particle air pollution [partic-
ulate matter (PM) with aerodynamic diameter of <2:5 lm
(PM2:5)] has been ranked fifth among global risk factors for mor-
tality and is the leading environmental health threat worldwide,
particularly in developing countries (Health Effects Institute

2019). Most of the disease burden related to PM2:5 comes from
chronic diseases, including 20% of deaths from T2DM (Health
Effects Institute 2019). Accumulating evidence suggests that ex-
posure to ambient PM2:5 may increase the risk of IR/T2DM
(Alderete et al. 2017; Eze et al. 2015; Liu 2019; Rao et al. 2015).
Most existing studies have suggested that an inflammatory mech-
anism may be potentially related to PM2:5 and IR (Kelishadi et al.
2009; Wolf et al. 2016). Some animal studies (Lehrskov and
Christensen 2019; Rao et al. 2015; Senn et al. 2002) have
reported that PM2:5 particles delivered via the lung’s air–blood
barrier into the human circulatory system elevated the response to
inflammatory biomarkers, such as interleukin 6, C-reactive protein,
and TNF-a, and thesefindingswere also observed in epidemiologi-
cal studies (Kelishadi et al. 2009; Lehrskov and Christensen 2019;
Pilz et al. 2018; Rao et al. 2015). Additionally, experimental and
epidemiological studies have proposed other potential mechanisms
of PM2:5 leading to IR/T2DM, such as oxidative stress and endo-
thelial dysfunction (reviewed by Rajagopalan and Brook 2012).

Over the past decade, omics-based approaches, such as metab-
olomics and microbiomics, have emerged as a powerful approach
to identify novel mechanisms and highly sensitive and specific bio-
markers (Liang et al. 2018; Zhang et al. 2017a). Mounting evi-
dence suggests a link between metabolites/gut microbiota and IR
that may reveal the mechanism underlying IR/T2DM (Harsch and
Konturek 2018; Pedersen et al. 2016; Qin et al. 2012; Salim et al.
2014b). An epidemiological study demonstrated that an imbalance
in the gut microbiota affects the serum metabolome and insulin
sensitivity in a nondiabetic population, and the results were vali-
dated in T2DM patients (Pedersen et al. 2016). These findings sug-
gest a potential role of gut microbiota in metabolic disorders,
further contributing to the pathogenesis of IR (Pedersen et al.
2016). Recently, metabolomics analyses have been performed in
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experimental (Du et al. 2020; Zhang et al. 2017b) and epidemio-
logical (GBD 2017 Risk Factor Collaborators 2018) studies to
explore the pathophysiological changes under PM2:5 exposure.
Those studies evaluated the associations between PM2:5 and lipid
metabolites (GBD 2017 Risk Factor Collaborators 2018) and iden-
tified biomarkers associated with PM2:5 exposure using metabolo-
mics analysis (Du et al. 2020; Zhang et al. 2017b). Other studies
also provide evidence of a link between PM2:5 and the genera of
the gut microbiota (Alderete et al. 2018; Liu 2019; Qin et al. 2012).
The potential mechanismmight be that 5% of particles found in the
circulation come from gastrointestinal absorption (Bailey et al.
2020; Dujardin et al. 2020; Feng et al. 2020; Schleh et al. 2012;
U.S. EPA 2019) andmay be linked to changes in the gutmicrobiota
(Alderete et al. 2018; Liu et al. 2020b; Qin et al. 2012). Evidence
from previous studies measured the percentage of inhaled particles
in the lungs and characterized the translocation of particles from
the respiratory tract (Semmler et al. 2004; Smith et al. 2011, 2014;
U.S. EPA 2019). These particles could reach the gastrointestinal
tract via many pathways, not only via the air–blood barrier (Smith
et al. 2011; U.S. EPA 2019). A study based on a healthy adult pop-
ulation found that 99.95% of the particle deposition in the posterior
nose was translocated to the gastrointestinal tract, no matter what
the size of the inhaled particles (Smith et al. 2011, 2014). A small
percentage of particles may cross cell membranes from their depo-
sition site and distribute throughout the gastrointestinal tract (U.S.
EPA 2019). Semmler et al. demonstrated that particles from the pe-
ripheral lungwere cleared to the gastrointestinal tract via themuco-
ciliary escalator (Semmler et al. 2004). Based on this evidence of
gastrointestinal absorption, PM2:5 exposure might be linked to the
gut microbiota and metabolic diseases. Therefore, we hypothe-
sized that the genera of the gut microbiota altered by PM2:5 might
mediate serummetabolome IR/T2DM.

Here, we conducted a prospective repeated-measures panel
study in Shandong Province, China, to further understand the
potential mechanism between PM2:5 and IR. This study aimed a)
to estimate the association between personal exposure to PM2:5
and fasting blood glucose and insulin, IR index, and other related
biomarkers and b) to explore potential underlying mechanisms
among PM2:5 exposure, the gastrointestinal tract, and insulin re-
sistance using the microbiome and metabolome.

