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Abstract

The complexity of the visual world requires that we constrain visual attention and prioritize 

some regions of the scene for attention over others. The current study investigated whether verbal 

encoding processes influence how attention is allocated in scenes. Specifically, we asked whether 

the advantage of scene meaning over image salience in attentional guidance is modulated by 

verbal encoding, given that we often use language to process information. In two experiments, 

60 subjects studied scenes (N1 = 30, N2 = 60) for 12 seconds each in preparation for a scene 

recognition task. Half of the time, subjects engaged in a secondary articulatory suppression task 

concurrent with scene viewing. Meaning and saliency maps were quantified for each of the 

experimental scenes. In both experiments, we found that meaning explained more of the variance 

in visual attention than image salience did, particularly when we controlled for the overlap 

between meaning and salience, with and without the suppression task. Based on these results, 

verbal encoding processes do not appear to modulate the relationship between scene meaning and 

visual attention. Our findings suggest that semantic information in the scene steers the attentional 

ship, consistent with cognitive guidance theory.
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Introduction

Because the visual world is information-rich, observers prioritize certain scene regions 

for attention over others to process scenes efficiently. While bottom-up information from 

the stimulus is clearly relevant, visual attention does not operate in a vacuum, but rather 

functions in concert with other cognitive processes to solve the problem at hand. What 

influence, if any, do extra-visual cognitive processes exert on visual attention?
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Two opposing theoretical accounts of visual attention are relevant to the current study: 

saliency-based theories and cognitive guidance theory. According to saliency-based theories 

(Itti & Koch, 2001; Wolfe & Horowitz, 2017), salient scene regions—those that contrast 

with their surroundings based on low-level image features (e.g., luminance, color, 

orientation)—pull visual attention across a scene, from the most salient location to the 

least salient location in descending order (Itti & Koch, 2000; Parkhurst, Law, & Niebur, 

2002). Saliency-based explanations cannot explain that physical salience does not determine 

which scene regions are fixated (Tatler, Baddeley, & Gilchrist, 2005) and that top-down 

task demands influence attention more than physical salience does (Einhäuser, Rutishauer, & 

Koch, 2008). Cognitive guidance theory can account for these findings: the cognitive system 

pushes visual attention to scene regions, incorporating stored knowledge about scenes to 

prioritize regions that are most relevant to the viewer’s goals (Henderson, 2007). Under 

this framework, cognitive systems—for example, long- and short-term memory, executive 

planning, etc.—operate together to guide visual attention. Coordination of cognitive systems 

helps to explain behavioral findings where saliency-based attentional theories fall short. For 

example, viewers look preferentially at meaningful regions of a scene (e.g., those containing 

task-relevant objects), even when they are not visually salient (e.g., under shadow), despite 

the presence of a salient distractor (Henderson, Malcolm, & Schandl, 2009).

Recent work has investigated attentional guidance by representing the spatial distribution 

of image salience and scene meaning comparably (see Henderson, Hayes, Peacock, & 

Rehrig, 2019 for review). Henderson and Hayes (2017) introduced meaning maps to 

quantify the distribution of meaning over a scene. Raters on mTurk saw small scene patches 

presented at two different scales and judged how meaningful or recognizable each patch 

was. Meaning maps were constructed by averaging the ratings across patch scales and 

smoothing the values. Image salience was quantified using Graph-Based Visual Salience 

(GBVS; Harel et al., 2006). The feature maps were correlated with attention maps that were 

empirically derived from viewer fixations in scene memorization and aesthetic judgement 

tasks. Meaning explained greater variance in attention maps than salience did, both for linear 

and semipartial correlations, suggesting that meaning plays a greater role in guiding visual 

attention than image salience does. This replicated when attention maps constructed from 

the same dataset were weighted on fixation duration (Henderson & Hayes, 2018), when 

viewers described scenes aloud (Henderson, Hayes, Rehrig, & Ferreira, 2018; Ferreira & 

Rehrig, 2019), during free-viewing of scenes (Peacock, Hayes, & Henderson, 2019), when 

meaning was not task-relevant (Hayes & Henderson, 2019a), and even when image salience 

was task-relevant (Peacock, Hayes, & Henderson, 2019). In sum, scene meaning explained 

variation in attention maps better than image salience did across experiments and tasks, 

supporting the cognitive guidance theory of attentional guidance.

