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Abstract Although cerebellar alterations have been implicated in stress symptoms, the exact 
contribution of the cerebellum to stress symptoms remains to be elucidated. Here, we demonstrated 
the crucial role of cerebellar neurons projecting to the ventral tegmental area (VTA) in the develop-
ment of chronic stress-induced behavioral alterations in mice. Chronic chemogenetic activation of 
inhibitory Purkinje cells in crus I suppressed c-Fos expression in the DN and an increase in immobility 
in the tail suspension test or forced swimming test, which were triggered by chronic stress appli-
cation. The combination of adeno-associated virus-based circuit mapping and electrophysiological 
recording identified network connections from crus I to the VTA via the dentate nucleus (DN) of the 
deep cerebellar nuclei. Furthermore, chronic inhibition of specific neurons in the DN that project 
to the VTA prevented stressed mice from showing such depression-like behavior, whereas chronic 
activation of these neurons alone triggered behavioral changes that were comparable with the 
depression-like behaviors triggered by chronic stress application. Our results indicate that the VTA-
projecting cerebellar neurons proactively regulate the development of depression-like behavior, 
raising the possibility that cerebellum may be an effective target for the prevention of depressive 
disorders in human.

Editor's evaluation
This study provided novel insight into a role of a cerebellar-ventral tegmental area (VTA) circuit 
that is recruited by chronic stress exposure and can influence affective behavior. A combination of 
experimental manipulations, carefully performed and analyzed, dissecting the cerebello-VTA circuit 
with neuroanatomy, c-fos expression, behavior, and chemogenetics, supports the conclusion of the 
paper, that the VTA-projecting cerebellar neurons proactively regulate the development of stress-
dependent changes in affective behavior. This report provides convergent evidence for a novel 
pathway that modulates chronic stress-related behaviors, and makes an important advance in the 
field.

Introduction
Whereas the cerebellum has traditionally been considered to be important solely for motor coordina-
tion and learning, it became apparent that the cerebellum is also involved in higher cognitive functions 
(Rochefort et al., 2013; Hull, 2020; Wagner and Luo, 2020). One such non-motor cognitive function 
is reward-related processing (Carta et al., 2019; Medina, 2019; Hull, 2020; Sendhilnathan et al., 
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2020). Consistent with the common notion that reward circuitry regulates stress-driven behavioral 
changes or depressive symptoms (Nestler and Carlezon, 2006; Russo and Nestler, 2013; Pignatelli 
and Bonci, 2015; Fox and Lobo, 2019), many studies have demonstrated that abnormalities of the 
cerebellum are associated with stress responses or mental disorders, latter of which include major 
depressive disorder and post-traumatic stress disorder that can be triggered or worsened by stress. 
The cerebellum is affected by stress, as is evident from the alterations in function, structure, and 
molecular expression that occur in the cerebellum after the exposure of animals or humans to stressful 
events (Gounko et al., 2013; Huguet et al., 2017; Bambico et al., 2018; Moreno-Rius, 2019). Alter-
ations of the cerebellum, such as decreased volume, abnormal neuronal activity, and disrupted cortical 
connectivity, have also been observed in patients with major depressive disorder and post-traumatic 
stress disorder, and such alterations are often correlated with symptoms of these disorders (De Bellis 
and Kuchibhatla, 2006; Alalade et al., 2011; Baldaçara et al., 2011; Liu et al., 2012; Guo et al., 
2012; Guo et al., 2013; Phillips et al., 2015; Córdova-palomera, 2016; Xu et al., 2017; Depping 
et al., 2018; Moreno-Rius, 2019). Although the accumulating lines of evidence indicate the involve-
ment of the cerebellum in stress responses and stress-associated disorders, the exact role played by 
the cerebellum remains unclear.

The cerebellum interacts with many brain areas through both direct and indirect synaptic connec-
tions, and one of the brain areas receiving direct inputs from the deep cerebellar nuclei (DCN), 
which is the major cerebellar output, is the ventral tegmental area (VTA) (Snider et al., 1976; Parker 
et al., 2014; Beier et al., 2015; Carta et al., 2019). The VTA is the origin of dopaminergic neurons 
projecting to other reward-related brain regions, so that it is considered as a central component of 
reward circuitry. The VTA is also known to be involved in the regulation of stress susceptibility (Fox 
and Lobo, 2019). Stressful events alter VTA dopamine (DA) neuron activities, and stress susceptible 
phenotypes are linked to the modulation of VTA DA neuron activity (Chaudhury et al., 2013; Tye 
et al., 2013; Friedman et al., 2014; Isingrini et al., 2016). The VTA receives inputs from many brain 
regions (Beier et al., 2015; Watabe-Uchida et al., 2012; Zahm et al., 2011). Some of these inputs 
may determine stress-associated responses via the regulation of VTA DA neuron activities (Lammel 
et al., 2012; Isingrini et al., 2016; Fernandez et al., 2018; Knowland et al., 2017). However, it 
remains to be elucidated as to how environmental or physical factors that affect the development of 
stress symptoms, process neural network mechanisms underlying a variety of neuronal activities in 
the VTA and stress responses. The VTA is generally considered to be a minor target of DCN neurons, 
yet its projections were reported to be functionally sufficient as their optogenetic stimulation robustly 
increased the activity of VTA neurons (Carta et al., 2019). In addition, the DCN projection to the VTA 
was shown to be associated with reward (Carta et al., 2019). Considering that the circuitry underlying 
reward is often closely associated with the stress susceptibility and resilience, the idea of active cere-
bellar involvement in the development of stress symptoms, presumably through the pathway to the 
VTA, appears reasonable.

In this study, we utilized chemogenetic manipulation during chronic stress application, and found 
that activation of cerebellar Purkinje cells (PCs) in crus I prevented the stress-induced behavioral 
changes. We further identified a neuronal circuit from crus I of the cerebellar hemisphere to the 
VTA through the dentate nucleus (DN) of the DCN, and demonstrated that DCN neurons wiring this 
pathway are indeed involved in the development of behavioral changes. We thus propose a possibility 
that cerebellar functionality contributes to the cause of variabilities in stress susceptibility.

Results
The cerebellum is involved in the development of stress-dependent 
behavioral changes
We first set up an experimental procedure of chronic restraint stress (RS) application and a subsequent 
test to evaluate stress-mediated behavioral changes, using a similar protocol to that established in 
previous studies (Kim and Han, 2006; Park et al., 2010; Kim and Leem, 2014; Kim et al., 2015b; 
Son et al., 2019). Wild-type mice were exposed to RS for 2 hr daily for 2 weeks (Figure 1A, RS group), 
whereas mice in the control (CTR) group were in their home cages in the animal facility without RS 
exposure. During the following 3 days, behavioral tests were performed in the order of open-field test 
(OFT), tail suspension test (TST), and forced swimming test (FST) (Figure 1A). The TST and FST were 

https://doi.org/10.7554/eLife.72981
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Figure 1. c-Fos expression in the DCN is increased by the chronic stress application. (A) Schematic diagram of 
the RS (2 hr/day) application for 2 weeks, followed by 1 day each for the OFT, TST, and FST before fixation, or 
by fixation for c-Fos staining. (B–D) Immobility time in the TST (B) and FST (C), and total distance moved in the 
OFT (D), to analyze the effects of RS in C57BL/6 wild type mice. ***p < 0.001, Student’s t-test (n = 22 mice each 

Figure 1 continued on next page
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used to assess stress-mediated behavioral changes, unless otherwise stated, and the OFT was used 
to examine general locomotor activity. The behavioral analyses demonstrated that the RS group had 
increased immobility in both the TST (Figure 1B, Videos 1 and 2; p < 0.001) and FST (Figure 1C, 
Videos 3 and 4; p < 0.001) compared with the CTR group. The increase in immobility is unlikely to 
be due to the reduction of general locomotor activity, because there was no significant difference in 
travel distance measured by the OFT between the CTR and the RS groups (Figure 1D, Figure 1—
figure supplement 1A; p = 0.52). We also measured the time spent in the center or peripheral areas 
in the OFT. Although animals receiving chronic stress has sometimes shown the decreased time spent 
in the center (Kim and Han, 2006; Choi et al., 2014; Simard et al., 2018; Song et al., 2020), our 
results showed no significant difference in the time between the CTR and the RS groups (Figure 1—
figure supplement 1B; p = 0.09). Through these behavioral tests, we confirmed that chronic mild 
stress by the application of 2 hr of daily RS for 2 weeks triggers behavioral changes assessed by the 
TST and FST in mice. The increase in immobility in the TST and FST has been considered as a despair-
like behaviors (Wang et  al., 2017; Planchez et  al., 2019), which is similar to one of phenotypes 
observed in patients with depression. We refer to the stress-mediated behavioral changes observed in 
this study as depression-like behaviors that have been used to express behavioral changes triggered 
by chronic stress in rodent models of depression (Wang et al., 2017; Gururajan et al., 2019; Plan-
chez et al., 2019).

A previous study showed that application of another type of chronic mild stress for 3  weeks 
enhanced the expression of an immediate early gene, c-Fos, in the DCN (Huguet et al., 2017), indi-
cating an increase in the activity of DCN neurons. To clarify whether the depression-like behaviors 
induced by our RS application protocol are associated with cerebellar activity, we compared c-Fos 
expression in the DCN between the CTR and the RS groups. We separated the DCN into subregions, 

for the CTR and RS groups). Behavioral data in this and subsequent figures are presented as boxplots with gray 
dots representing individual data points, center lines denoting the median, open square dots denoting the mean 
values, the lower and the upper bounds of the box corresponding to the 25th and 75th percentiles, respectively, 
and the whiskers denoting the minimum and maximum values. Effect sizes for behavioral data are available in 
Figure 1—source data 2. (E) 3D projection images of c-Fos expression and DAPI staining in the FN (top), the 
IPN (middle), and the DN (bottom) of the CTR (middle) and RS (right) groups. The overview diagrams on the left 
indicate the location of three nuclei. Scale bar: 20 μm. (F–H) Comparisons of the percentage of c-Fos-positive 
(c-Fos+) cells out of DAPI-positive cells between the CTR and RS groups in the whole DCN (F) or each nucleus 
(G) examined after 2-week RS application, or in the DN examined after 3-, 7-, and 10-day RS application (H). *p 
< 0.05, ***p < 0.001, Student’s t-test comparing between CTR and RS groups, (F and G), n = 8 images each in 3 
nuclei of the CTR or RS group, from 4 mice each in the CTR or RS group; (H) n = 5 images each in the DN of the 
CTR or RS group, from 5 mice each in the CTR or RS group. Data are shown as the mean ± SEM. Exact p values 
and the statistical tests used are available in Figure 1—source data 1.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. p Values and statistical tests related to Figure 1.

Source data 2. Effect sizes for behavior results related to Figure 1.

Figure supplement 1. Conditioning of mice for the RS protocol.

Figure supplement 2. Cell types for c-Fos-positive DCN neurons in the DN following 14 days RS.

Figure 1 continued

Video 1. TST of the CTR group.

https://elifesciences.org/articles/72981/figures#video1

Video 2. TST of the RS group.

https://elifesciences.org/articles/72981/figures#video2

https://doi.org/10.7554/eLife.72981
https://elifesciences.org/articles/72981/figures#video1
https://elifesciences.org/articles/72981/figures#video2
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that is the fastigial nucleus (FN), the interposed 
nucleus (IPN), and the DN, to analyze possible 
differences in c-Fos expression in the various 
functional regions (Figure  1E, Figure  1—figure 
supplement 1C and D). The expression of c-Fos 
in the percentage of all DAPI positive cells for the 
RS group was significantly enhanced (Figure 1F; 
p < 0.001), particularly in the DN and in the IPN 
(Figure  1G; DN: p < 0.001; IPN: p = 0.036), 
where notably more c-Fos-positive neurons were 
observed by immunohistochemical analysis of 
cerebellar slices that were fixed immediately after 
the end of the 2 week RS application. In contrast, 
there was no substantial change in c-Fos level in 

the FN (Figure 1G; p = 0.74). This data of the changes in c-Fos expression indicates the activation 
of DCN neurons in the IPN and the DN by chronic mild stress. In addition, we tested the cell types 
of these c-Fos-positive cells by co-staining with either NeuN, GAD67, or GFAP. NeuN and GAD67 
are markers of neurons and inhibitory neurons, respectively, that were also used to stain the DCN 
neurons (Molineux et al., 2006; Lee et al., 2015). Most of the c-Fos-positive cells had an overlap 
with NeuN (Figure 1—figure supplement 2A), but not with GAD67 (Figure 1—figure supplement 
2B). As previously reported (Groteklaes et al., 2020), clear signals of GFAP, a marker of glial cells, 
were not detected in the DCN, and consequently, cFos-positive cells in the DCN were GFAP negative 
(Figure 1—figure supplement 2C). These results indicate that cells in the DCN activated by RS are 
glutamatergic neurons. To further examine whether the activation of DCN neurons is a consequence 
observed only after the chronic RS application or an event that happens during the process of the 
RS, the c-Fos expression in the DN, which showed the greater increase than the IPN, was analyzed 
after 3-, 7-, or 10-day RS application. The c-Fos expression in the RS group was significantly enhanced 
compared with the CTR group even by 3 days of RS application, and was maintained at elevated level 
after 7- or 10-day RS application (Figure 1H; 3, 7, or 10 days: p < 0.001), although the calculation of 
percentage increase in c-Fos-positive cells over CTR group suggests that longer RS induced c-Fos 
expression in more DCN neurons (Figure  1—figure supplement 1E; p = 0.003). Thus, the DCN 
neurons in the DN were already activated at the early stage of chronic stress, suggesting that the DCN 
neuron activity is involved in stressful situations.