Methods

Study Participants and Design
The Jinan panel study was launched in the Dianliu community,
Shandong Province, from September 2018 to January 2019. Seventy-
six healthy seniors ∼ 60–69 y of age (37 male and 39 female) were
recruited and scheduled to participate in clinical examinations at
baseline and subsequently at four repeated visits everymonth during
the study period. The inclusion criteria for the participants were as
follows: a) healthy elderly individuals (∼ 60–69 y) living in the
Dianliu community, b) living at the current residential address for
more than 2 y without travel plans during the survey period, and c)
voluntary participation with good compliance and good living hab-
its. The exclusion criteria were as follows: a) tobacco use or alcohol
abuse; b) auditory disorders or language barriers; c) diagnosed dis-
eases, such as diabetes mellitus, respiratory diseases, cardiovascular
and cerebrovascular diseases, cancers or tumors, hyperglycemia,
hyperlipidemia, or hypertension; d) fever or infection in the past
month; e) use of antibiotics, hormones, anti-inflammatory medica-
tions, or other medications in the past month; f) vegetarians or those
with abnormal dietary patterns; g) abnormal pulmonary function;
and h) a bodymass index ðBMIÞ>28.

A unique identification number was assigned to each partici-
pant at enrollment. The baseline survey was conducted from 13

September 2018 to 21 September 2018, followed by four follow-
up visits 30 d apart until January 2019 (visit 1: 13 October 2018
to 22 October 2018; visit 2: 12 November 2018 to 20 November
2018; visit 3: 12 December 2018 to 20 December 2018; visit 4:
11 January 2019 to 19 January 2019). A total of 350 person-visits
were collected in all analyses. We also provided consecutive 5-d
uniform diets for the participants before health examinations to
minimize a potential confounding effect of the daily diet. Each
participant was asked to complete a detailed questionnaire includ-
ing personal information (e.g., sex, age, education status, and
occupation) and family information (e.g., annual income of the
whole family and cooking and drinking habits) in each round of
visits. Additionally, functional indices (e.g., height and weight),
blood, and feces were collected and examined at Ankang Clinic
at baseline and at four repeated visits. This panel study was
approved by the Ethical Review Committee of the National
Institute of Environmental Health, Chinese Center for Disease
Control and Prevention (NIEH, China CDC; No. 201,816), and
written informed consent was obtained from every participant.

Clinical and Biomarker Measurements
Functional factors and the insulin resistance index. Routine
blood measurements were immediately conducted at Ankang
Clinical. We measured functional factors, including the fasting
blood glucose, total cholesterol (TC), and triglyceride (TG) lev-
els, using a Roche Cobas c702 (Roche Diagnostics) at Dian
Diagnostics. We also measured the serum insulin levels using a
Millipex Human metabolism-related hormone panel (Merck;
HMHEMAG-34K-07). Next, we calculated the IR index, includ-
ing homeostasis model assessment of insulin resistance (HOMA-
IR) and the insulin action index (IAI), using the following
equations: a) [fasting insulin ðin microunits per milliliterÞ×
fasting glucose (in millimoles per liter)]/22.5; and b) 1/[fasting
insulin ðin microunits per milliliterÞ× fasting glucose (in milli-
moles per liter)].

Inflammation and other IR-related biomarkers. Blood sam-
ples (one without anticoagulation and two with EDTA in a total of
15 mL per subject) were collected during the clinical examination
of all the participants. A blank control was set every 10 samples dur-
ing the sampling step. All the samples were stored at −80�C and
then were transported to the National Biobank at the NIEH, China
CDC, via a cold-chain shipment. We used a Millipex Human
Inflammation Panel (HSTCMAG28SPMX21; Merck) (Scally et al.
2018, 2019), a metabolism-related hormone panel (HMHEMAG-
34K-07;Merck) and a cardiovascular disease panel (HCVD3MAG-
67K; Merck) to measure inflammation [e.g., interleukin 4 (IL-4),
interleukin 6 (IL-6), interleukin 10 (IL-10), interleukin 13 (IL-13),
interleukin 23 (IL-23), macrophage inflammatory protein-3 alpha
(MIP-3a=CCL20), and tumor necrosis factor-alpha (TNF-a)] and
other IR-related biomarkers, including monocyte chemotactic
protein-1 (MCP-1), peptide YY (PYY), C-reactive protein (CRP),
fetuinA, and serum amyloid protein (SAP).

Untargeted metabolomics. All the tests were conducted
according to the manufacturer’s instructions, and samples were
stored at −80�C. Untargeted metabolomics were detected at Dian
Diagnostics. These analytical methods for serum untargeted metab-
olomics were commonly used in previous studies (de Groot et al.
2020; Koronowski et al. 2019; Labbé et al. 2019). Each sample
received was accessioned into the Metabolon Laboratory
Information Management System (LIMS) and was assigned a
unique identifier by the LIMS that was associated with the original
source identifier only. This identifier was used to track all sample
handling, tasks, and the results, and the samples (and all derived ali-
quots) were tracked using the LIMS. Ultrahigh-performance liquid
chromatography–tandem mass spectrometry (UPLC-MS/MS) was
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used to archive and extract raw data files, including bioinformatics,
LIMS, data extraction and compound identification, curation,
metabolite quantification, and data normalization.

An automated MicroLab STAR system from the Hamilton
Company was used to prepare the samples. Quality control sam-
ples were added before the first step to assess the data repeatabil-
ity. Before analysis, the samples were stored overnight under
nitrogen using ultrahigh-performance liquid chromatography–
mass spectrometry (UPLC-MS). Ion peaks from UPLC-MS were
annotated through the human metabolite database and the
Discovery HD4 Metabolomics Platform.

Gut microbiota. Fecal samples were collected using a com-
mercial collection kit (MGIEasy) with a total mass of ∼ 0:5–2 g.
This collection kit contained a preservative (MGI Tech) that sta-
bilizes DNA at ambient temperatures, providing a professional
tool for precise health research and intestinal microorganism
detection. Participants sampled their feces following detailed
instructions. After collection, the fecal samples were immediately
stored at −80�C until analysis.