One question that remains unexplored is whether other cognitive processes indirectly 

influence cognitive guidance of attention. For example, it is possible that verbal encoding 

may modulate the relationship between scene meaning and visual attention: Perhaps the use 

of language, whether vocalized or not, pushes attention to more meaningful regions. While 

only two of the past experiments were explicitly linguistic in nature (scene description; 

Henderson et al., 2018; Ferreira & Rehrig, 2019), the remaining tasks did not control for 

verbal encoding processes.
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There is evidence that observers incidentally name objects silently during object viewing 

(Meyer, Belke, Telling, & Humphreys 2007; Meyer & Damian, 2007). Meyer et al. (2007) 

asked subjects to report whether a target object was present or not in an array of objects, 

which sometimes included competitors that were semantically related to the target or were 

semantically unrelated, but had a homophonous name (e.g., bat the tool vs. bat the animal). 

The presence of competitors interfered with search, which suggests information about 

the objects (name, semantic information) became active during viewing, even though that 

information was not task-relevant. In a picture-picture interference study, Meyer and Damian 

(2007) presented target objects that were paired with distractor objects with phonologically 

similar names, and instructed subjects to name the target objects. Naming latency was 

shorter when distractor names were phonologically similar to the name of the target object, 

suggesting that activation of the distractor object’s name occurred and facilitated retrieval 

of the target object’s name. Together, the two studies demonstrate a tendency for viewers to 

incidentally name objects they have seen.

Cross-linguistic studies on the topic of linguistic relativity employ verbal interference 

paradigms to demonstrate that performance on perceptual tasks can be mediated by language 

processes. For example, linguistic color categories vary across languages even though 

the visual spectrum of colors is the same across language communities (Majid et al., 

2018). Winawer and colleagues (2007) showed that observers discriminated between colors 

faster when the colors belonged to different linguistic color categories, but the advantage 

disappeared with verbal interference. These findings indicate that language processes can 

mediate performance on perceptual tasks that are ostensibly not linguistic in nature, and a 

secondary verbal task that prevents task-incidental language use can disrupt the mediating 

influence of language. Similar influences of language on ostensibly non-linguistic processes, 

and the disruption thereof by verbal interference tasks, have been found for spatial memory 

(Hermer-Vazquez, Spelke, & Katsnelson, 1999), event perception (Trueswell & Papafragou, 

2010), categorization (Lupyan, 2009), and numerical representations (Frank, Fedorenko, 

Lai, Saxe, & Gibson, 2012), to name a few (see Lupyan, 2012; Perry & Lupyan, 2013; Ünal 

& Papafragou, 2016 for discussion).

The above literature suggests we use internal language during visual processing, and in some 

cases those language processes may mediate perceptual processes. Could the relationship 

between meaning and visual attention observed previously (Henderson & Hayes, 2017; 

2018, Henderson et al., 2018; Peacock et al., 2018) have been modulated by verbal encoding 

processes? To examine this possibility, we used an articulatory suppression manipulation to 

determine whether verbal encoding mediates attentional guidance in scenes.

In the current study, observers studied 30 scenes for 12 seconds each for a later recognition 

memory test. The scenes used in the study phase were mapped for meaning and salience. 

We conducted two experiments in which subjects performed a secondary articulatory 

suppression task half of the time in addition to memorizing scenes. In Experiment 1, 

the suppression manipulation was between-subjects, and the articulatory suppression task 

was to repeat a three digit sequence aloud during the scene viewing period. We chose 

this suppression task because we suspected subjects might adapt to and subvert simpler 

verbal interference such as a syllable repetition (e.g., Martin, Branzi, & Bar, 2017), and 
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because digit sequence repetition imposes less cognitive load than n-back tasks (Allen, 

Baddeley, & Hitch, 2017). In Experiment 2, we implemented a within-subject design using 

two experimental blocks: one with the sole task of memorizing scenes, the other with 

an additional articulatory suppression task. Because numerical stimuli may be processed 

differently than other verbal stimuli (Maloney et al., 2019; van Dijck & Fias, 2011), we 

instead asked subjects to repeat the names of a sequence of three shapes aloud during the 

suppression condition. In the recognition phase of both experiments, subjects viewed 60 

scenes—30 that were present in the study phase, 30 foils—and indicated whether or not they 

recognized the scene from the study phase.

We tested two competing hypotheses about the relationship between verbal encoding and 

attentional guidance in scenes. If verbal encoding indeed mediated the relationship between 

meaning and attentional guidance in our previous work, we would expect observers to 

direct attention to meaningful scene regions only when internal verbalization strategies are 

available to them. Specifically, meaning should explain greater variance in attention maps 

than saliency in the control condition, and meaning should explain less or equal variance in 

attention as salience when subjects suppressed internal language use. Conversely, if verbal 

encoding did not mediate attentional guidance in scenes, the availability of verbalization 

strategies should not affect attention, and so we would expect to find an advantage of 

meaning over salience whether or not subjects engaged in a suppression task.