The above-mentioned results raised the possibility that an increase in activity of DCN neurons in 
the DN may be relevant to the development of depression-like behaviors. To test this possibility, we 
aimed to reduce the activity of DCN neurons mainly in the DN during RS application by chemoge-
netically activating PCs, which provide inhibitory inputs into DCN neurons. Previous studies reported 
that axons projecting from crus I, crus II, and the simplex lobe are rich in the DN (Edge et al., 2003; 
Tolbert and Bantli, 1978; Voogd et al., 2012). Among these cortical regions, crus I is well recognized 
for its involvement in higher brain functions, such as emotion and sociability (Ferrari et al., 2018; 
Kelly et al., 2020; Tsai et al., 2018; Turner et al., 2007). Even though the topographic organization 
of stress-associated responses in the cerebellum is complex, changes in functional connectivity were 
observed in crus I of patients with depression (Alalade et al., 2011; Depping et al., 2018; Guo et al., 

2013; Liu et al., 2012). Hence, we evaluated the 
effects of the activation of crus I PCs during RS 
application. To enhance PC activity, hM3Dq (Gq), 
which is an excitatory designer receptor exclu-
sively activated by designer drugs (DREADD), was 
expressed in crus I PCs by injecting AAV-sSyn-
FLEX-hM3Dq(Gq)–2AGFP into crus I of transgenic 
mice expressing Cre recombinase exclusively 
in PCs (PCP2-Cre) (Figure  2A). The increase in 
activity of the Gq-expressing PCs by clozapine-
N-oxide (CNO) was first confirmed in vitro. Cell-
attached recordings from Gq-expressing PCs in 

Video 3. FST of the CTR group.

https://elifesciences.org/articles/72981/figures#video3

Video 4. FST of the RS group.

https://elifesciences.org/articles/72981/figures#video4

https://doi.org/10.7554/eLife.72981
https://elifesciences.org/articles/72981/figures#video3
https://elifesciences.org/articles/72981/figures#video4
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Figure 2. Manipulation of crus I PC activity improves depression-like behaviors. (A) Top: a schematic of AAV-sSyn-FLEX-hM3Dq-2AGFP injection 
into crus I of PCP2-Cre mice. Bottom: confocal image of a whole cerebellar slice showing the expression of Gq-2AGFP. Scale bar: 500 μm. (B) Left: 
representative image showing Gq-2AGFP-positive PCs in crus I and a recording pipette (dotted line). Scale bar: 30 μm. Middle: representative traces 
of PC firing recorded by the loose cell-attached patch-clamp technique, before (top, baseline), during (middle, CNO), and after (bottom, washout) 

Figure 2 continued on next page

https://doi.org/10.7554/eLife.72981
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cerebellar slices showed increased spontaneous firing after CNO application (10 μM) compared with 
the baseline, whereas the PCs in the uninfected cerebellum demonstrated no effects of CNO appli-
cation (Figure 2B; Gq-PCs: t(8) = 3.7, p = 0.003; uninfected PCs: t(14) = 0.19, p = 0.85). The increase 
in activity was also confirmed in vivo by immunohistochemical analysis of c-Fos, which showed that 
intraperitoneal administration of CNO into mice expressing Gq in PCs resulted in an increased c-Fos 
level in Gq-expressing PCs in crus I (Figure 2C). In addition, when we used this chemogenetic tool 
for enhancing crus I PC activity by the daily injection of CNO for the 2 weeks prior to RS application 
(Figure  2D), c-Fos expression in the DN was reduced compared with when only RS was applied 
(Figure 2E). Quantified data showed that c-Fos-positive cells in the DN after chronically enhancing the 
activity of crus I PCs during RS were significantly decreased and the level was equivalent to the control 
(Figure 2F; RS – Gq-CNO: t(11) = –4.25, p < 0.001; CTR – Gq-CNO: t(11) = –0.43, p = 0.67). Although 
this way of crus I PC manipulation might induce plasticity in other subregions of the DCN, as crus I PCs 
are also known to project to the IPN (Sugihara, 2018), this manipulation certainly includes the activity 
control of the DN, leading to the restoration of activity in the DN that was increased by the RS. Thus, 
our chemogenetic manipulation of PCs appeared to be an experimental system applicable to test the 
involvement of the cerebellum in the development of stress-induced behavioral changes.

In the behavioral experiments of this study, in which we analyzed the effects of chemogenetic 
manipulation on RS-dependent depression-like behaviors, AAVs expressing chemogenetic molecules 
were stereotaxically injected 3 weeks before the RS procedures, and CNO or saline was intraperitone-
ally administered 30 min before the RS application every day during the 2-week RS period (Figure 2D), 
unless stated otherwise. To enable the comparison within a series of behavioral experiments even in 
the presence of mild variability between different series, we included the CTR and the RS groups in 
all series of concurrently performed behavioral experiments, and compared groups of saline or CNO 
administration to the CTR and the RS groups. To test off-target effects of CNO on the RS-dependent 
depression-like behaviors, saline (RS-Sal) or CNO (RS-CNO) was administered to the mice that were 
subjected to RS without the expression of chemogenetic molecules. The RS-dependent behavioral 
changes were not affected by either administration of saline or CNO, as seen by the significantly 
longer immobile times than the CTR group, but the similar immobile times to the RS group, in both 
the TST and FST (Figure 2G and H; CTR – RS-Sal, TST: t(41) = 3.91, p < 0.001, FST: t(41) = 3.88, p < 0.001; 
CTR – RS-CNO, TST: t(42) = 4.01, p < 0.001, FST: t(42) = 3.52, p < 0.001; RS – RS-Sal, TST: t(41) = –0.29, p 

CNO treatment. Calibration: 50 pA, 200ms. Right: firing frequency at baseline, during CNO treatment, and at washout normalized by the average 
value of the baseline in GFP-positive (GFP+, closed circles) and GFP-negative (GFP–, open circles) PCs (n = 5 GFP+ PCs from 4 mice, n = 8 GFP– PCs 
from 3 mice). (C) Enhanced c-Fos expression in crus I PCs (right), upon CNO administration to a mouse expressing Gq-2AGFP in crus I PCs (left). Scale 
bar: 200 μm. (D) Schematic diagram of the experimental time course. RS application (2 hours/day, for 2 weeks) started 3 weeks after stereotaxic AAV 
injection, followed by 1 day each for the OFT, TST, and FST before fixation, or by fixation for c-Fos staining. CNO (10 mg/kg/day) was intraperitoneally 
administered 30 min before the RS. (E and F) Representative 3D projection images (E) and a summary graph (F) of c-Fos expression in the DN. 
Enhanced c-Fos expression in the RS group (left in E, gray bar in F) was reduced by chemogenetic excitation of crus I PCs using Gq expression and 
CNO administration (right in E, black bar in F, n = 5 images obtained from 4 mice). Scale bar in E: 20 μm. For direct comparison, results of the DN used 
in Figure 1E and G are shown in (E) (RS) and (F), respectively. Data are shown as the mean ± SEM. (G–I) Assessments by the TST (G), the FST (H), and 
the OFT (I), to analyze the effects of CNO administration itself on RS-dependent depression-like behaviors in C57BL/6 mice without stereotaxic AAV 
injection. For a direct comparison, data for the CTR and the RS groups, which were obtained from concurrently performed experiments and shown in 
Figure 1B–D, are reused in this figure. ***p < 0.001, one-way ANOVA followed by Fisher’s LSD post hoc test (n = 21 and 22 mice for the RS-Sal and 
RS-CNO groups, respectively). (J–L) Immobility time in the TST (J) and FST (K), and total distance moved in the OFT (L), performed to analyze the effects 
of chemogenetic excitation of crus I PC activity in PCP2-Cre;ICR mice. *p < 0.05, **p < 0.01, ***p < 0.001, one-way ANOVA followed by Fisher’s LSD 
post hoc test (n = 38, 25, 28, and 28 mice for the CTR, RS, RS-Gq-PC-Sal, and RS-Gq-PC-CNO groups, respectively). Data are presented as boxplots, as 
described in the legend to Figure 1. Exact p values and the statistical tests used are available in Figure 2—source data 1. Effect sizes for behavioral 
data are available in Figure 2—source data 2 and n numbers for behavioral tests are available in Figure 2—source data 3.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. p Values and statistical tests related to Figure 2.

Source data 2. Effect sizes for behavior results related to Figure 2.

Source data 3. Numbers of mice for each sex used in each behavioral test related to Figure 2.

Figure supplement 1. Similar effects of unilateral and bilateral induction of crus I PC activity on the development of depression-like behaviors.

Figure supplement 2. Changes in body weights of mice used for Figure 2.

Figure 2 continued

https://doi.org/10.7554/eLife.72981
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= 0.77, FST: t(41) = 0.12, p = 0.9; RS – RS-CNO, TST: t(42) = –0.24, p = 0.81, FST: t(42) = –0.29, p = 0.78). 
The travel distance measured by the OFT was also unaffected by the saline or CNO administration 
(Figure 2I; CTR – RS-Sal, t(41) = –0.68, p = 0.5; CTR – RS-CNO, t(42) = –0.46, p = 0.65; RS – RS-Sal, t(41) 
= –0.11, p = 0.91; RS – RS-CNO, t(42) = 0.12, p = 0.91). These results confirm that the intraperitoneal 
administration of saline or CNO itself has no effects on the RS-dependent depression-like behaviors. 
In contrast, CNO administration to the PCP2-Cre mice expressing Gq specifically in the PCs of crus I, 
referred to as the RS-Gq-PC-CNO group, but not saline administration (RS-Gq-PC-Sal group), short-
ened the immobile time in both the TST and FST (Figure 2J and K). As unilateral and bilateral exci-
tation of crus I PCs resulted in similar trends in all the TST, FST, and OFT, as shown in Figure 2—figure 
supplement 1A–1F, combined results are presented in the main figures (Figure 2J–L). Even though 
there was considerable individual variability in all groups, the average immobile time in the RS-Gq-
PC-CNO group was significantly shorter than that of the RS group, but was indistinguishable to the 
CTR group (Figure 2J and K; RS – RS-Gq-PC-CNO, TST: t(51) = –2.18, p = 0.03, FST: t(51) = –2.75, p = 
0.007; CTR – RS-Gq-PC-CNO, TST: t(64) = 1.66, p = 0.1, FST: t(64) = –0.12, p = 0.91). The immobile time 
in RS-Gq-PC-Sal group was conversely indistinguishable to that of the RS group, but was significantly 
longer than the CTR group (Figure 2J and K; RS – RS-Gq-PC-Sal, TST: t(51) = –0.57, p = 0.57, FST: t(51) 
= –0.33, p = 0.74; CTR – RS-Gq-PC-Sal, TST: t(64) = 3.45, p < 0.001, FST: t(64) = 2.55, p = 0.01). The 
OFT showed unchanged distance movement in all four groups (Figure 2L; F(3,115) = 0.33, p = 0.33), 
ruling out the possibility that the different immobile times arose from altered general locomotor 
activity. These results in behavior, together with the c-Fos data, suggest that the increase in activity of 
DCN neurons driven by the chronic mild stress promotes the generation of depression-like behaviors. 
Consequently, the excitatory manipulation of crus I PC activity during RS application suppressed the 
generation of depression-like behaviors by inhibiting the activity of DCN neurons in the DN. We hence 
conclude that cerebellar neuronal activity indeed contributes to the stress-dependent development 
of depression-like behaviors.

DN neurons anatomically project to the VTA
Whereas our results showed the involvement of the cerebellum in the development of depression-like 
behaviors, the precise circuit involving the cerebellum remains unclear. As previous studies reported 
axonal inputs of the DCN in the VTA (Parker et al., 2014; Beier et al., 2015; Carta et al., 2019) 
which is a region highly associated with stress responses (Fox and Lobo, 2019), we further confirmed 
the network connections from the DCN to the VTA. DCN neurons in each subregion were labeled by 
iontophoretic delivery (Oh et al., 2014) of an adeno-associated virus (AAV) expressing GFP (AAV-
sSyn-GFP) into the right side of each subregion, which resulted in GFP expression in restricted regions 
of the DCN (see the cerebellum in Figure 3A–C). Upon injection into the FN, GFP-positive axonal 
projections were not observed in the VTA (Figure  3A, Figure  3—figure supplement 1A). Injec-
tion to the IPN clearly displayed GFP-positive axons in the red nucleus (RN), which is a well-known 
projection area from the cerebellum (Figure 3B, Figure 3—figure supplement 1B). However, there 
were only weak GFP-positive axonal projections from the IPN in the contralateral side of the dorso-
lateral anterior VTA and slightly stronger GFP signals in the dorsolateral posterior VTA (Figure 3B, 
Figure 3—figure supplement 1B). While the injection into the DN displayed strong GFP-positive 
axons in the RN, it also resulted in GFP signals mainly in the contralateral side of both the anterior and 
posterior VTA, and the signals were most abundant compared with the injection into the other two 
nuclei (Figure 3C, Figure 3—figure supplement 1C). Particularly, DCN neurons in the DN projected 
mainly to the dorsolateral posterior VTA among all VTA regions. Thus, consistent with previous studies 
(Parker et al., 2014; Carta et al., 2019), our results showed the projection from the DN and the IPN, 
but not the FN, to the VTA, and also suggested that the majority of DCN projections to the VTA are 
from the DN. This was further confirmed by two other experiments using a retrograde transducing 
AAV, rAAV2-retro (Tervo et al., 2016). When rAAV2-retro expressing GFP (rAAV2-retro-CAG-sfGFP) 
was iontophoretically delivered into the posterior VTA (Figure 3D), faint but clear GFP signals were 
detected in many DCN neurons of the DN, but in fewer neurons of the IPN (Figure 3E). In another 
set of experiments, rAAV2-retro expressing Cre recombinase (rAAV2-retro-CAG-iCre) was injected 
into the posterior VTA, and AAV expressing GFP with a Cre-dependent genetic switch (AAV-sSyn-
FLEX-GFP) was injected over a broad area of the contralateral DCN, including the DN and the IPN 
(Figure 3F). This combination of AAV injection resulted in strong GFP signals that were observed 

https://doi.org/10.7554/eLife.72981
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Figure 3. DCN neurons in the DN structurally project to the VTA. (A–C) Left: schematic drawing of AAV-sSyn-GFP injection into the right side of the 
FN (A), the IPN (B), and the DN (C). Note that iontophoretic injection was used, to achieve confined injection of AAV in the individual nuclei. Right: 
confocal images showing the resulting GFP expression in cerebellar slices stained with a calbindin antibody and VTA slices stained with a tyrosine 
hydroxylase (TH) antibody. The rightmost panels are 3D projection views of the boxed areas. Scale bars: 500 μm (left), 50 μm (middle), and 20 μm (right). 