DNA extraction and 16S rRNA gene testing of distinct
regions (16S V4/16S V3-V4/16S V4-V5) were conducted at
Novogene (Alderete et al. 2018; Fouladi et al. 2020; Rothschild
et al. 2018), and PCR was analyzed using Phusion High-Fidelity
PCR Master Mix (New England Biolabs). The TruSeq DNA-
PCR-Free Sample Preparation Kit (Illumina) was used to gener-
ate sequencing libraries and add index codes. The library quality
was assessed using a Qubit 2.0 Fluorometer (Thermo Scientific)
and an Agilent Bioanalyzer 2100 system and was sequenced
using the Illumina HiSeq 2500 platform. The data were rarefied
to the average number of reads detected in a single sample.

Operational taxonomic units (OTUs) were clustered with a 97%
similarity cutoff using Uparse (version 7.0.1090; http://drive5.com/
uparse/). The taxonomy of each 16S rRNA gene sequence was ana-
lyzed by RDP Classifier (version 2.11; http://sourceforge.net/
projects/rdp-classifier/) against the Silva (SSU115) 16S rRNAdata-
base using a confidence threshold of 70%. Sequence analysis was
denoised using Usearch software (version 10; http://drive5.com/
usearch). A denoised sequence is called a “ZOTU” (zero-radius
OTU). Each ZOTU was screened for further annotation. For each
representative sequence, the Greengenes Database (release 13.5;
http://greengenes.secondgenome.com/) was used based on the RDP
classifier algorithm to annotate taxonomic information.

OTU abundance information was normalized using a standard
sequence number corresponding to the sample with the fewest
sequences. Subsequent analyses of alpha diversity and beta diver-
sity were all performed based on these output normalized data.
The Shannon diversity index and observed OTU levels were used
as the alpha diversity metrics. All these indices in our samples
were calculated using QIIME (version 1.7.0; http://qiime.org/
scripts/assign_taxonomy.html) and displayed using R software
(version 2.15.3; R Project). Beta diversity analysis was used to
evaluate differences in species complexity of the samples; beta
diversity was calculated using unweighted UniFrac and assessed
using principal component analysis (PCA) by QIIME (version
1.7.0) with R software (version 3.3.1).

Personal PM2:5 and Meteorological Parameter
Measurements
Each participant was required to wear a portable MicroPEM sam-
pler (version 3.2; RTI International) to mimic actual real-time per-
sonal PM2:5 exposure. A plastic sampling tube of approximately
40 cmwas attached to the sampler and kept near the breathing zone
of the participant to mimic actual personal exposures. Each partici-
pant was required to wear the sampler for 3 d before the health
examinations but was allowed to place the sampler nearby when at

home. Researchers suggested that all participants maintain their
daily activity during the study period. The real-time PM2:5 concen-
trations were recorded every 10 s, and 1-min average concentra-
tions of ambient PM2:5 were measured using the MicroPEM. The
researchers checked the wearing of MicroPEM regularly to ensure
the accuracy of the collected data. The hourly mean concentrations
of personal PM2:5 were calculated based on the percentage of effec-
tive data≥75% in 1 h. Otherwise, it wasmarked as amissing value.
The real-time data fromMicroPEM analyzed in this study were all
gravimetric corrected data based on the filter gravimetric mass and
the sampled air volume. Multiple separate lag period measures
according to PM2:5 exposure were computed as the 1-h mean con-
centrations before the day of the health examinations, including 0–
6 h, 0–12 h, 0–24 h, 0–36 h, 0–48 h, and 0–72 h. We also recorded
personal temperature and relative humidity data using the
MicroPEM. The frequency of measurements and the data cleaning
strategy were the same as those for PM2:5. To adjust for gaseous
pollutants, we collected the real-time concentrations of PM10, sul-
fur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide
(CO), and ozone (O3) from a nearby fixed-site monitoring station
during the study period.

Statistical Analyses
Data processing for untargeted metabolomics and gut micro-
biota. The peaks of metabolic compounds were quantified using
the area under the curve, and data normalization was performed
to correct any variation. The OTU abundance information of 16S
rRNA genes was normalized using a standard sequence number
according to the fewest sequence samples, and species with rela-
tive abundance <1ĥ were removed. Alpha diversity and beta di-
versity were also analyzed in the following steps. The Kruskal-
Wallis H test was used to test the significant differences in
featured genera among all the study participants.

Descriptive Analysis. Individual exposure and health data
were linked using a unique identification number. Descriptive
statistics were conducted for all biomarkers, PM2:5, and meteoro-
logical parameters. Additionally, the means and standard devia-
tions were calculated for continuous variables and proportions
for categorical variables.

Statistical models. Linear mixed-effects (LME) models, con-
sidering the correlation within subjects in the panel study design,
were used to analyze the associations between PM2:5 and health
data (e.g., functional factors, the IR index, inflammation and other
IR-related biomarkers, metabolites, and gut microbiota). The asso-
ciations were also analyzed in the gender-stratified stage. Health
indicators with abnormal distributions were log-transformed
before statistical analyses. We included several covariates in the
models: age (continuous), sex (female or male), BMI (continuous),
annual income (continuous), education status (below primary
school, primary school, junior school, senior high school, univer-
sity), cooking and drinking habits (yes or no), blood cotinine level
as a marker of passive smoking (continuous), day of the week of
the clinical visit, personal temperature and relative humidity data
with both 3 degrees of freedom to control for potential lagged and
nonlinear effects of weather conditions. The inclusion criteria of
the covariates for adjustment in the LME models were the same as
those reported previously (Li et al. 2019; Wu et al. 2013; Xu et al.
2019) using the same panel-based study design. We examined
exposures to PM2:5 at multiple separate lag periods, including
0–6 h, 0–12 h, 0–24 h, 0–36 h, 0–48 h, and 0–72 h. All the estimates
were reported as percent changes with 95% CIs associated with a
10-lg=m3 increase in the PM2:5 concentrations. The Benjamini-
Hochberg false discovery rate (FDRB-H) method was used to
account for multiple testing to adjust the probability of Type I error
(p) value, with FDRB-H<0:05 considered statistically significant.