Experiment 1: Methods

Subjects.

Sixty-eight undergraduates enrolled at the University of California, Davis participated for 

course credit. All subjects were native speakers of English, at least 18 years old, and had 

normal or corrected-to-normal vision. They were naive to the purpose of the experiment and 

provided informed consent as approved by the University of California, Davis Institutional 

Review Board. Six subjects were excluded from analysis because their eyes could not be 

accurately tracked, 1 due to an equipment failure, and 1 due to experimenter error; data from 

the remaining 60 subjects were analyzed (30 subjects/condition).

Stimuli.

Scenes were 30 digitized (1024×768) and luminance-matched photographs of real-world 

scenes used in a previous experiment (Henderson et al., 2018). Of these, 10 depicted outdoor 

environments (5 street views), and 20 depicted indoor environments (3 kitchens, 5 living 

rooms, 2 desk areas, and 10 different room types). People were not present in any scenes.

Another set of 30 digitized images of comparable scenes (similar scene categories and 

time period, no people depicted) were selected from a Google image search and served as 

memory foils. Because we did not evaluate attentional guidance for the foils, meaning and 

salience were not quantified for these scenes, and the images were not luminance-matched.
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Digit Sequences.

Digit sequences were selected randomly without replacement from all three digit numbers 

ranging from 100 to 999 (900 numbers total), then segmented into 30 groups of 30 

sequences each such that each digit sequence in the articulatory suppression condition was 

unique.

Apparatus.

Eye movements were recorded with an SR Research EyeLink 1000+ tower mount eyetracker 

(spatial resolution 0.01) at a 1000 Hz sampling rate. Subjects sat 83 cm away from a 24.5” 

monitor such that scenes subtended approximately 26° × 19° visual angle at a resolution 

of 1024 × 768 pixels, presented in 4:3 aspect ratio. Head movements were minimized 

using a chin and forehead rest integrated with the eyetracker’s tower mount. Subjects were 

instructed to lean against the forehead rest to reduce head movement while allowing them 

to speak during the suppression task. Although viewing was binocular, eye movements were 

recorded from the right eye. The experiment was controlled using SR Research Experiment 

Builder software. Data were collected on two systems that were identical except that one 

subject computer operated using Windows 10, and the other used Windows 7.

Scene Memorization Procedure.

Subjects were told they would see a series of scenes to study for a later memory test. 

Subjects in the articulatory suppression condition were told each trial would begin with a 

sequence of 3 digits, and were instructed to repeat the sequence of digits aloud during the 

scene viewing period. After the instructions, a calibration procedure was conducted to map 

eye position to screen coordinates. Successful calibration required an average error of less 

than 0.49° and a maximum error below 0.99°.

Following successful calibration, there were 3 practice trials to familiarize subjects with 

the task prior to the experimental trials. In the suppression condition, during these practice 

trials participants studied three-digit sequences prior to viewing the scene. Practice digit 

sequences were 3 randomly sampled sequences from the range 1 to 99, in 3-digit format 

(e.g., “0 3 6” for 36). Subjects pressed any button on a button box to advance throughout the 

task.

Each subject received a unique pseudo-random trial order that prevented two scenes of the 

same type (e.g., kitchen) from occurring consecutively. A trial proceeded as follows. First, a 

five-point fixation array was displayed to check calibration (Figure 1a). The subject fixated 

the center cross and the experimenter pressed a key to begin the trial if the fixation was 

stable, or reran the calibration procedure if not. Before the scene, subjects in the articulatory 

suppression condition saw the instruction “Study the sequence of digits shown below. Your 

task is to repeat these digits over and over out loud for 12 seconds while viewing an image 

of the scene” along with a sequence of 3 digits separated by spaces (e.g., “8 0 9”), and 

pressed a button to proceed (Figure 1b). The scene was shown for 12 seconds, during which 

time eye-movements were recorded (Figure 1c). After 12 seconds elapsed, subjects pressed a 

button to proceed to the next trial (Figure 1d). The trial procedure repeated until all 30 trials 

were complete.
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Memory Test Procedure.

A recognition memory test followed the experimental trials, in which subjects were shown 

the 30 experimental scenes and 30 foil scenes they had not seen previously. Presentation 

order was randomized without replacement. Subjects were informed that they would see one 

scene at a time and instructed to use the button box to indicate as quickly and accurately 

as possible whether they had seen the scene earlier in the experiment. After the instruction 

screen, subjects pressed any button to begin the memory test. In a recognition trial, subjects 

saw a scene that was either a scene from the study phase or a foil image. The scene persisted 

until a “Yes” or “No” button press occurred, after which the next trial began. Response time 

and accuracy were recorded. This procedure repeated 60 times, after which the experiment 

terminated.