Figure 3 continued on next page
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in many DCN neurons of the DN, but in only a few neurons of the IPN (Figure 3G, top). The small 
numbers of GFP-positive neurons in the IPN did not appear to be due to the less efficient delivery of 
AAV into the IPN, because tdTomato (tdT) signals derived from the simultaneous injection of AAV-
sSyn-tdT was observed similarly in both the DN and IPN (Figure 3G). Through the process of double 
injection (Figure 3F), we were able to specifically label DCN neurons that project to the VTA. These 
results of AAV-based tracing confirm that the VTA receives anatomical connectivity of DCN neurons 
mainly from the DN among all three DCN subregions, even though the VTA-projecting DCN neurons 
seemed to be only a part of all DCN neurons in the DN, as seen in the images of the cerebellum in 
Figure 3E and G. In the subsequent experiments of this study, in which the VTA-projecting DCN 
neurons express exogenous molecules by AAV injection, we mainly targeted the DN among all DCN 
subregions, although we understand that DCN neurons in the IPN may also be involved.

DCN axons form functional synaptic connections to the VTA neurons
We next aimed to identify whether the DCN neurons in the DN form functional synaptic connections 
with VTA neurons, and performed whole-cell patch clamp recording of VTA neurons after a single injec-
tion of AAV expressing channelrhodopsin (ChR2) into the DN (Figure 4A). VTA neurons, mainly located 
in the dorsolateral part where ChR2-positive axons coming from the DCN are present, were voltage 
clamped at −70 mV, and excitatory postsynaptic currents (EPSCs) were recorded by 5 trains of blue 
light stimuli (10 or 50 Hz) applied onto ChR2-expressing DCN axons in midbrain slices (Figure 4B). This 
photostimulation triggered EPSCs in VTA neurons (Figure 4C and D, Figure 4—figure supplement 
1A). Although the photostimulation-triggered EPSCs were detected in only some of the VTA neurons 
(13 out of 54 neurons, Figure 4E), the responses were clearly and repeatedly observed upon photo-
stimulation (Figure 4C and D). To test whether the photostimulation-triggered EPSCs are evoked by 
monosynaptic connections, we used inhibitors of voltage-gated sodium channels, tetrodotoxin (TTX), 
and voltage-gated potassium channels, 4-aminopyridine (4-AP), as was done previously (Carta et al., 
2019; Yan et al., 2019). The application of TTX inhibited the photostimulation-triggered EPSCs, yet 
subsequent addition of 4-AP surmounted the TTX-dependent inhibition of EPSCs (Figure 4F; base-
line – TTX: t(8) = 3.69, p = 0.006; TTX – TTX + 4-AP: t(8) = 2.63, p = 0.03). Because 4-AP is consid-
ered to enhance depolarization of photostimulated ChR2-expressing axons and consequently induce 
neurotransmitter release even in the presence of TTX, the results indicate that the connections from 
the DCN to the VTA are monosynaptic.

It is well known that VTA neurons include different types of neurons. One way to distinguish and 
identify DA neurons in the VTA is to measure the hyperpolarization-activated current (Ih) with nega-
tive voltage steps (e.g. −110 mV) (Borgland et al., 2004; Faleiro et al., 2004; Bellone and Lüscher, 
2006; Hommel et al., 2006; Argilli et al., 2008; Stuber et al., 2008; Zweifel et al., 2008), although 
the presence of Ih current does not unequivocally identify DA neurons (Margolis et al., 2006; Zhang 
et al., 2010; Lammel et al., 2011). To validate the method of determining VTA cell types by measuring 
Ih, we recorded Ih currents in GAD2-IRES-Cre;Ai6 mice, which express ZsGreen in γ-aminobutyric acid 
(GABA)-ergic neurons, and quantified the amplitude (Figure 4—figure supplement 1B). Indeed, Ih 
currents were not observed in most of ZsGreen-positive neurons whereas ZsGreen-negative neurons 

Similar image results are obtained from 7, 8, and 4 mice for fastigial, interposed and dentate nuclei respectively. (D) Schematic drawing of iontophoretic 
injection of rAAV2-retro-CAG-sfGFP and AAV-sSyn-mTagBFP (mTBFP) into the left side of the VTA. (E) Confocal images of a VTA-containing slice stained 
with a TH antibody (left) and a cerebellar slice stained with a calbindin antibody (right). Expression of GFP and mTBFP resulting from the injection shown 
in (D). The area within the white dotted rectangle shown in the top right panel is magnified in the bottom right panel. Scale bars: 500 μm (left and top 
right), and 200 μm (bottom right). For retrograde single injection, similar image results are obtained from 3 mice. (F) Schematic diagram of combined 
AAV injection. AAV-sSyn-tdT and AAV-sSyn-FLEX-GFP were injected into the right side of the DCN by pressure injection, whereas AAV-sSyn-mTBFP and 
rAAV2-retro-CAG-iCre were injected into the left side of the VTA by iontophoresis. (G) Representative confocal images of a cerebellar slice stained with 
a calbindin antibody (top) and a VTA-containing midbrain slice stained with a TH antibody (bottom). Expression of GFP, tdT, and mTBFP resulting from 
the injection shown in (F). The right panels show magnified images of the DCN (the white dotted rectangle) and VTA, including GFP-positive axons of 
DCN neurons (arrow). Scale bars: 500 μm (left), 250 μm (top right), and 100 μm (bottom right). For double injections, similar image results are obtained 
from 10 mice. White dotted rectangles shown in (E) and (G) indicate location of magnified images for DCN areas.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Anatomical connectivity from each subregion of the DCN to the VTA.

Figure 3 continued
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Figure 4. The DCN neurons in the DN make functional synaptic connections to the VTA. (A) Left: schematic drawing of the injection of AAV-sSyn-ChR2-
GFP or AAV-sSyn-ChR2-2AdT into the DN, for whole-cell patch clamp recording from VTA neurons. Right: confocal images of ChR2-2AdT expression 
in a calbindin-stained cerebellar slice (left) and a TH-stained VTA slice (right). Scale bars: 500 μm (left), and 200 μm (right). (B) Schematic diagram of 
whole-cell patch clamp recording to detect light-evoked EPSCs in VTA neurons, and images of fresh midbrain slices containing the VTA with ChR2-

Figure 4 continued on next page

https://doi.org/10.7554/eLife.72981
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showed clear Ih currents (Figure 4—figure supplement 1C; p = 0.0002). While we are aware that 
this is not the definitive approach to identify VTA cell types, as seen in our result showing Ih currents 
in a ZsGreen-positive neuron (Figure 4—figure supplement 1C), we distinguished putative DA and 
GABA neurons by testing the Ih current in this study. Photostimulation-evoked EPSCs were recorded 
in both putative GABA (Figure 4C) and DA neurons (Figure 4D). Except for one neuron that was 
unidentified due to the membrane seal being lost, 5 and 7 neurons exhibiting EPSCs were identified 
as putative DA and GABA neurons, respectively (Figure 4E), indicating the nonspecific projection of 
DCN neurons in the DN to both types of VTA neurons. This is consistent with previous studies showing 
connections from the DCN to the VTA (Beier et al., 2015; Carta et al., 2019). The peak amplitude 
and time course of photostimulation-evoked EPSCs were equivalent between putative DA and GABA 
neurons (Figure 4G; peak amplitude: p = 0.21; time course: p = 0.66). Furthermore, structural synaptic 
connections of the DN-VTA circuit were verified through using the improved version of mammalian 
GFP reconstitution across synaptic partners (mGRASPi) technique, which enabled us to detect synaptic 
contacts using light microscopy (Kim et  al., 2011). AAV vectors expressing presynaptic-mGRASP 
(AAV-CAG-pre-mGRASPi(OLLAS)–2AiCre) and postsynaptic-mGRASP (AAV-CAG-post-mGRASPi-
2AdT) components carrying either of the nonfluorescent split-GFP fragments were injected into the 
DN and the VTA, respectively. As a result, reconstituted mGRASP signals were detected between 
the button-like structures of anti-OLLAS-positive presynaptic DCN neuronal axons and a dT-positive 
postsynaptic VTA neuron (Figure 4H), confirming DN-VTA synaptic connections. These results of elec-
trophysiological and mGRASP analyses demonstrated that DCN neurons in the DN make functional 
synaptic connections to putative DA and GABA neurons in the VTA.

Crus I PCs form functional synaptic connections to VTA-projecting DCN 
neurons in the DN
Even though the DCN is the final output structure of the cerebellum and projects to other brain 
regions, it also projects back to the cerebellar cortex. It is known that both corticonuclear and nucleo-
cortical pathways between the cerebellar cortex and DCN are similarly organized into sagittal zones, 
and DCN neurons in the DN usually have reciprocal connections with the lateral lobes (Houck and 
Person, 2014). To clarify whether VTA-projecting DCN neurons, located mainly in the DN, also have 
collateral projections to the lateral lobes of the cerebellar cortex, we analyzed collateral axons of the 
VTA-projecting DCN neurons that were specifically labeled by the double injection method described 
in Figure 3F. Whereas GFP-positive DCN neurons were in the DN and their axons were in the VTA 
(Figure 5A and B), screening of the entire cerebellar cortex demonstrated that their collateral axons 
with rosette shaped mossy fiber terminals (MFTs) were mainly present in crus I and were also present 
in crus II and the simplex lobe (Figure 5C, Figure 5—figure supplement 1A). These were specific 
GFP signals arising from VTA-projecting DCN neurons in spite of the sparse GFP signals in collateral 

GFP- or ChR2-2AdT-positive axons projecting from the DN. Dotted lines in the images indicate the recording pipettes. Scale bar: 20 μm. (C and 
D) Representative traces of EPSCs evoked by 10 Hz photostimulation at a holding potential of −70 mV. To measure Ih currents, voltage steps varying 
from −70 mV to −110 mV were applied from a holding potential of −60 mV. Calibration: 20 pA, 50ms for light-evoked EPSC; 50 pA, 100ms for Ih currents. 
(E) Pie charts showing the proportion of VTA neurons responding to photostimulation among all VTA neurons recorded (top, 54 cells obtained from 
9 mice), and the ratio of DA and GABA neurons among VTA neurons demonstrating light-evoked EPSCs (bottom). (F) Representative traces (left) and 
peak amplitude (right) of light-evoked EPSCs before (baseline) and after extracellular application of TTX (+ TTX) followed by further addition of 4-AP (+ 
TTX + 4 AP). *p < 0.05, **p < 0.01, One-way repeated measures ANOVA followed by Fisher’s least significant difference (LSD) post hoc test. Calibration: 
100 pA, 100ms. Averaged (squares) and individual (circles) EPSC amplitudes are shown on the right (n = 5 from 3 mice). (G) Peak amplitudes (left) and 
time to peak (right) of light-evoked EPSCs recorded from DA and GABA neurons. Data are shown as the mean ± SEM. Exact p values and the statistical 
tests used are available in Figure 4—source data 1. (H) Detection of synaptic connections from the DN to the VTA using mGRASPi. Left: schematic 
diagram showing injections of AAVs expressing pre-mGRASPi(OLLAS)–2AiCre and post-mGRASPi-2AdT into the DN and the VTA, respectively (top), 
and subsequent observation of immunostained OLLAS signals in the DN and dT signals in the VTA (bottom). Scale bar: 200 μm. Right: magnified images 
of a VTA neuron surrounded by DCN axons expressing the pre-mGRASP component. Note that mGRASP signals (arrows) were clearly observed where 
button-like structures of the DCN axons intersect the VTA neuron dendrites. Scale bar: 10 μm.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. p Values and statistical tests related to Figure 4.

Figure supplement 1. Functional synaptic connections of the DCN-VTA circuit.

Figure 4 continued
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Figure 5. Corticonuclear and nucleocortical connections between crus I and VTA-projecting DCN neurons in the DN. (A and B) Representative images 
of a midbrain slice (left) and a cerebellar slice (right) in (A). In the left panel, the area within the white dotted square is magnified in (B), and dotted lines 
in (B) indicate the boundary of the VTA region. Expression of tdT, mTBFP, and GFP was triggered by the AAV injection shown in Figure 3F. Scale bars: 
500 μm (left in A), 100 μm (right in A and B). (C) Screening of collateral axons of VTA-projecting DCN neurons in the cerebellar cortex. Cerebellar slices 

Figure 5 continued on next page
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axons, as there were no clear GFP signals detected in collateral axons without injection into the VTA 
(Figure 5—figure supplement 1B). These results indicate that crus I, II, and the simplex lobe receive 
feedback signals from DCN neurons in the DN, which specifically project to the VTA.