Environmental Health Perspectives 027007-3 130(2) February 2022

http://drive5.com/uparse/
http://drive5.com/uparse/
http://sourceforge.net/projects/rdp-classifier/
http://sourceforge.net/projects/rdp-classifier/
http://drive5.com/usearch
http://drive5.com/usearch
http://greengenes.secondgenome.com/
http://qiime.org/scripts/assign_taxonomy.html
http://qiime.org/scripts/assign_taxonomy.html


All analyses were performed using R (version 3.6.1) with the
“lme4” package. Sensitivity analyses were performed on model
specification by removing income or education from themainmodel
or using the accumulated days or month of the health examinations
to replace the day of theweekof the clinical visit.We also conducted
sensitivity analysis to examine the robustness of our results to the
adjustment of concomitant exposure to gaseous pollutants.

We also performed mediation analyses to evaluate the effects
of mediators (gut microbiota) on the associations between expo-
sure (PM2:5) and featured metabolism outcomes. This approach di-
vided the total effect of PM2:5 on the measured biomarkers into a
direct effect of exposure and a mediation effect accounting for
mediators (Albert 2008; Shrout and Bolger 2002). Two LMEmod-
els were fitted with random intercepts in the single-mediator
model, with one modeling the exposure–mediator association and
the other modeling the mediator–outcome association. In this
study, the direct effect of PM2:5 on sphingolipid metabolism was
independent of the effects of the gut microbiota. The indirect or
mediation effects quantify whether and how much of the effect of
PM2:5 on sphingolipid metabolism is due to or is mediated by the
gut microbiota to illustrate the mechanism by which PM2:5 affects
sphingolipid metabolism. The proportion mediated is the propor-
tion of the total effect due to a mediator, estimated as the mediation
effect of the gut microbiota divided by the total effect of PM2:5 on
sphingolipid metabolism. Because the mediation effect can be pos-
itive or negative, most studies (Albert 2008; Collins et al. 1998;
Liao et al. 2019;Mascha et al. 2013; Shrout andBolger 2002) agree
with these three requirements: a) the total effect must be signifi-
cant; b) the mediation effect must be significant; and c) the propor-
tion mediated is in the positive direction. This analysis was
performed usingR (version 3.6.1) with the “mediation” package.

Pathway analysis for metabolites. To identify the potential
pathway related to IR, we conducted pathway analysis for metab-
olites. A total of 253 significantly differentiated metabolites were
identified in serum based on the LME models. These significant
metabolites were then uploaded to pathway identification and
enrichment analysis modules (MetaboAnalyst 4.0) for statistical,
functional, and integrative analysis to further identify the IR-
related pathways.

Results

Baseline Description
Table 1 summarizes the demographic statistics of the 76 partici-
pants in the Jinan panel study. Of the 76 participants, 39 (51%)
were women. The average age and BMI of the subjects were
64.45 ( ± 4:5) y old and 25.04 ð±2:40Þ kg=m2, respectively. The
descriptive statistics of the repeated measurement biomarkers and
potential behavioral risk factors are also provided in Table 1.
Table S1 shows more details concerning the study population and
examined biomarkers at four repeated visits. Table 2 illustrates
the average PM2:5 concentrations measured during the 3 d before
health examinations in separate lag periods. On average, the per-
sonal PM2:5 concentration over 3 d was 57:11lg=m3. The perso-
nal temperature and humidity are also summarized in Table 2.

SerumMetabolite Identification
Untargeted metabolomics and pathway analysis. Untargeted
metabolomics profiling (Excel Table S1) revealed that 253
metabolites were significantly (FDRB-H < 0:05) associated with
PM2:5 exposure at least one lag after correcting for multiple test-
ing. Specifically, 52 metabolic pathways were analyzed in total.
Of those, 11 pathways were significantly identified (p<0:05).
These included metabolic pathways predominantly associated

with amino acid metabolism, lipid metabolism, and energy me-
tabolism (Table S2).

Sphingolipid metabolism and IR-index related with PM2:5.
In our study, six featured metabolites of the sphingolipid metabo-
lism pathway (L-serine, O-phosphoethanolamine, sphingasine,
sphingomyelin, sphingosine, and ceramide) were significantly
associated with PM2:5 exposure (Figure S1). Each 10-lg=m3

increase in the PM2:5 exposure level was associated with a 0.45%
[95% confidence interval (CI): −0:68%, −0:22%] decrease in
L-serine, a 2.14% (95% CI: −3:36%, −0:90%) decrease in sphin-
gasine, a 0.25% (95% CI: −0:43%, −0:07%) decrease in sphingo-
myelin, a 2.04% (95% CI: −3:44%, −0:61%) decrease in
sphingosine, and a 0.82% (95% CI: −1:31%, −0:33%) decrease
in ceramide at a lag of 0–72 h. Additionally, 2.15% (95% CI:

Table 1. Descriptive characteristics of 76 study participants at baseline and
repeated measurement variables in the Jinan panel from 2018 to 2019.