As the results of nucleocortical pathways suggested that the lateral lobes likely send inputs to the 
VTA-projecting DCN neurons based on the zonal organization, we further investigated whether the 
VTA-projecting DCN neurons in the DN actually receive inputs from PCs of crus I that was associated 
with stress-induced behavioral changes (Figure 2). For this purpose, we recorded optogenetically 
evoked inhibitory postsynaptic currents (IPSCs) from VTA-projecting DCN neurons that were labeled 
by the retrograde tracer Alexa Fluor 647-conjugated cholera toxin B (CTB 647), after expressing ChR2 
in crus I PCs (Figure 5D and E). IPSCs were detected upon the application of five trains of blue light 
stimuli to the DN in cerebellar sagittal slices (Figure 5F). When the same slices were treated with 
10 μM bicuculline, which is a GABA type A receptor antagonist, the optically induced IPSCs were 
completely abolished (Figure 5F and G; p = 0.001), confirming inhibitory synaptic transmission from 
PCs. These results verified the zonal organization of the corticonuclear and nucleocortical pathways 
in the VTA-associated cerebellar networks, and also identified that crus I PCs send synaptic inputs to 
DCN neurons in the DN that in turn project to the VTA.

Activity of VTA-projecting DCN neurons in the DN regulates the 
development of depression-like behaviors
The above-mentioned results demonstrated that RS-mediated activity increase in DCN neurons of 
the DN and depression-like behaviors were reduced by excitation of crus I PCs, which have functional 
connections to the VTA via the DN. Based on these results, we hypothesized that the neuronal circuit 
composed of DCN neurons projecting to the VTA is responsible for the cerebellar contribution to 
the stress-dependent development of depression-like behaviors. To directly test this hypothesis, we 
suppressed the activity of VTA-projecting DCN neurons in the DN during RS application. The inhibi-
tory DREADD hM4Di (Gi) was expressed in VTA-projecting DCN neurons in the DN by combining the 
injection of rAAV2-retro-CAG-iCre into the dorsolateral posterior VTA of wild-type mice with bilateral 
injection of AAV-sSyn-FLEX-hM4Di(Gi)–2AGFP into the DN (Figure 6A). As in the case of chemoge-
netic activation of PCs, CNO or saline was intraperitoneally administered 30 min before the RS every 
day for the 2-week RS period. Whereas saline administration (RS-Gi-DN-Sal group) did not affect the 
immobility time prolonged by the RS in the TST and FST, CNO administration (RS-Gi-DN-CNO group) 
shortened the immobility time. As a result, the averaged immobility time in the RS-Gi-DN-CNO group 
was significantly shorter than that of the RS-Gi-DN-Sal group, and was similar to the CTR group in 
both the TST and FST (Figure 6B and C; RS-Gi-DN-Sal – RS-Gi-DN-CNO, TST: t(38) = –2.23, p = 0.03, 
FST: t(38) = –3.2, p = 0.002; CTR – RS-Gi-DN-CNO, TST: t(52) = 0.03, p = 0.98, FST: t(52) = 0.94, p = 0.35). 
In the OFT, there were no differences in the distance traveled among all groups, demonstrating intact 
locomotor activity of the mice (Figure 6D; F(3,112) = 0.71, p = 0.55).

Although the TST and FST have been widely used to assess the depression-like behavior (Kim and 
Han, 2006; Park et al., 2010; Kim and Leem, 2014; Zou et al., 2015; Wang et al., 2018; Planchez 
et al., 2019; Son et al., 2019; Gadotti et al., 2019; Chevalier et al., 2020), one may wonder whether 

were obtained from the same mouse used for the images in (A) and (B). A MFT within the white dotted square of each panel on the left is magnified 
on the right. Scale bars: 500 μm (left), 10 μm (right). (D) Diagram of the injection of AAV-sSyn-FLEX-ChR2-GFP into crus I and CTB 647 into the VTA 
of PCP2-Cre mice. Fresh cerebellar slices were then prepared to record the synaptic transmission from VTA-projecting DCN neurons in the DN upon 
the photostimulation of ChR2-positive PC axons. (E) Resultant expression of ChR2-GFP in PCs and CTB 647 labeling in the DN of a cerebellar slice in 
sagittal section. The area within the white dotted square of the left panel is magnified in the right panel. Whole-cell patch-clamp recording (dotted 
lines on the right) was performed from CTB 647-positive neurons, as seen in the magnified image on the right. Scale bars: 250 μm (left), 40 μm (right). 
(F) Representative traces of IPSCs evoked by 10 Hz photostimulation at a holding potential of −50 mV, before (control), during (bicuculline), and after 
(washout) bath application of bicuculline. Calibration: 20 pA, 50ms. (G) Peak amplitudes of light-evoked IPSCs. ***p < 0.001, Student’s t-test (n = 9 and 
5 for control and bicuculline, respectively). Data are shown as the mean ± SEM. Exact p values and the statistical tests used are available in Figure 5—
source data 1.

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. p Values and statistical tests related to Figure 5.

Figure supplement 1. Nucleocortical connections of the VTA-projecting DCN neurons.

Figure 5 continued
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Figure 6. Specific inhibition of VTA-projecting DCN neurons in the DN ameliorates depression-like behaviors. (A) Diagram of combined AAV injection. 
Bilateral injections of AAV-sSyn-tdT and AAV-sSyn-FLEX-hM4Di(Gi)–2AGFP was carried out into the DCN and a mixture of AAV-sSyn-mTBFP and 
retroAAV-CAG-Cre was injected into the VTA. (B–G) Immobility time in the TST (B) and the FST (C), total distance moved in the OFT (D), grooming 
time in the SST (E), and latency to feed in the NSFT (F) and in the home cage (G), to see the effects of the chronic inhibition of VTA-projecting DCN 

Figure 6 continued on next page
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these results truly represent depression-like behaviors, considering that differences in averaged values 
are significant but small despite large individual variability, and that both tests rely on immobility 
to evaluate the same dimension of depression-like behaviors, that is despair or hopelessness. Two 
further analyses were thus conducted. Firstly, we examined the correlation of individual data to see 
the inter-relationship in different combinations among three behavioral tests. There was a significant 
correlation between TST and FST, but not between OFT and TST or FST (Table 1; TST – FST: r = 0.33, 
p < 0.001; TST – OFT: r = –0.12, p = 0.2; FST – OFT: r = 0.05, p = 0.06), indicating that the TST and 
FST measured share the behavioral phenotypes, likely the depression-like behaviors. These results 
further confirm that immobility level is uncorrelated to locomotor disability, and present the possibility 
that individual variability may in part arise from degree of depression-like behaviors. Secondly, we 
tested the involvement of VTA-projecting DCN neurons in other dimensions of the depression-like 
behaviors using the sucrose splash test (SST) and the novelty suppressed feeding test (NSFT), which 
have been used to test self-neglect and hyponeophagia or anhedonia, respectively (Zou et al., 2015; 
Wang et al., 2018; Gadotti et al., 2019; Planchez et al., 2019; Chevalier et al., 2020). The 2-week 
RS application significantly decreased the time spent grooming in the SST (Figure 6E; t(42) = –5.12, 
p < 0.001), and significantly increased the latency to feed in the NSFT (Figure 6F; t(28) = 3.39, p = 
0.001), without altering home cage food consumption (Figure 6G; t(28) = 1.14, p = 0.26). These results 
confirm depression-like behaviors triggered by our RS application protocol. The RS-Gi-DN-Sal group 
showed similar depression-like behaviors to the RS group in both the SST and NSFT (SST: t(39) = –0.84, 
p = 0.4; NSFT: t(29) = –0.626, p = 0.53). On the other hand, depression-like behaviors were reduced 
in the RS-Gi-DN-CNO group: mice in the RS-Gi-DN-CNO group spent significantly longer time in 
grooming in the SST, and took significantly less time to feed in the NSFT, compared with the RS group 
(Figure 6E and F; SST: t(40) = 2.8, p = 0.006; NSFT: t(30) = –2.12, p = 0.04). Given the results following 

neurons using Gi during RS application in C57BL/6 mice. *p < 0.05, **p < 0.01, ***p < 0.001, one-way ANOVA followed by the Fisher’s LSD post hoc 
test (numbers of mice used for the CTR, RS, RS-Gi-DN-Sal, and RS-Gi-DN-CNO groups; n = 34, 42, 20, and 20 mice in the TST, FST, and OFT; n = 23, 21, 
20, and 21 mice in the SST; n = 15, 15, 16, and 17 in the NSFT). Data are presented as boxplots, as described in the legend to Figure 1. Exact p values 
and the statistical tests used are available in Figure 6—source data 1. Effect sizes for behavioral data are available in Figure 6—source data 2 and n 
numbers for behavioral tests are available in Figure 6—source data 3.

The online version of this article includes the following source data and figure supplement(s) for figure 6:

Source data 1. p Values and statistical tests related to Figure 6.

Source data 2. Effect sizes for behavior results related to Figure 6.

Source data 3. Numbers of mice for each sex used in each behavioral test related to Figure 6.

Figure supplement 1. Changes in body weights of mice used for Figure 6.

Figure 6 continued

Table 1. Pearson correlation coefficient analysis between TST and FST, TST and OFT, and FST and 
TST.
The correlation was calculated from data of all mice used in each series of experiments for 
Figure 2J–L, Figure 6B–D, or Figure 7B–D.

Figure Test
Sample 
numbers Comparison Coefficient (r) p value Significance

Figure 2J-
L

Effects of excitation of 
crus I PCs on RS 119

TST vs FST 0.464 1.17 × 10–7 ***

TST vs OFT 0.153 0.0961

FST vs OFT 0.0303 0.743

Figure 6B-
D

Effects of inhibition of 
VTA-projecting DCN 
neurons on RS 116

TST vs FST 0.327 3.42 × 10–4 ***

TST vs OFT –0.119 0.204

FST vs OFT 0.0474 0.0613

Figure 7B-
D

Only excitation of VTA-
projecting DCN neurons 70

TST vs FST 0.439 1.43 × 10–4 ***

TST vs OFT –0.0308 0.8

FST vs OFT –0.0143 0.907
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chemogenetic inhibition of VTA-projecting DCN neurons, this is in line with our data showing a reduc-
tion in depression-like behaviors after excitation of inhibitory PCs in crus I. Even though we primarily 
targeted the AAV injection into the DN, VTA-projecting DCN neurons, not only in the DN, but also in 
the IPN, might also be chemogenetically inhibited, as the IPN had minor projections to the VTA and 
is anatomically close to the DN. Taken together, these results indicate that decreased activity of VTA-
projecting DCN neurons in the DN, and possibly IPN, inhibits depression-like behaviors.

Excitation of VTA-projecting DCN neurons is sufficient to trigger 
depression-like behaviors without stress application
Two possibilities can be considered regarding the involvement of the circuit composed of VTA-
projecting DCN neurons in the stress-mediated development of depression-like behaviors, that is 
the increase in circuit activity proactively promotes the development of depression-like behaviors, 
or contributes to the development by cooperatively working with other neuronal circuits affected by 
RS. In the former case, chronic and selective activation of the circuit alone may cause the develop-
ment of behavioral changes similar to ones induced by stress, even without RS application, whereas 
it would not trigger such behavioral changes if the latter is the case. To test these possibilities, we 
performed triple AAV injections into wild-type mice to express Gq in VTA-projecting DCN neurons, 
as in Figure 7—figure supplement 1A. Without applying RS, we then chronically and selectively acti-
vated VTA-projecting DCN neurons for 2 weeks by administering CNO once a day to mice expressing 
Gq in VTA-projecting DCN neurons in the DN (Figure 7A, Gq-DN-CNO group). The CNO adminis-
tration itself without stereotaxic AAV injection did not affect immobility of control mice in the TST 
and FST, because the CNO group showed similar immobility time to the CTR group, and significantly 
shorter immobility time than the RS group (Figure 7—figure supplement 1B and C; CTR – Sal, TST: 
t(42) = 1.1, p = 0.27, FST: t(42) = 0.94, p = 0.35; CTR – CNO, TST: t(42) = 1.08, p = 0.28, FST: t(42) = 0.96, p 
= 0.34; RS – Sal, TST: t(42) = –2.71, p = 0.008, FST: t(42) = –2.6, p = 0.01; RS – CNO, TST: t(42) = –2.74, p 
= 0.008, FST: t(42) = –2.58, p = 0.01). These results indicate that off-target effects of CNO, if any, have 
little or no impact on our behavioral observation without RS application. In contrast, the Gq-DN-CNO 
group showed a significantly higher immobility compared with the CTR group in both the TST and FST, 
and the increased immobility time was similar to the RS group (Figure 7B and C; CTR – Gq-DN-CNO, 
TST: t(34) = 3.31, p = 0.001, FST: t(34) = 6.48, p < 0.001; RS – Gq-DN-CNO, TST: t(33) = –1.19, p = 0.24, 
FST: t(33) = 0.53, p = 0.59). Conceivably due to the combination of very mild stress, including daily 
intraperitoneal administration, the saline (Gq-DN-Sal) group without RS showed significantly longer 
immobility time than the CTR group in the FST, but not in the TST (TST: t(33) = 1.34, p = 0.18, FST: t(33) 
= 4.13, p < 0.001). Importantly, the Gq-DN-CNO group was still immobile for a significantly longer 
period compared with the Gq-DN-Sal group in both the TST and FST (TST: t(37) = 2.05, p = 0.04, FST: 
t(37) = 2.4, p = 0.02). The OFT confirmed that the increased immobility times of the Gq-DN-CNO 
groups in the TST and FST were not due to less locomotor activity (Figure 7D; F(3,66) = 2.13, p = 0.11). 
These results indicate that the chemogenetic excitation of VTA-projecting DCN neurons could result 
in behavioral consequences similar to the RS.