Demographic variables n (%) Mean±SD Range

Characteristicsa

Gender
Male 37 (48.68) — —
Female 39 (51.32) — —

Age (y) — 64:45± 4:5 60–70
Education — 76 100
Below primary school 5 5 6.58
Primary school 3 3 3.95
Junior school 21 21 27.63
Senior high school 33 33 43.42
University 14 14 18.42

Height (cm) — 162:53± 7:83 143–178
Weight (kg) — 66:29± 9:02 44.1–85
BMI (kg=m2) — 25:04± 2:40 17.86–28.19
Income (10,000 RMB) — 10:20± 6:70 0–36
Cotinine (ng=mL) — 1:03± 5:72 0.01–84.38
Drink alcohol — 76 100
Yes 2 2 2.63
No 74 74 97.37

Cook — 76 100
Yes 65 65 85.53
No 11 11 14.47

Repeated mseasurement variables n Mean±SD Range

Functional indicators
Glucose (mmol=L) 293 6:50± 1:48 4.49–13.05
TC (mmol=L) 275 5:76± 1:32 2.82–11.39
TG (mmol=L) 275 1:55± 0:53 0.63–4.28

Insulin resistance indexes
Insulin (lIU=mL) 349 5:14± 4:25 1.71–26.58
HOMA-IR 292 1:57± 1:60 0.35–13.31
IAI 292 0:05± 0:03 0.003–0.13

Insulin resistance–related biomarkers (inflammation)
IL-4 (pg=mL) 350 218:33± 165:48 5.84–1131
IL-6 (pg=mL) 350 1:36± 2:97 0.04–30.73
IL-10 (pg=mL) 350 8:52± 46:17 0.35–518.01
IL-13 (pg=mL) 350 3:87± 3:38 0.06–16.14
IL-23 (pg=mL) 350 306:99± 756:19 1.78–5062
MIP-3a (pg=mL) 350 15:88± 55:49 2.69–755.73
TNF-a (pg=mL) 350 3:74± 1:42 1.05–8.87

Insulin resistance–related biomarkers (other)
MCP-1 (pg=mL) 350 134:21± 47:20 25.16–326.03
PYY (pg=mL) 350 12:45± 15:75 7.26–170.67
CRP (lg=mL) 350 8:53± 17:65 0.2–153.6
Fetuin A (lg=mL) 350 203:47± 55:56 93.6–664.4
SAP (lg=mL) 350 7:64± 3:21 2.8–36.4

Note: —, no data; BMI, body mass index; CRP, C-reactive protein; HOMA-IR, homeo-
stasis model assessment of insulin resistance; IAI, insulin action index; IL, interleukin;
IR, insulin resistance; MCP-1, monocyte chemotactic protein-1; MIP, macrophage
inflammatory protein; PYY, peptide YY; SAP, serum amyloid protein; SD, standard
devitation; TC, total cholesterol; TG, triglyceride; TNF-α, tumor necrosis factor-alpha.
aData are complete for all characteristics.
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1.34%, 2.96%) increase in O-phosphoethanolamine was observed
for each 10-lg=m3 increase in PM2:5 exposure at a lag of 0–72 h
(Figure 1; Table S3). The sphingolipid metabolite results of the
sex-stratified analysis are shown in Figure S2 and Table S4.

Similar significant changes were also observed for serum in-
sulin, HOMA-IR and the IAI. For serum insulin and HOMA-IR,
each 10-lg=m3 increase in the PM2:5 exposure level was associ-
ated with a 1.64% (95% CI: 0.12%, 3.19%) increase in serum in-
sulin and a 2.78% (95% CI: 0.94%, 4.66%) increase in HOMA-IR
at a lag of 0–72 h. The IAI decreased by 2.71% (95% CI:
−4:45%, −0:93%) according to each 10-lg=m3 increase in
PM2:5 exposure at a lag of 0–72 h (Figure 1; Table S3). The IR
index results for gender-stratified analysis are shown in Figure S2
and Table S4.

Inflammatory, functional, and other biomarkers related to
PM2:5.We evaluated four protein biomarkers of the proinflamma-
tory acute phase response and observed fluctuations in IL-6, IL-
23, MIP-3a, and TNF-a associated with elevated PM2:5 exposure
periods (Figure 1; Table S3). Similarly, for biomarkers of anti-
inflammatory cytokines, PM2:5 exposure was associated with
decreases in IL-4, IL-10, and IL-13, particularly at a lag of 0–36 h
(Figure 1; Table S3). Higher serum levels of glucose, TC, and TG
were also significantly associated with PM2:5 exposure. The asso-
ciations were present generally at a lag of 0–6 h and remained stat-
istically significant at a lag >6 h (Figure 1; Table S3). For other
IR-related biomarkers, we observed significantly increasing levels
of fetuin A and SAP associated with PM2:5 exposure at a lag of
0–6 h (Figure 1; Table S3). The results of analyses stratified by
gender are shown in Figure S2 and Table S4.

Gut Microbiota Sequencing Measurement and Mediation
Analysis
The relative abundance distributions of 516 genera were obtained
through species annotation. The Shannon and Sobs indexes of the
OTU levels were used to evaluate alpha diversity (Figure S3A,B).
PCA showed separation in beta diversity among all the participants
(Figure S3C). LME models were performed, and 16 featured gen-
era (e.g., Cellulosilyticum, Oribacterium, Shuttleworthia, and
Streptococcus; Excel Table S2) were significantly identified
(FDRB-H < 0:05) (Figure S4,5). The Kruskal-Wallis H test was
used to test the significant differences of 16 featured genera among
all the study participants (Table S5). The mediation analysis of the

gut microbiota (Oribacterium and Shuttleworthia) regarding the
association between personal PM2:5 exposure and sphingolipid
metabolites (sphingosine) are shown in Figure 2 and Table S6.
A 10-lg=m3 increase in the personal PM2:5 exposure was associ-
ated with decreases in sphingolipid metabolism after adjusting for
potential confounders. Decreases in the Oribacterium and
Shuttleworthia abundance mediated 8.59% (95% CI: 0.01%,
29.34%) and 37.83% (95% CI: 16.42%, 72.90%), respectively, of
the total effect of the personal PM2:5 exposure on sphingolipid me-
tabolism at a lag of 0–6 h (Figure 2). Similarly, the Shuttleworthia
abundance mediated 8.62% (95% CI: 0.16%, 30.71%) of the total

Table 2. Descriptive distribution of the personal PM2:5, temperature, and rel-
ative humidity at different lag periods in Jinan during the study period
(n=350).

Variables Lag (h) Mean SD Min Median Max IQR

PM2:5 (lg=m3) 06 49.59 67.42 2.90 38.10 993.81 30.61
012 58.72 53.81 8.65 45.83 609.36 38.80
024 65.67 53.34 13.02 49.15 340.64 37.21
036 59.75 49.08 12.98 46.45 357.88 27.65
048 60.32 49.10 12.40 48.96 337.70 27.80
072 57.11 44.87 10.98 45.27 309.55 34.58

Temperature (°C) 06 22.40 3.40 10.37 22.30 49.24 4.03
012 22.28 3.33 10.76 22.20 50.90 3.89
024 21.83 3.37 11.50 21.66 51.18 3.62
036 21.91 3.34 11.16 21.66 50.41 3.76
048 21.78 3.36 11.27 21.52 49.59 3.99
072 21.70 3.36 11.04 21.36 47.8 3.83

Relative humidity (%) 06 47.32 14.06 20.30 45.11 90.04 20.54
012 47.87 13.66 21.05 45.17 89.51 19.81
024 47.40 13.34 21.49 44.70 91.65 16.92
036 47.18 13.21 20.39 44.62 89.22 15.09
048 46.56 13.22 20.04 43.59 90.77 14.30
072 45.69 12.89 20.20 42.89 87.64 14.25

Note: IQR, interquartile range; Max, maximum; Min, minimum; SD, standard deviation.

Figure 1. Percent change in insulin resistance-related biomarkers for a
10 lg=m3 increase in PM2:5 among older Chinese adults in the LME models
with 95% conference intervals. Adjusted covariates included age (continu-
ous), sex (female or male), BMI (continuous), annual income (continuous),
education status, smoking status, alcohol consumption status, cooking status,
day of the week of the clinical visit, temperature, and relative humidity.
Numeric data are presented in Table S3.
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effect of the personal PM2:5 exposure on sphingolipid metabolism
with a lag of 0–72 h (Figure 2).

Sensitivity Analyses
We conducted sensitivity analyses on model specification by
removing income or education from the main model or using the
accumulated days or month of the health examinations to replace
the day of the week of the clinical visit. Sensitivity analyses
showed that our results were consistent and robust (Tables S7
and S8).

Discussion
Our study was a prospective panel study that proposed the hy-
pothesis that the genera of the gut microbiota altered by PM2:5
may mediate serum metabolome IR/T2DM. Exposure to PM2:5
was associated with increased risks of the IR index and functional
biomarkers and provided evidence that PM2:5 exposure may con-
tribute to systemic inflammation and altered sphingolipid metab-
olism (as shown in Figure 3). Given the key role of sphingolipid
metabolism in preventing the development of IR, our findings
suggest that PM2:5 may change the genera of the gut microbiota,
which partially mediates the effects between PM2:5 and sphingoli-
pid metabolism. These findings may extend our current under-
standing of pathways of PM2:5 and IR.

Insulin resistance is a critical risk factor for T2DM (Kim and
Hong 2012). Several epidemiological studies have observed asso-
ciations between PM2:5 and indicators of glucose and insulin ho-
meostasis (Chen et al. 2016; Liu et al. 2014). Our panel study
found increases in circulating glucose, insulin, and HOMA-IR and
a decrease in the IAI in collected blood samples after 3 d of PM2:5
exposure. Brook et al. reported increased glucose, insulin, and
HOMA-IR among healthy subjects exposed to PM2:5 (Brook et al.
2013). Yang et al. studied the relationship of PM2:5 with diabetes
and the glucose homeostasis index in northern China and found
that PM2:5 was associated with higher concentrations of glucose
and insulin (Yang et al. 2018). The results of those studies were
confirmed by our findings. Similar results were also reported in
Mexican Americans (Chen et al. 2016) and residents of southern
Germany (Wolf et al. 2016). Although the previous studies have
linked PM2:5 to an increased risk for developing IR, to our knowl-
edge, very limited epidemiological evidence has been reported for
the potential mechanisms of PM2:5 and IR (U.S. EPA 2019).