Nevertheless, there is a possibility that the increased immobility time of the Gq-DN-CNO group 
may be a presentation of biological events differing from the RS-dependent depression-like behav-
iors. If this is the case, additive effects could be observed in increased immobility for the Gq-DN-CNO 
and RS groups. However, the combination of chemogenetic excitation of VTA-projecting DCN 
neurons with the RS (RS-Gq-DN-CNO group) did not show an additive effect in the TST and FST 
(Figure 7—figure supplement 1E and F). The average immobility time of the RS-Gq-DN-CNO group 
was significantly longer than that of the CTR group, but was similar to those of the RS group in the 
TST and FST (CTR – RS-Gq-DN-CNO, TST: t(45) = 1.99, p = 0.049, FST: t(45) = 2.16, p = 0.03; RS – RS-Gq-
DN-CNO, TST: t(39) = –0.28, p = 0.78, FST: t(39) = –1.08, p = 0.28), while travel distance in the OFT was 
not different between groups (Figure 7—figure supplement 1G; F(3,83) = 1.28, p = 0.29). Thus, the 
increased immobility triggered by the chemogenetic excitation of VTA-projecting DCN neurons alone 
is likely due to the emergence of depression-like behaviors. This notion was further strengthened 
by assessing different aspects of depression-like behaviors using the SST and NSFT after 2 weeks 
of chemogenetic excitation (Figure 7E). The Gq-DN-CNO group, having chronic excitation of VTA-
projecting DCN neurons alone without the RS, showed significantly less grooming time in the SST 
and significantly longer latency to feed in the NSFT than the CTR and Gq-DN-Sal groups (Figure 7F 

https://doi.org/10.7554/eLife.72981
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Figure 7. Excitation of VTA-projecting DCN neurons in the DN is sufficient to trigger depression-like behaviors in 
the absence of stress. (A and E) Diagram of the experimental time course to check the effects of the excitation of 
VTA-projecting DCN neurons alone on depression-like behaviors. The OFT, TST, and FST were performed after 
2 weeks of chronic administration of CNO into C57BL/6 mice expressing Gq in VTA-projecting DCN neurons 

Figure 7 continued on next page
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and G; CTR – Gq-DN-CNO, SST: t(55) = –4.61, p < 0.001, NSFT: t(47) = 2.29, p = 0.02; Gq-DN-Sal – 
Gq-DN-CNO, SST: t(57) = –3.94, p < 0.001, NSFT: t(48) = 2.67, p = 0.009), without affecting home-cage 
feeding consumption (Figure 7—figure supplement 1H; F(3,96) = 0.09, p = 0.96). This resulted in the 
Gq-DN-CNO group being equivalent to the RS group in regard to the grooming time in the SST and 
the latency to feed in the NSFT (RS – Gq-DN-CNO, SST: t(55) = 0.42, p = 0.68, NSFT: t(45) = –0.7, p = 
0.49), implying that the Gq-DN-CNO group developed depression-like behaviors. Furthermore, when 
the OFT, TST, and FST were performed a week after the last CNO administration (Figure 7E), the 
results were similar to ones observed a few days after the last CNO administration: the immobility 
time in the Gq-DN-CNO group was significantly longer than the CTR and Gq-DN-Sal groups, but was 
similar to the RS group in both the TST and FST (Figure 7H and I; CTR – Gq-DN-CNO, TST: t(43) = 3.91, 
p < 0.001, FST: t(43) = 4.01, p < 0.001; Gq-DN-Sal – Gq-DN-CNO, TST: t(45) = 2.84, p = 0.006, FST: t(45) 
= 3.43, p < 0.001; RS – Gq-DN-CNO, TST: t(43) = –0.72, p = 0.47, FST: t(43) = 0.85, p = 0.4), whereas no 
difference was detected in the OFT (Figure 7J; F(3,85) = 0.43, p = 0.73). The results indicate that the 
depression-like behaviors triggered by the chemogenetic excitation of VTA-projecting DCN neurons 
were persistent at least for a week. Taken together with the other results in this study, we conclude 
that chronic activation of specific DCN neurons projecting from the DN to the VTA is triggered by 
the chronic stress, and such activation itself proactively leads to the development of depression-like 
behaviors.

Discussion
In the present study, to test the role of the cerebellum in the development of depression-like behav-
iors, chemogenetic manipulation was performed on mice specifically during chronic RS application. 
Our results demonstrated that chemogenetic excitation of crus I PCs suppressed the activation of DCN 
neurons in the DN and depression-like behaviors, both of which were triggered by the application of 
RS. As we identified neuronal networks of the DN connecting from crus I of the cerebellar cortex to 
the VTA, a brain region involved in the regulation of stress susceptibility (Fox and Lobo, 2019), we 
performed chemogenetic inhibition of VTA-projecting DCN neurons in the DN, and possibly the IPN. 
We found that the inhibition of these neurons during chronic RS also resulted in the suppression of 
depression-like behavior. These results indicate that the cerebellum directly contributes to the mech-
anism that develops depression-like behavior owing to stress, through the activation of a specific 
circuit composed of DCN neurons projecting to the VTA. In addition, specific activation of the VTA-
projecting DCN neurons on their own mimicked the effects of RS on depression-like behavior. We thus 

without RS application (A). In the separate series of experiments, the SST and NSFT were performed after 2 weeks 
of CNO administration, and the OFT, TST, and FST were then performed a week after the last CNO administration 
(E). The combined AAV injection was carried out, as shown in Figure 7—figure supplement 1A. (B–D and F–J) 
Effects of the chronic excitation of VTA-projecting DCN neurons alone in C57BL/6 mice. The TST (B), FST (C), and 
OFT (D) were performed by following the time course shown in A (n = 16, 15, 19, and 20 mice for the CTR, RS, Gq-
DN-Sal, and Gq-DN-CNO groups, respectively). In the separate series of experiments, the SST (F), NSFT (G), TST 
(H), FST (I), and OFT (J) were performed by following the time course shown in E (numbers of mice used for the 
CTR, RS, Gq-DN-Sal, and Gq-DN-CNO groups; n = 27, 27, 29, and 30 mice in the SST; n = 26, 24, 27, and 23 mice 
in the NSFT; n = 21, 21, 23, and 24 mice in the TST, FST, and OFT). *p < 0.05, **p < 0.01, ***p < 0.001, one-way 
ANOVA followed by the Fisher’s LSD post hoc test. Data are presented as boxplots, as described in the legend 
to Figure 1. Exact p values and the statistical tests used are available in Figure 7—source data 1. Effect sizes 
for behavioral data are available in Figure 7—source data 2 and n numbers for behavioral tests are available in 
Figure 7—source data 3.

The online version of this article includes the following source data and figure supplement(s) for figure 7:

Source data 1. p Values and statistical tests related to Figure 7.

Source data 2. Effect sizes for behavior results related to Figure 7.

Source data 3. Numbers of mice for each sex used in each behavioral test related to Figure 7.

Figure supplement 1. No additive effects of chemogenetic excitation on RS-dependent depression-like 
behaviors.

Figure supplement 2. Changes in body weights of mice used for Figure 7.

Figure 7 continued
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conclude that the activation of the neuronal circuit of VTA-projecting DCN neurons, which is regulated 
by crus I PCs, is a crucial determinant of the development of stress-mediated depression-like behav-
iors (Figure 8), although the circuit may include not only a pathway to the VTA but also pathways to 
non-VTA regions via DCN collateral projections.

Network connections between the cerebellum and VTA, and their 
importance for the development of depression-like behaviors
The cerebellum has connections with many brain regions through monosynaptic or multisynaptic 
pathways (Bostan and Strick, 2018; Bohne et al., 2019; Milardi et al., 2019; Watson et al., 2019; 
Wagner and Luo, 2020). The VTA also receives inputs from and sends outputs to many brain regions 
(Beckstead, 1978; Swanson, 1982; Oades and Halliday, 1987; Zahm et al., 2011; Watabe-Uchida 
et al., 2012; Beier et al., 2015). Reciprocal anatomical connections between these two brain regions 
have long been known (Snider et  al., 1976; Oades and Halliday, 1987; Ikai et  al., 1992). We 
confirmed the neuronal circuit from the DN and to a lesser extent from the IPN to the VTA, and further 
clarified functional connections from crus I to the DN and then to the VTA. Whereas all recorded DCN 
neurons showed IPSCs upon the stimulation of crus I PC axons, 24% of VTA neurons responded to 
the stimulation of DCN neuronal axons. This seems to be reasonable, considering that individual VTA 
neurons have selective synaptic connections, as shown by 10–50% of nucleus accumbens-projecting 

Figure 8. Diagram summarizing the results of this study. In this study, we demonstrated that the neural circuit from crus I of the cerebellar cortex to the 
DN and then to the VTA is functionally connected (left), and that the neuronal circuit composed of VTA-projecting DCN neurons in the DN is crucial for 
controlling the chronic stress-mediated development of depression-like behaviors (middle), which is possibly prevented under certain situations that 
may increase PC activity (right).

https://doi.org/10.7554/eLife.72981
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VTA neurons responding to stimulation of inputs from specific brain regions (Beier et  al., 2015). 
Furthermore, we observed zonal organization of corticonuclear and nucleocortical pathways in the 
VTA-projecting DCN neurons, as is generally detected in DCN neurons (Houck and Person, 2014).

Nonmotor functions of the cerebellum are becoming generally accepted (Hull, 2020; Rochefort 
et al., 2013; Wagner and Luo, 2020), and the cerebellum has also been implicated in stress responses 
and stress-associated disorders (De Bellis and Kuchibhatla, 2006; Alalade et al., 2011; Baldaçara 
et al., 2011; Liu et al., 2012; Guo et al., 2012; Guo et al., 2013; Gounko et al., 2013; Phillips 
et al., 2015; Córdova-palomera, 2016; Huguet et al., 2017; Xu et al., 2017; Bambico et al., 2018; 
Depping et al., 2018; Moreno-Rius, 2019). However, the exact role of the cerebellum in stress and 
depression remained unclear. Antidepressant effects of the cerebellum was suggested by a study in 
which electrical stimulation of the vermis of stressed animals led to their recovery from depression-like 
behaviors (Bambico et al., 2018). This is likely through the activation of serotonergic neurons in the 
dorsal raphe nucleus, which were found to have antidepressant effects (Urban et al., 2016; You et al., 
2016; Nishitani et al., 2019). In contrast, the proactive contribution of the cerebellum to the develop-
ment of depression-like behaviors has not been tested. In the present study, we used chemogenetic 
molecules to manipulate the cerebellar circuit activity during chronic stress application, rather than 
during or right before testing depression-like behaviors. This experimental design was appropriate for 
analyzing the direct contribution of the cerebellum to the developmental process of stress-induced 
depression-like behaviors. Indeed, such manipulation of neuronal activity resulted in the inhibition of 
stress-mediated depression-like behaviors, indicating the importance of the cerebellum, through the 
neuronal circuit consisting of VTA-projecting DCN neurons, on the development of depression-like 
behaviors. Because our results only apply to the development, a possibility of cerebellar contribution 
to the expression of depression-like behaviors is not precisely ruled out in this study. Further analyses 
using the manipulation of the circuit only before the behavioral test would resolve this question.

Based on our results of chemogenetic manipulation during RS application, we conclude that the 
increased activity of VTA-projecting DCN neurons in the DN promotes depression-like behaviors 
during chronic stress. Given that the chemogenetic activation of crus I PCs reduced depression-like 
behaviors, the decrease in PC firing is probably the cause of the activity increase in DCN neurons. In 
fact, a previous study reported that PC firing was decreased by chronic stress application (Bambico 
et al., 2018). In addition, the present study demonstrated that chronic excitation of VTA-projecting 
DCN neurons in the DN alone triggered depression-like behavior, not only in the TST and FST, but 
also in the SST and NSFT, to a similar extent as RS application. This leads to the conclusion that the 
chronic increase in activity of the circuit of VTA-projecting DCN neurons is not only necessary but also 
sufficient for the development of depression-like behaviors. Considering that depressive symptoms 
are generally sustained in depressive disorders, this conclusion can be further supported by our results 
showing sustained depression-like phenotypes in mice (Figure 7H and I). Interestingly, excitation of 
this circuit did not additionally enhance RS-mediated depression-like behavior. Based on the concept 
of saturation or occlusion that are often used for the investigation of synaptic plasticity as mechanisms 
of memory formation (Lisman, 2017; Inoshita and Hirano, 2018), the stimuli will not have additive 
effects if two types of stimuli triggering similar consequences are mediated by the same pathway. 
Therefore, our results showing no additive effects suggest that RS-induced depression-like behavior is 
mediated by the activation of a circuit consisting of VTA-projecting DCN neurons.