Human exposure and toxicological studies provide some
evidence that systemic inflammation may play a role in
PM2:5�related metabolic disruption, such as IR and the delivery of
95% PM to the circulatory system, which may cause systemic
inflammation from the lung’s air–blood barrier (reviewed by U.S.
EPA 2019). These studies indicate that PM2:5 may affect glucose
and insulin homeostasis and report positive associations between
PM2:5 and insulin or the IR index and systemic inflammation
(Chen et al. 2016; Kelishadi et al. 2009; Sun et al. 2009). A cross-
sectional study of 374 children showed that air quality is linked to
higher CRP and HOMA index values (Kelishadi et al. 2009). A
toxicological study also demonstrated that ambient PM2:5 exposure
may disturb metabolic progress in healthy mice and exacerbate
metabolic disorders in mice with diabetes via glucose tolerance,
IR, and systemic inflammation (Pan et al. 2019). Our panel study
provides evidence for the perturbation of the serum concentrations
of anti-inflammatory cytokines (e.g., IL-4, IL-10, and IL-13) and
proinflammatory cytokines (e.g., IL-6, CRP, and TNF-a) in associ-
ation with PM2:5 and IR (Figure 3). To our knowledge, most of the
literature has reported significant alterations between PM2:5 and
inflammation biomarkers. However, the levels of inflammatory
biomarkers did not show consistent changes in response to PM2:5

Figure 1. (Continued.)
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exposure in different studies. Binisor et al. found increased serum
IL-4 levels in diabetic patients likely due to IL-4 resistance in
patients with type 2 diabetes (Binisor et al. 2016). Although we
observed a decrease in IL-6, which is not consistent with several
short-term PM2:5 exposure studies (Liu et al. 2014; Pan et al.
2019), other studies also demonstrate that chronically increased
IL-6might benefit metabolic progress (Harsch andKonturek 2018;
Xie et al. 2019).

The evidence for systemic inflammation following short-term
PM2:5 exposure is limited, with some studies reporting changes
in inflammation biomarkers (Binisor et al. 2016; Rao et al. 2015;
Sun et al. 2009), whereas other studies show no changes in these
biomarkers (Chen et al. 2016; Li et al. 2017; Pan et al. 2019).
The response to acute inflammation is dynamic, and it is techni-
cally difficult to measure cytokine levels below the detection limit
(Liu et al. 2020a; Xie et al. 2019). Therefore, several factors were
related to the inconsistency across those studies, including the
transient nature of changes in inflammation biomarkers. These

conflicting findings on inflammatory biomarkers revealed the com-
plexity of cytokine molecules in regulating metabolism. Our study
suggests an inflammatorymechanism between PM2:5 and IR.

Untargeted metabolomics has emerged as a powerful approach
to explore the enrichment pathways between PM2:5 and IR/T2DM
by providing new insights into the mechanisms (Jeong et al. 2018;
Liang et al. 2018). In our panel study, 52 metabolic pathways were
analyzed using 253 metabolites. Specifically, 11 pathways associ-
ated with amino acid metabolism, lipid metabolism, and energy
metabolism were significantly identified. Consistent with these
potential pathways, our untargeted systematic approach confirmed
that sphingolipid metabolism was associated with PM2:5 exposure
(Zhao et al. 2019), a finding consistent with the significantly
increased risk of IR (Chen et al. 2016; Sun et al. 2009; Figure 3).
Sphingolipids, such as ceramide and sphingosine, constitute the
structure of cell membranes, and both epidemiological studies
(Bellini et al. 2015; Lemaitre et al. 2018) and an animal study
(Maceyka et al. 2005) suggest an important role for sphingolipids

Figure 2. Estimates of the mediation effect of the gut microbiota on the association between exposure to PM2:5 and sphingolipid metabolism among older
Chinese adults in the mediation models (per 10 lg=m3 increase in PM2:5). Adjusted covariates included age (continuous), sex (female or male), BMI (continu-
ous), annual income (continuous), education status, smoking status, alcohol consumption status, cooking status, day of the week of the clinical visit, tempera-
ture, and relative humidity.

Figure 3. Potential biological pathways by which PM2:5 promotes type 2 diabetes mellitus. Note: The figure represents the effects for which experimental or
epidemiologic evidence related to PM2:5 exposure and insulin resistance or type 2 diabetes mellitus is available, and the arrows indicate a proposed relationship
between those effects. Solid arrows and lines denote evidence observed in this Jinan panel study, and dotted arrows and lines denote evidence from previous
studies.

Environmental Health Perspectives 027007-7 130(2) February 2022



in the development of IR. Ceramides are critical mediators of lipo-
toxicity and accumulate in insulin-sensitive tissues (Bellini et al.
2015; Zhao et al. 2019). However, limited attention has been allo-
cated to the distinguishing role of sphingolipids in IR. Lemaitre
et al. investigated sphingolipids associated with insulin and other
biomarkers in a cohort study (Lemaitre et al. 2018). Higher plasma
levels of ceramides were associated with increased insulin levels
and HOMA-IR, mirroring our findings of decreasing concentra-
tions of ceramides. The reasonmay be the health effects of personal
PM2:5 exposure among the healthy elderly population. Ceramides
measured in blood samples may not be consistent with those meas-
ured at the tissue level. The results from a mouse model (Xie et al.
2019) showed that exposure to PM2:5 reduced the levels of sphingo-
myelin and ceramide and sequentially induced the decreased secre-
tion of cytokines, such as TNF-a and IL-6. This study supported our
findings and indicated that metabolic pathways, including sphingo-
myelin–ceramide signaling, were disrupted. At the metabolic level,
exposure to PM2:5 significantly altered sphingolipid metabolism
(Zhao et al. 2019), including the observed changes in L-serine,
O-phosphoethanolamine, sphingasine, sphingomyelin, sphingosine,
and ceramide. The potential mechanism underlying the PM2:5-
related changes was as follows: Ceramide and key enzymes in the
sphingolipid pathway induce the secretion of proinflammatory cyto-
kines, the generation of lipotoxicity, and alterations ofRNA splicing
(Gulbins and Kolesnick 2003; Maceyka et al. 2005; Meyer zu
Heringdorf and Jakobs 2007; Zhao et al. 2019).

The results from animal experiments suggest that environmen-
tal pollutants significantly alter the gut microbiota composition
and change the processes of metabolism (Salim et al. 2014b).
PM2:5 may carry microorganisms, which would induce the proin-
flammatory response of the immune system, increase intestinal
permeability, and lead to the growth of specific microbiota (Wu
et al. 2020). These changes in the host environment will alter the
genera of the gut microbiota (Ananthakrishnan et al. 2018; Salim
et al. 2014b, 2014a). In accordance with previous studies, we
observed statistically significant relationships between personal
exposure to PM2:5 and the gut microbiota (Alderete et al. 2018;
Harsch andKonturek 2018; Qin et al. 2012;Wang et al. 2018).

The gut microbiota could bioactivate inorganic compounds,
which may increase the development of chronic diseases (Van de
Wiele et al. 2005). Studies have shown that exposure to PM is
related to increased intestinal permeability accompanied by intes-
tinal inflammation (Alderete et al. 2017; Arrieta 2006; Salim et al.
2014b). Previous studies have demonstrated that alterations in the
gut microbiota may be another crucial mechanism for IR.
Pedersen et al. demonstrated that gut microbiota imbalance
affects metabolic progress and may further develop into IR
(Pedersen et al. 2016), a finding that was consistent with ours.
Our analysis also found that 37.83% of the total effect of personal
PM2:5 exposure on sphingolipid metabolism could be explained
by the mediation effect of the gut microbiota (Shuttleworthia).
However, limited information exists on the genus Shuttleworthia,
and its function in the gut is unclear. Shuttleworthia is the normal
component of the oral microbiome (Downes 2002), and it was
demonstrated in a cohort study to be overrepresented in patients
who had alcohol use disorder with alcoholic liver disease
(Maccioni et al. 2020). These findings suggest that the transloca-
tion of Shuttleworthia may be a potential determinant in alcoholic
liver disease progression (Maccioni et al. 2020). In this panel
study, the mediation results agree with an epidemiological study
(Liu 2019) that illustrated the mediation effects of human gut
microbiota associated with PM2:5 and IR. These findings revealed
that gut microbiota may play an important mediating role in the
mechanism of PM2:5, contributing to IR or the further develop-
ment of T2DM.

Our study has several strengths. It was a prospective study
based on a healthy elderly population, which explored the hypo-
thetical relationship among PM2:5, potential biomarkers, and the
risk of IR. Panel-based study designs are considered an effective
method to investigate the associations between PM2:5 and health
outcomes (Feng et al. 2020; He et al. 2021; Sarnat et al. 2012;
Wu et al. 2011). Second, the availability of data on lifestyle and
multiple risk factors allowed us to adjust for many factors that
may confound the associations. Third, we provided consecutive
5-d uniform diets for the participants before health examinations
to minimize the potential confounding of daily diets, which was
seldom taken in previous studies (Liang et al. 2018; Liu 2019;
Qin et al. 2012). Fourth, we accurately measured the personal ex-
posure level of PM2:5 instead of fixed-site monitoring stations,
providing more reliable exposure data for each subject, avoiding
the underestimation of measures of association, and increasing
the statistical power of the study. Finally, we introduced omics,
such as untargeted metabolomics and microbiomics, and identi-
fied potential pathways of PM2:5�induced IR.

However, our study has some limitations. First, this panel study
was conducted in a unique population of healthy elderly individu-
als, and PM2:5 is highly heterogeneous and varies in chemical con-
stituents; therefore, whether our findings could be generalizable to
other populations and different localities or be translated to long-
term health impacts remains to be examined. Second, this panel
study has limited capacity to shed light on the pathways linking
PM2:5 to IR/T2DM, and the findings only allow us to generate the
hypothesis that the genera of the gut microbiota altered by PM2:5
may mediate serum metabolome IR/T2DM. Third, we did not use
the glucose insulin clamp technique (DeFronzo et al. 1979), which
uses the infusion of exogenous insulin and glucose to raise plasma
insulin levels and maintain blood glucose at basic steady levels, to
measure the levels of insulin and glucose in target tissues because
the technique was not available for the healthy elderly population.
Instead, we used HOMA-IR, the IAI, and circulating insulin as
indices for IR to approximately assess IR status, which was largely
driven by insulin and glucose levels and could substitute for clamp
experiments (Gall et al. 2010). Fourth, we used confidence-based
computational approaches for metabolite annotation, and a large
portion of unidentifiable metabolites that may be functionally or
mechanistically important was not characterized based on the cur-
rent knowledge. Finally, we cannot exclude confounding entirely,
although we have considered demographic factors, socioeconomic
status, and living habits as covariates in the LMEmodels according
to current epidemiological studies.

In summary, our panel study of a microbiome and metabolo-
mics analysis of PM2:5 identified potential metabolic pathways in
the development of IR. Our analyses suggest that significant
changes in the IR index, metabolites of sphingolipids, inflamma-
tion, and functional biomarkers are associated with changes in
PM2:5 exposure levels. Additionally, PM2:5 may alter the genera
of the gut microbiota, which partially mediates the association
between PM2:5 and sphingolipid metabolism. Future studies
should verify that these potential mechanisms of IR are associ-
ated with PM2:5 exposure and improved health in the long term.
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