Because this circuit obviously includes a direct pathway from the DN to the VTA, which is the 
primary target of AAV-mediated chemogenetic molecule expression, activity of the DN-VTA circuit 
is likely the crucial determinant of stress-mediated depression-like behaviors. To a lesser extent, our 
tracing analyses showed the neuronal circuit also from the IPN to the VTA, so that the IPN-VTA circuit 
could be a part of the determinant of depression-like behaviors as well. There may also be the contri-
bution of DCN neuron axon collateral pathways, as DCN neurons showed broad projection patterns 
(Kebschull et al., 2020). We have found the nucleocortical pathway of VTA-projecting DCN neurons. 
A previous study of associative motor learning demonstrated that the activity of nucleocortical projec-
tions from the IPN contributes to the amplification of learned response (Gao et al., 2016). In this 
previous study, the optogenetic activation of nucleocortical pathway increased the learned response in 
trained animals, yet did not trigger the response in untrained animals (Gao et al., 2016). As we found 
that the activity of VTA-projecting DCN neurons led to the depression-like behaviors, their nucleo-
cortical pathway may also be involved in promoting the development of depression-like behaviors. 

https://doi.org/10.7554/eLife.72981
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However, given the modulatory effects of nucleocortical pathway shown by Gao et al., depression-
like behaviors triggered by chronic excitation of VTA-projecting DCN neurons alone would not only 
be due to the activation of nucleocortical pathway, but possibly due to the nucleocortical pathway 
amplifying responses triggered by the efferent pathway. In addition, because GFP signals were still 
weakly visible in the RN when VTA-projecting DCN neurons were selectively labeled (Figures 3G and 
5B), their collateral axons may partly project to the RN. The cerebellar-RN pathway is well known for 
cerebellum-dependent associative motor learning, delay eyeblink conditioning (Freeman and Stein-
metz, 2011). Whereas there has been an idea from evolutionary point of view that projections from 
the DN to the parvocellular part of the RN might be involved in cognitive functions (Basile et al., 
2021), their relevance to stress-related responses is totally unknown. It is therefore unclear whether 
or how the collateral projections to the RN is involved in the stress-dependent behavioral changes we 
observed. Among all circuits of VTA-projecting DCN neurons, the precise circuit involved in the regu-
lation of depression-like behaviors might be clarified by further studies using local neuronal activation 
by optogenetic stimulation, although it may be challenging to chronically manipulate neuronal activity 
for several hours each day.

Mechanisms of the cerebellum regulating depression-like behaviors
The present study demonstrated for the first time that the cerebellum proactively mediate chronic 
stress-induced depression-like behaviors via the circuit composed of VTA-projecting DCN neurons. 
This finding consequently leads to two important questions that should be addressed in the near 
future, and we therefore discuss the possibility regarding these questions. First, considering that 
chronic stress triggers sustained changes in behaviors, certain forms of plasticity likely occur in the 
circuit mediating such changes. As many forms of plasticity have been reported in the cerebellum 
(D’Angelo et al., 2016; Ohtsuki et al., 2020), the plasticity of synapses or intrinsic excitability (IE) may 
be involved in the process of stress application leading to the decrease in PC firing and the increase 
in DCN neuron activity. A sequence of plasticity suggested by a study of motor memory (Jang et al., 
2020) could be applicable to this process: long-term depression of IE is triggered in crus I PCs during 
RS application, and long-term potentiation of IE in VTA-projecting DCN neurons of the DN is conse-
quently induced, which could lead to repeated activation of these DCN neurons during chronic RS 
application. Further, given that several forms of plasticity in the VTA can be triggered by chronic stress 
and determine stress susceptibility (Douma and de Kloet, 2020), the repeated DN-VTA circuit activity 
would regulate some forms of plasticity in the VTA, resulting in the development of depression-like 
behaviors. Thus, understanding the natures of plasticity not only within the cerebellum but also in the 
DN-VTA circuit seems to be an interesting follow-up study.

The second interesting question is as to what kind of signals are processed through the cerebellum 
and the circuit of VTA-projecting DCN neurons. In contrast to our results, a previous study demon-
strated that activation of the circuit from the DCN to the VTA is rewarding (Carta et al., 2019). To 
reconcile our results with this previous study, two different experimental conditions are important to 
be considered. First, to manipulate the circuit, we used chemogenetics, whereas the previous study 
used optogenetics. Second, we chronically manipulated VTA-projecting DCN neurons for 2 weeks 
during stress application before the behavioral tests, whereas the previous study mostly manipulated 
DCN-VTA pathway under the behavioral recordings. Both combinations of experimental conditions 
appear to be reasonable from the time perspective, namely, chemogenetics with a low temporal 
resolution for chronically repeated manipulations and optogenetics with a high temporal resolution 
for transient manipulations. Although other possibilities cannot be denied, such temporal aspects, 
including the timing, duration and frequency, for manipulation of the DCN-VTA pathway could be 
the major factors leading to different consequences in these two studies. As the DA neurons in the 
VTA have been implicated in the regulation of both mentally positive and negative events, such as 
reward and aversion, respectively (Volman et al., 2013; Pignatelli and Bonci, 2015), the promotion 
of both reward and depression-like behavior via temporally different activity patterns in the circuit 
composed of VTA-projecting DCN neurons appear to be justified. The cerebellar functions operating 
prediction of not only motor, but also non-motor events, have drawn attention (Sokolov et al., 2017; 
Hull, 2020). In line with this notion, signals related not only to the reward prediction, but also to 
the pessimistic prediction, may be provided via VTA-projecting DCN neurons. Further investigations 
performed in consideration of coordinating the abovementioned differences between two studies 
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may provide better understanding of signals processed through the circuit of VTA-projecting DCN 
neurons.

Possible involvement of the cerebellum in the resilience to mental 
disorders
The inhibition of depression-like behavior by chemogenetic PC excitation that was observed in our 
study is likely to occur through inhibition of the increased activity of DCN neurons, which is a cause of 
the development of depression-like behavior. In previous studies, observations of movement behav-
iors together with recording of PC firing have shown that PC firing rates correlate with the kine-
matics of movement (Medina, 2011; Brown and Raman, 2018; Popa et  al., 2019). Besides, PC 
firing patterns have been shown to change in parallel with learned movement (Jirenhed et al., 2007). 
Enhancement of the intrinsic excitability of PCs was also observed upon associative motor learning 
(Titley et al., 2020). These observations indicate that PC activity can be increased in a wide variety 
of situations. Therefore, even though chronic stressful events may cause a reduction in PC activity, 
depression-like behaviors can be prevented depending on the situations that lead to an increase in PC 
activity (Figure 8, right panel), as we found by the chemogenetic excitation of PCs. While a number of 
factors in many brain regions are known to control an individual’s susceptibility and resilience to stress 
(Franklin et al., 2012; Osório et al., 2017; Knowland and Lim, 2018; Liu et al., 2018), the cere-
bellum did not previously draw much attention as one of these brain regions. To understand whether 
and how the cerebellum contributes to stress resilience depending on the situation, it would be bene-
ficial to clarify the superficially conflicting aspects of cerebellar network structures, the compartmen-
talization of the cerebellum into functional modules (D’Angelo and Casali, 2013; Apps et al., 2018), 
and the structures appropriate for input integration (Huang et al., 2013; Ishikawa et al., 2015).

We found that alterations of activities in the cerebellum and likely in the circuit to the VTA by 
chronic stress is a cause of depression-like behaviors. This finding supports the notion in human that 
cerebellar abnormalities that correlate with the symptoms of mental disorders, including depression 
(Alalade et al., 2011; Córdova-palomera, 2016; Meabon et al., 2016; Xu et al., 2017; Romer et al., 
2018; Moberget et al., 2019), are not just an outcome indicating the degree of symptoms, but are 
risk factors that predict the possibility of experiencing mental disorders in the future (Romer et al., 
2018; Hariri, 2019; Moberget et al., 2019). In addition to the VTA, the cerebellum has interactions 
through multisynaptic pathways with other brain regions implicated in the regulation of mood, such as 
the medial prefrontal cortex, dorsal raphe nucleus, and hippocampus (Weiss and Pellet, 1982; Braz 
et al., 2009; Chen et al., 2016; Watson et al., 2014; Watson et al., 2019; Bohne et al., 2019), and 
these interactions might cooperatively work in controlling psychological conditions. Nevertheless, 
the present study demonstrated that the circuit composed of VTA-projecting cerebellar neurons is 
a crucial pathway in controlling stress-mediated depression-like behaviors. This raises the possibility 
that maintaining the integrity and functionality of the cerebellum, particularly the crus I and the DN, 
may be important in regulating neural activities in the VTA and other mood-related brain regions, and 
consequently in avoiding the development of mental depression in human as well.

Materials and methods

 Continued on next page

Key resources table 

Reagent type (species) or 
resource Designation Source or reference Identifiers Additional information

Strain, strain background 
(Mus musculus) C57BL/6 J mice Orient Bio N/A

Strain, strain background 
(Mus musculus) ICR mice; CrljOri:CD1 Orient Bio N/A

Genetic reagent (Mus 
musculus) Gad2-IRES-Cre mice; Gad2tm2(cre)Zjh/J Jackson Laboratories

Stock No: 010802; 
RRID:IMSR_JAX:010802

Genetic reagent (Mus 
musculus) Pcp2-cre mice; B6.129-Tg(Pcp2-cre)2Mppin/J Jackson Laboratories

Stock No: 004146; 
RRID:IMSR_JAX:004146

Genetic reagent (Mus 
musculus)

Ai six reporter mice; B6.Cg-
Gt(ROSA)26Sortm6(CAG-ZsGreen1)Hze/J Jackson Laboratories

Stock No: 007906; 
RRID:IMSR_JAX:007906

https://doi.org/10.7554/eLife.72981
https://identifiers.org/RRID/RRID:IMSR_JAX:010802
https://identifiers.org/RRID/RRID:IMSR_JAX:004146
https://identifiers.org/RRID/RRID:IMSR_JAX:007906


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Baek et al. eLife 2022;11:e72981. DOI: https://​doi.​org/​10.​7554/​eLife.​72981 � 24 of 38

Reagent type (species) or 
resource Designation Source or reference Identifiers Additional information

Antibody Mouse monoclonal anti-calbindin Sigma-Aldrich Cat#C9848; RRID:AB_476894 (1:200)

Antibody Rabbit polyclonal anti-TH Millipore Cat#AB152; RRID: AB_390204 (1:400)

Antibody Rabbit monoclonal anti-c-Fos
Cell Signalling 
Technology Cat#2250; RRID: AB_2247211 (1:300)

Antibody Mouse monoclonal anti-NeuN Millipore
Cat#MAB377; RRID: 
AB_2298772 (1:200)

Antibody Mouse monoclonal anti-GAD67 Millipore
Cat#MAB5406; 
RRID:AB_2278725 (1:1000)

Antibody Mouse monoclonal anti-GFAP Millipore Cat#MAB360; RRID:11212597 (1:200)

Antibody Goat anti-mouse IgG(H + L) alexa fluor@647 Invitrogen
Cat#A21235; RRID: 
AB_2535804 (1:200)

Antibody Goat anti-rabbit IgG(H + L) alexa fluor@647 Invitrogen
Cat#A21245; RRID: 
AB_141775 (1:200)

Antibody Rabbit polyclonal anti-OLLAS Antibodies-online ABIN1842163 (1:1000)

Chemical compound, drug Clozapine N-oxide Hello Bio Cat#HB1807 10 mg/kg, i.p.

Chemical compound, drug
Bicuculline  
methochloride Tocris Bioscience Cat#0131

Chemical compound, drug Mounting medium Vector Laboratories Cat#H-1400

Chemical compound, drug
Mounting medium  
with DAPI Vector Laboratories Cat#H-1500

Chemical compound, drug
Prolong diamond  
antifade mountant

Thermo Fisher 
Scientific Cat#P36961

Chemical compound, drug

Cholera toxin  
subunit B, Alexa  
flour 647 conjugate

Thermo Fisher 
Scientific Cat#C34778

Chemical compound, drug Tetrodotoxin Tocris Bioscience Cat#1,069

Chemical compound, drug 4-Aminopyridine Tocris Bioscience Cat#0940

Recombinant DNA reagent pAAV-hSyn-DIO-hM3Dq(Gq)-mCherry Addgene Addgene plasmid #44,361

Recombinant DNA reagent pAAV-hSyn-DIO-hM4Di(Gi)-mCherry Addgene Addgene plasmid #44,362

Recombinant DNA reagent pAAV-CaMKIIa-hChR2(H134R)-EYFP Addgene Addgene plasmid #26,969

Recombinant DNA reagent
AAV-CaMKIIa- 
GCaMP6f-P2A-nls-dTomato Addgene Addgene plasmid #51,087

Recombinant DNA reagent pBAD-mTagBFP2 Addgene Addgene plasmid #34,632

Recombinant DNA reagent ptdTomato-N1 Clontech Cat#632,532

Recombinant DNA reagent paavCAG-iCre Addgene Addgene plasmid #51,904

Recombinant DNA reagent paavCAG-sfGFP Addgene Will be deposited

Recombinant DNA reagent

paavCAG-pre- 
mGRASPi- 
mCerulean Addgene Will be deposited

Recombinant DNA reagent paavCAG-post-mGRASPi-2AdT Addgene Addgene plasmid #34,912

Recombinant DNA reagent rAAV2-retro helper Addgene Addgene plasmid #81,070

Biological sample (AAV) AAV-sSyn-GFP
Kim et al., Kim et al., 
2015a  �

Biological sample (AAV) AAV-sSyn-tdT This paper  �
Further information will be provided 
by the Lead Contact upon request.

Biological sample (AAV) AAV-sSyn-mTBFP This paper  �
Further information will be provided 
by the Lead Contact upon request.

 Continued

 Continued on next page
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Reagent type (species) or 
resource Designation Source or reference Identifiers Additional information

Biological sample (AAV) AAV-sSyn-ChR2-GFP This paper  �
Further information will be provided 
by the Lead Contact upon request.

Biological sample (AAV) AAV-sSyn-ChR2-2AdT This paper  �
Further information will be provided 
by the Lead Contact upon request.

Biological sample (AAV) AAV-sSyn-FLEX-GFP This paper  �
Further information will be provided 
by the Lead Contact upon request.

Biological sample (AAV) AAV-sSyn-FLEX-ChR2-GFP This paper  �
Further information will be provided 
by the Lead Contact upon request.

Biological sample (AAV) AAV-sSyn-FLEX-hM3Dq(Gq)–2AGFP This paper  �
Further information will be provided 
by the Lead Contact upon request.

Biological sample (AAV) AAV-sSyn-FLEX-hM4Di(Gi)–2AGFP This paper  �
Further information will be provided 
by the Lead Contact upon request.

Software, algorithm pClamp 10 Axon instruments RRID:SCR_011323

Software, algorithm NIS-Element Nikon RRID:SCR_014329

Software, algorithm Fiji NIH RRID:SCR_002285

Software, algorithm Ethovision Noldus RRID:SCR_000441

Software, algorithm Origin Origin Lab RRID:SCR_014212

 Continued

Mice
All experiments were performed in accordance with the Institutional Animal Care and Use Committee 
of Korea Institute of Science and Technology. ICR mice were used for neuronal tracing analysis, and 
C57BL/6 J and PCP2-Cre transgenic mice (Jackson Laboratories, B6.129-Tg(Pcp2-cre)2Mppin/J) were 
used for behavioral and c-Fos immunohistochemical analyses. For the electrophysiological experi-
ments, C57BL/6 J, PCP2-Cre, or GAD2-IRES-Cre;Ai6 mice were used. Regarding the PCP2-Cre mice, 
male PCP2-Cre mice were crossed with female ICR mice to obtain heterozygous PCP2-Cre (PCP2-
Cre;ICR) mice for use in this study. GAD2-IRES-Cre (Jackson Laboratories, B6J.Cg-Gad2tm2(cre)
Zjh/MwarJ) and Ai6 ZsGreen reporter mice (B6.Cg-Gt(ROSA)26Sortm6(CAG-ZsGreen1)Hze/J) were 
crossed to obtain GAD2-IRES-Cre;Ai6 mice. Animals of both sexes were used in every set of experi-
ments, and the numbers of mice for each sex used in a single condition of behavioral experiments are 
listed in all source data three related to Figure 2—source data 3, Figure 6—source data 3, Figure 
7—source data 3. Mice were group housed (6 mice/cage) at 23°C to 25 °C under a 12 hr light/12 hr 
dark cycle with ad libitum access to food and water. The ages of the mice are described in the indi-
vidual sections explaining the different procedures.

AAV production and stereotaxic injection
For all experiments, AAV serotype I or rAAV2-retro (Tervo et al., 2016) was used for anterograde 
or retrograde labeling, respectively. AAV constructs were made by cloning using plasmids for AAV-
sSyn and AAV-sSyn-FLEX that were used in our previous study (Kim et  al., 2015a). The cDNA 
fragments for hM3D (Gq), hM4D (Gi), ChR2, P2A, mTagBFP2, and tdT were obtained from pAAV-
hSyn-DIO-hM3D(Gq)-mCherry (Addgene), pAAV-hSyn-DIO-hM4D(Gi)-mCherry (Addgene), pAAV-
CaMKIIa-hChR2(H134R)-EYFP (Addgene), AAV-CaMKIIa-GCaMP6f-P2A-nls-dTomato (Addgene), 
pBAD-mTagBFP2 (Addgene), and ptdTomato-N1 (Clontech), respectively. The plasmids of paavCAG-
iCre (Addgene), paavCAG-sfGFP, and paavCAG-post-mGRASP-2AdT (Addgene) made in a previous 
study (Druckmann et al., 2014) were used. The plasmid paavCAG-pre-mGRASPi(OLLAS)–2AiCre was 
modified for efficient reconstitution and axonal visualization. AAV vectors with estimated titers from 
1012–1013 vector genome copies were produced, as described previously (Kim et al., 2011; Kim et al., 
2015a).

For stereotaxic injections, mice were anesthetized with Avertin (250 μg/g body weight) and injected 
using a stereotaxic apparatus (Narishige) together with a microinjection pump (Nanoliter 2010, WPI, 
Inc) or iontophoresis (Stoelting). When a confined volume of AAV vectors were injected for neuronal 
tracing analysis, as shown in Figure 3, iontophoretic injection was used (Oh et al., 2014), whereas 
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pressure injection with a microinjection pump was used for the other experiments. The volume of AAV 
vectors injected by the pressure injection was 0.7 μL in crus I, 0.5 μL in the DCN, and 0.4 μL in the 
VTA. The conditions used for iontophoretic injection were 5 μA, 7 s on/7 s off cycle, for 5 min. Stereo-
taxic coordinates of crus I were anteroposterior (AP) −6.3  mm, mediolateral (ML)  ±2.75  mm, and 
ventral (V) −1.30 to −1.50 mm relative to bregma; those of the DCN were AP −6.00 mm, ML ±2.30, 
and V −2.70 mm relative to bregma; and those of the VTA were AP −3.1 mm, ML 0 to −0.5 mm and 
V −4.50 mm relative to bregma. The age of the mice subjected to the AAV injections was postnatal 
day 18 for electrophysiological and neuronal tracing analyses, and 5  weeks old for behavior and 
c-Fos immunohistochemical analyses. AAV vectors used for the individual analyses are described in 
the corresponding sections of the results, and are also shown in the figures. For the specific expres-
sion of molecules in VTA-projecting DCN neurons, we injected retrogradely infecting AAV expressing 
Cre recombinase (rAAV2-retro-CAG-iCre) into the VTA, and AAV triggering Cre-dependent expres-
sion into the DCN. To confirm the areas of injection in these experiments, AAV-sSyn-tdT (1/4 volume 
of total) and AAV-sSyn-mTBFP (1/4  volume) were combined with AAV injected into the DCN and 
VTA, respectively. Similarly, to confirm the injection of rAAV2-retro-CAG-sfGFP into the VTA, AAV-
sSyn-mTBFP (1/4 volume) was combined. For electrophysiological analysis on VTA-projecting DCN 
neurons, the retrograde tracer, CTB 647 (1 mg/ml, Thermo Fisher Scientific), was injected into the 
VTA. For the analysis of structural synaptic connections, we used mGRASPi, which is based on func-
tional complementation of two non-fluorescent split-GFP fragments targeted specifically to the pre- 
and post-synaptic membrane that are reconstituted as fluorescent GFP in that location, when two 
neurons, each expressing one of the fragments, are closely opposed across a synaptic cleft. For this 
technique, AAV-CAG-pre-mGRASPi(OLLAS)–2AiCre was injected into the DCN and AAV-CAG-post-
mGRASPi-2AdT was injected into the VTA. After the surgery, mice were kept on a heating pad until 
they recovered from the anesthesia and were returned to their home cages.

Immunohistochemistry and confocal imaging
Approximately 2  weeks after AAV injection for neuronal tracing analysis, 5-week-old mice were 
anesthetized with isoflurane and perfused transcardially with 4% paraformaldehyde (PFA) in 0.1 M 
sodium phosphate buffer (pH 7.4). To confirm successful AAV injection in mice subjected to behavior 
analysis, or to observe c-Fos expression, 10–12 week-old mice were also similarly perfused after all 
behavior tests or right after 2 weeks of RS, respectively. For the time course of c-Fos expression, 
mice were perfused right after 3, 7, or 10 days of RS. The postfixation in 2% PFA solution lasted for 
16 hr at 4 °C. Brain samples were sliced (100 μm) using a vibratome (Leica VT1200S) in the coronal 
plane and were blocked for 30 min at 4°C in 5% normal goat serum for all experiments. For calbindin 
(mouse anti-calbindin, Sigma-Aldrich, C9848) and TH (rabbit anti-TH, Millipore, AB152) staining, 
slices were incubated with the calbindin antibody (1:200) or TH antibody (1:400) overnight at 4 °C 
and then incubated with a secondary antibody (1:200, Alexa Fluor 647-conjugated anti-mouse or 
anti-rabbit IgG antibody, Invitrogen) for 4 hr at room temperature. Cerebellar slices were stained 
with calbindin to label PCs, and VTA-containing slices were stained with TH to label dopaminergic 
neurons. For c-Fos staining of DCN neurons, cerebellar slices containing DCN were incubated with 
a c-Fos antibody (1:300, rabbit, Cell Signaling, 2250 S) for 48 hr and subsequently incubated with 
secondary antibody (1:200) for 24 hr at 4 °C. We note that we used a concentration of 1:300 of 
c-Fos antibody by replicating a previous study that demonstrated the increased c-Fos expression 
in the DCN of rats after chronic stress application (Huguet et al., 2017), even though it is not the 
same c-Fos antibody as ours. Despite the manufacturer instruction from Cell Signaling suggests to 
use lower concentrations in immunohistochemistry, for example approximately in 1:10,000, its c-Fos 
antibody has been often used at concentrations varying from 1:100 to 1:1000 (e.g. Chen et al., 
2021; Han et al., 2021; Phua et al., 2021; Trojanowski et al., 2021), so that the concentration of 
1:300 could be justified. For co-staining of DCN neurons for c-Fos with other antibodies, cerebellar 
slices were firstly stained with c-Fos antibody as mentioned above and then stained with either 
NeuN (1:200, mouse, Millipore, MAB377), GAD67 (1:1000, mouse, Millipore, MAB5406) or GFAP 
(1:200, mouse, Millipore, MAB360) antibodies for overnight at 4  °C, which were then incubated 
with secondary antibody as mentioned above. Slices were then mounted with either DAPI mounting 
medium (Vector Laboratories, H-1500) or normal mounting solution (Vectashield hard set mounting 
medium, Vector Laboratories, H-1400).

https://doi.org/10.7554/eLife.72981
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All the slices stained with NeuN, GAD67, GFAP, calbindin, TH, or c-Fos antibodies were imaged 
using an A1R laser-scanning confocal microscope (Nikon). Images of whole cerebellar or midbrain 
slices were taken by scanning a large image using NIS Elements software (Nikon). To analyze c-Fos-
positive DCN neurons, high magnified (211.7 × 211.7 μm) z-stack images of c-Fos and DAPI were 
acquired. All DCN cells labeled with DAPI were detected by 3D objective counter functions of Fiji soft-
ware (National Institutes of Health), and percentages of the c-Fos-positive neurons were calculated. 
The percentage increase in c-Fos-positive cells over CTR group was calculated as follows: ((c-FosRS-x 
– c-FosCTR-x)/c-FosCTR-x) × 100 (%), where c-FosRS-x stands for percentages of c-Fos-positive cells in DAPI-
positive cells in mice receiving x days of RS application, and c-FosCTR-x stands for those in control 
mice that were simultaneously analyzed. The average numbers of cells counted were summarized 
in Table 2. To screen inputs from FN, IPN, and DN, z-stack images in the VTA areas were acquired. 
MFTs of VTA-projecting DCN neurons in the cerebellar cortex were acquired as follows: the location 
of MFT-like structures was first identified by enlarging low magnified images of entire cerebellar slices, 
and then high-magnification objectives were used to acquire z-stack images of MFTs. The VTA regions 
were visualized by staining with a TH antibody.

For the analysis of synaptic connections using mGRASPi, mice were anesthetized with isoflurane 
and perfused transcardially with 4% PFA in 0.1 M sodium phosphate buffer (pH 7.4), 4 weeks after 
injections of AAV-CAG-pre-mGRASPi(OLLAS)–2AiCre into the DCN and AAV-CAG-post-mGRASPi-
2AdT into the VTA at P18. Brain samples were then postfixed in 4% PFA solution at 4 °C for 4 hr. 
Midbrain slices were made (100 μm) and mounted with mounting solution (Prolong Diamond Antifade 
Mountant, Thermo Fisher Scientific). VTA areas of the midbrain slices were imaged using an LSM 780 
confocal microscope (Zeiss) 4–7 days after the mounting, as previously described (Feng et al., 2014).

Electrophysiology and optogenetic stimulation
Acute slice preparations
Mice were deeply anesthetized with isoflurane and decapitated. Coronal midbrain slices (250 μm, 
6–10 week-old mice) containing VTA or sagittal cerebellar slices (250 μm, P28-P35 mice) containing DN 
were prepared with warm (about 36 °C) glycerol-based artificial cerebrospinal fluid (aCSF) containing 
(in mM) 11 glucose, 250 glycerol, 25 NaHCO3, 2.5 KCl, 1.25 NaH2PO4, 0.05 CaCl2, and 1.3 MgCl2 
(oxygenated with 95% O2/5% CO2) (Ankri et  al., 2014; Ye et  al., 2006). The temperature of the 
slicing chamber (36 °C) was maintained constant by pouring hot water into the external chamber. The 
obtained slices were incubated for an hour in warmed (36 °C) normal aCSF containing (in mM): 125 
NaCl, 25 NaHCO3, 2.5 KCl, 1.25 NaH2PO4, 11 glucose, 1.3 MgCl2, and 2.5 CaCl2. After another 30 min 
of incubation at room temperature, slices were transferred to a recording chamber and perfused 
continuously with oxygenated normal aCSF.

Loose cell-attached and whole-cell patch clamp recording
For loose cell-attached patch clamp recording from PCs, patch pipettes were pulled (4–5 MΩ) and 
filled with (in mM): 130 potassium gluconate, 2 NaCl, 4 MgCl2, 4 Na2-ATP, 0.4 Na-GTP, 20 HEPES (pH 
7.2), and 0.25 EGTA. Spontaneous firing was recorded from the Gq-expressed PCs that were visual-
ized by simultaneously expressed GFP fluorescence using a confocal microscope (Olympus FV1000). 
To confirm the effects of activation of Gq by CNO (Hello Bio), CNO (10 μM) was added to the perfused 
aCSF and changes in the firing rate were measured. After the recording during CNO treatment, the 
slice was washed out with normal aCSF again and the recovery of the firing was monitored. The firing 
rates recorded were then normalized to the averaged baseline.

For whole-cell patch-clamp recording, patch pipettes were pulled (6–7 MΩ) and filled with the 
same potassium gluconate internal solution as described above. Light-evoked EPSCs were measured 
from VTA neurons at a holding potential of −70 mV. VTA neurons were visualized directly using an 
Olympus BX61WI microscope. Both DA and GABA neurons in the VTA recorded were mainly located 
in the dorsolateral part where ChR2-positive axons coming from the DN are present. To determine 
the cell type of the VTA neurons, Ih currents were measured by applying varied negative voltage steps 
(from −110 to −70 mV) from a holding potential of −60 mV after recording EPSCs. The absence of Ih 
currents in GABA neurons was confirmed by recording Ih currents in ZsGreen-negative or ZsGreen-
positive VTA neurons of GAD2-IRES-Cre;Ai6 mice, which were identified by observation of ZsGreen 
fluorescence using an Olympus confocal microscope. To measure light-evoked IPSCs, whole-cell 
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patch-clamp recordings were made on CTB 647-positive DCN neurons in the DN that were visu-
alized by Alexa Fluor 647 fluorescence using a confocal microscope, with the membrane potential 
held at −50 mV. To confirm GABA type A receptor-mediated IPSCs, 10 μM of bicuculline methochlo-
ride (Tocris Bioscience) was added to the perfused aCSF. For the experiments recording light-evoked 
EPSCs or IPSCs, we used midbrain or cerebellar slices with numerous ChR2-positive axons visualized 
by GFP or dT fluorescence in the VTA or the DN. The monosynaptic connections from the DCN to 
the VTA were confirmed by using TTX (0.5 μM, Tocris Bioscience) and 4-AP (1 mM, Tocris Bioscience), 
as was done previously (Carta et al., 2019; Yan et al., 2019). All the electrophysiological recordings 
were made using MultiClamp 700B amplifier, and data were acquired using pCLAMP software (Molec-
ular Devices). Data were accepted if the input membrane resistance was greater than 100 MΩ, and the 
holding current was less than 100 pA. Analyses of electrophysiological parameters were performed 
using OriginPro (OriginLab) and Clampfit (Molecular Devices) software. To summarize the recording 
results, we measured peak amplitudes of EPSCs and IPSCs evoked by the first photostimulation. 
Durations between photostimulation and the peak EPSC were also calculated. The amplitude of Ih 
currents was calculated as the difference between the maximum and minimum values during 500ms 
of negative voltage steps at −110 mV (Figure 4—figure supplement 1B).

To timely apply photostimulation onto ChR2-positive axons of DCN neurons in the VTA or of PCs 
in the DN, a shutter driver (VCM-Di, Uniblitz, Vincent Associates) was installed in the light path from 
the fluorescence lamp housing to the microscope. The mechanical shutter was controlled by pCLAMP 
software, which in turn controls the frequency and exposure duration of the light stimulation (470–
495 nm via a band path filter) with a light intensity of 2 mW/mm2. To evoke EPSCs or IPSCs, 5 trains of 
photostimuli were applied at a frequency of 10 or 50 Hz.

Chronic restraint stress
To deliver restraint stress, 8- to 9-week-old of PCP2-Cre or C57BL/6 J mice were each placed in a well-
ventilated 50 mL conical tube with holes along the side and at the tip, where the nose is positioned. 
Depending on the size of the mouse, a 3.5–7 cm-long tube (15 mL) was inserted into the 50 mL tube 
to fill the leftover space after the mouse is placed into the 50 mL tube. The 50 mL tube was closed with 
a cap that had a hole for letting the tail out. Mice were unable to move both forward and backward in 
the tube. Mice were subjected to 2 hr of this RS every day for 2 weeks, which is the protocol of RS in 
this study. To enable the comparison within a series of behavioral experiments even in the presence of 
mild variability between different series, all series of concurrently processed behavioral experiments 
included both the CTR group and the RS group without expression of chemogenetic molecules and 
intraperitoneal administration of reagents. The results of the behavioral tests performed on the saline 
or CNO administration groups were compared with those of the CTR and RS groups. There seemed 
to be indeed variabilities in baseline level (CTR group) of immobility in the TST and FST between 
different series of experiments (e.g., Figure  2 vs Figure  6). The variabilities were likely arisen at 
least in part from the difference in mouse strain, C57BL/6 and PCP2-Cre;ICR mice. Mice without AAV 
injection were randomly divided into the CTR group and the RS group. Mice subjected to AAV injec-
tion were randomly divided into a group receiving saline administration and a group receiving CNO 
administration, both of which received RS 30 min after saline or CNO administration, unless stated 
otherwise. To verify the absence of any effects of saline or CNO administration alone on RS-depen-
dent and RS-independent behaviors, mice without AAV injection were divided into the four groups: 
receiving saline (RS-Sal) or CNO (RS-CNO) during RS (Figure 2G–I), or receiving saline (Sal) or CNO 
(CNO) without RS (Figure 7—figure supplement 1B–D). The control experiments using six groups, 
that is CTR, RS, RS-Sal, RS-CNO, Sal, and CNO groups, were concurrently performed. In experiments 
shown in Figure 7, CNO or saline was administered once a day for 2 weeks without RS. Five to eight 
mice were used for each group in a set of concurrently processed behavioral experiments including 
four or six groups, and this set of experiments was repeated three to six times for a type of tests. Body 
weights were measured before and on the last day of 2 weeks of RS application or CNO administra-
tion, and changes in body weight during the 2 weeks were calculated. All mice receiving RS showed a 
significant lack in body weight gain (Figure 2—figure supplement 2, Figure 6—figure supplement 
1, Figure 7—figure supplement 2), confirming that these mice were stressed, because a decrease 
in body weight gain is generally accepted as reflecting stress. (Jeong et al., 2013; Filaretova et al., 
2013; Sántha et al., 2015). Nevertheless, changes in body weight were not affected by manipulation 
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of crus I PCs (Figure 2—figure supplement 2) or VTA-projecting DCN neurons upon CNO adminis-
tration (Figure 6—figure supplement 1, Figure 7—figure supplement 2).

For chemogenetic manipulation in vivo, the CNO stock solution dissolved in dimethyl sulfoxide 
(100  mM) was further diluted in saline for the intraperitoneal injection (100  μL/mouse) at 10  mg/
kg. We used relatively high concentrations of CNO to manipulate circuit activity for longer periods 
upon single injection. Although acute off-target effects of CNO were reported (Manvich et al., 2018; 
Jendryka et al., 2019), we confirmed in control experiments without AAV injection that there were 
no off-target effects in our behavioral analyses (Figure 2G–I, Figure 7—figure supplement 1B–D). 
For the control, only saline (without CNO) was administered. The administration of CNO or saline was 
carried out 30 min before applying the RS, or once a day without RS, every day for 2 weeks. As both 
unilateral and bilateral excitation of crus I PCs resulted in a reduction in stress-mediated depression-
like behaviors, as shown in Figure 2—figure supplement 1A–F, combined results are presented in 
the main figure (Figure 2J–L).

Behavioral analysis
The main symptoms of depression include feelings of worthlessness and helplessness. To evaluate 
depression-like behaviors, two behavioral tests, that is the TST and FST, which are widely applied to 
assessment of depression-like behaviors in rodent model, were primarily used. After AAV injections at 
P35, the mice were left for another 3–4 weeks to ensure full expression of the constructs, and then the 
handling process (5 min for 3 days) was started when the mice were 8–9 weeks old. After the 2 weeks 
of RS and/or CNO administration, three behavioral tests were performed in the next three consec-
utive days, that is the OFT for testing general locomotor activity, and the TST and FST for assessing 
depression-like behaviors. In separate sets of behavioral experiments, depression-like behaviors were 
assessed by the SST and NSFT, which are tests for a lack of self-care and hyponeophagia or anhe-
donia, respectively, performed in the next two consecutive days after the last day of RS or chemo-
genetic manipulation. In addition, to test whether chemogenetic activation of VTA-projecting DCN 
neurons could result in persistent depression-like behaviors, the OFT, TST, and FST were performed a 
week after the SST and NSFT. The order of behavioral tests was OFT, TST, and FST, or SST and NSFT. 
Although we cannot deny a possibility that the order of test may affect behavioral consequences, such 
as relatively smaller effects of RS in TST than FST, depression-like behaviors were always confirmed by 
including the CTR group and the RS group in one series of concurrently processed behavioral exper-
iments. The results of the behavioral tests were analyzed using Ethovision software (Noldus) with an 
immobility threshold of 5% for the results of the TST and FST.

Tail suspension test (TST)
Each mouse was suspended with a 20-cm-long tape from a rod, which was horizontally placed 50 cm 
above the floor. A 3-cm-long 15 mL conical tube was placed through the tail to prevent the mice from 
climbing back. The TST lasted for 6 min and video recordings of the last 4 min were used for the anal-
ysis. Immobility was considered as a mouse being completely motionless while being hung.

Forced swimming test (FST)
Each mouse was put into an acrylic cylinder (30 cm high and 15 cm in diameter) filled with water at 
22°C to 24 °C. The depth of the water was up to 15 cm of the cylinder. Trials were video-recorded for 
a total of 6 min, and the last 4 min of the recording were used for analysis. Immobility was considered 
as remaining motionless except for movements that were necessary for the mice to float and to keep 
their balance or keep their head/nose above the water.

Open-field test (OFT)
The OFT was performed by placing each mouse in the center of an open field chamber, which was 
made of white plexiglass (30 cm × 30 cm × 30 cm). Video recording began immediately after placing a 
mouse in the chamber, and lasted for 30 min. The distance traveled in the horizontal plane for 30 min 
was measured to ensure that the immobility in the TST and FST was not due to a reduction in general 
locomotion. To prevent anxiety-like behaviors affecting results of the OFT, we performed the OFT in 
relatively small chamber without bright light illumination. For the data used in Figure 1D, time spent 
in center and peripheral areas were also analyzed, by dividing the box into 16 square zones using the 
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Ethovision software (Figure 1—figure supplement 1B). The middle four square zones were consid-
ered to be the center whereas the rest of the square zones were counted as peripheral areas.

Sucrose splash test (SST)
The SST was performed in the home cage with wooden bedding. A mouse was placed in the cage, and 
sprayed with approximately 200 μl sucrose solutions (10%) directly onto its back. Grooming behavior 
was then recorded for 5 min, and total duration of grooming was measured. Touching, scrubbing and 
licking their fur was considered as the grooming behaviors.

Novelty suppressed feeding test (NSFT)
The NSFT was performed by scoring the latency to feed, when a food-deprived mouse is introduced 
to an unfamiliar environment in the white plexiglass container (50 cm × 50 cm × 35 cm) with the 
floor covered by wooden bedding. All food was removed 24 hr prior the test in the home cage. A 
single sweet food pellet (soaked in 50% sucrose) was placed in the center of the container that was 
brightly illuminated (500 lux). Once a mouse was placed in the test container, the latency to feed was 
measured during 10 min. Mice that exceeded 10 min without eating the pellet were excluded from 
the data analysis. After the test, the mouse was immediately returned into its home cage and further 
recorded for 5 min to measure latency to feed in the home cage as a sign of control feeding drive, 
which was not significantly different between groups (Figure 6G, Figure 7—figure supplement 1H).

Statistical analysis
All statistical tests were performed using Origin Pro software. Behavioral data are presented as 
boxplots with gray dots representing individual data points, center lines denoting the median, open 
square dots denoting the mean values, the lower and the upper bounds of the box corresponding to 
the 25th and 75th percentiles, respectively, and the whiskers denoting the minimum and maximum 
values. Other data are presented as the mean ± SEM. The unpaired Student’s t-test was used for two-
group comparisons, and one-way ANOVA followed by the Fisher’s least significant difference (LSD) 
post hoc test was conducted to compare significant differences between more than two groups. We 
described summary statistics in Results, and listed details of statistical information, including exact p 
values and the statistical tests used, in all source data one related to Figure 1—source data 1, Figure 
2—source data 1, Figure 4—source data 1, Figure 5—source data 1, Figure 6—source data 1, 
Figure 7—source data 1. To explore the possibility that individual variability in the TST and FST would 
be in part due to the degree of depression-like behaviors, or due to the degree of abnormal locomo-
tion, correlation between TST and FST, TST and OFT, or FST and OFT was examined using Pearson’s 
correlation coefficient (Table 1). A p value of less than 0.05 was considered to indicate a statistically 
significant difference between groups, and the sample numbers in individual groups are presented in 
the figure legends. Effect sizes of behavioral treatments estimated by using Cohen’s d ( = (M1 - M2) 
/ average SD) were summarized in all source data two related to Figure 2—source data 2, Figure 
6—source data 2, Figure 7—source data 2. Numbers of animals used for behavior analyses were not 
statistically predetermined but conform to similar studies (e.g. Carta et al., 2019; Kelly et al., 2020).
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