Fixations and saccades were parsed with EyeLink’s standard algorithm using velocity and 

acceleration thresholds (30°/s and 9500°/s2; SR Research, 2017). Eye movement data were 

imported offline into Matlab using the Visual EDF2ASC tool packaged with SR Research 

DataViewer software. The first fixation was excluded from analysis, as were saccade 

amplitude (>20°) and fixation duration outliers (<50ms, >1500ms).

Attention maps.

Attention maps were generated by constructing a matrix of fixation counts with the same x,y 

dimensions as the scene, and counting the total fixations corresponding to each coordinate 

in the image. The fixation count matrix was smoothed with a Gaussian low pass filter with 

circular boundary conditions and a frequency cutoff of −6dB. For the scene-level analysis, 

all fixations recorded during the viewing period were counted. For the fixation analysis, 

separate attention maps were constructed for each ordinal fixation.

Meaning maps.

We generated meaning maps using the context-free rating method introduced in Henderson 

& Hayes (2017). Each 1024 × 768 pixel scene was decomposed into a series of 

partially overlapping circular patches at fine and coarse spatial scales (Figure 2b&c). The 

decomposition resulted in 12,000 unique fine-scale patches (87 pixel diameter) and 4,320 

unique coarse-scale patches (205 pixel diameter), totaling 16,320 patches.

Raters were 165 subjects recruited from Amazon Mechanical Turk. All subjects were 

located in the United States, had a HIT approval rating of 99% or more, and participated 

once. Subjects provided informed consent and were paid $0.50.

All but one subject rated 300 random patches extracted from the 30 scenes. Subjects were 

instructed to rate how informative or recognizable each patch was using a 6-point Likert 

scale (‘very low’, ‘low’, ‘somewhat low’, ‘somewhat high’, ‘high’, ‘very high’). Prior to 

rating patches, subjects were given two examples each of low-meaning and high-meaning 

patches in the instructions to ensure they understood the task. Patches were presented in 

random order. Each patch was rated 3 times by 3 independent raters totaling 48,960 ratings 

per scene. Because there was high overlap across patches, each fine patch contained data 
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from 27 independent raters and each coarse patch from 63 independent raters (see Figure 2d 

for patch examples).

Meaning maps were generated from the ratings for each scene by averaging, smoothing, and 

combining the fine and coarse scale maps from the corresponding patch ratings. The ratings 

for each pixel at each scale in each scene were averaged, producing an average fine and 

coarse rating map for each scene. The fine and coarse maps were then averaged [(fine map + 

coarse map)/2]. Because subjects in the eyetracking task showed a consistent center bias1 in 

their fixations, we applied center bias to the maps using a multiplicative down-weighting of 

scores in the map periphery (Hayes & Henderson, 2019b). The final map was blurred using 

a Gaussian filter via the Matlab function ‘imgaussfilt’ with a sigma of 10 (see Figure 2f for 

an example meaning map).

Saliency maps.

Image-based saliency maps were constructed using the Graph-Based Visual Saliency 

(GBVS) toolbox in Matlab with default parameters (Harel et al., 2006). We used GBVS 

because it is a state-of-the-art model that uses only image-computable salience. While 

there are newer saliency models that predict attention better (e.g., DeepGaze II: Kümmerer, 

Wallis, & Bethge, 2016; ICF: Kümmerer, Wallis, Gatys, & Bethge, 2017), these models 

incorporate high-level image features through training on viewer fixations (DeepGaze II and 

ICF) and object features (DeepGaze II), which may index semantic information. We used 

GBVS to avoid incorporating semantic information in image-based saliency maps, which 

could confound the comparison with meaning (see Henderson et al., 2019 for discussion).

Map normalization.

Prior to analysis, feature maps were normalized to a common scale using image histogram 

matching via the Matlab function ‘imhistmatch’ in the Image Processing Toolbox. The 

corresponding attention map for each scene served as the reference image (see Henderson & 

Hayes, 2017). Map normalization was carried out within task conditions: for the map-based 

analysis of the control condition, feature maps were normalized to the attention map derived 

from fixations in the control condition only, and likewise for the suppression condition. 

Results did not differ between the current analysis and a second analysis using feature maps 

normalized to the same attention map (from fixations in the control condition).

We computed correlations (R2) across the maps of 30 scenes to determine the degree to 

which saliency and meaning overlap with one another. We excluded the peripheral 33% of 

the feature maps when determining overlap between the maps to control for the peripheral 

downweighting applied to both, which otherwise would inflate the correlation between 

them. On average, meaning and saliency were correlated (R2 = 0.48), and this relationship 

differed from zero (meaning and saliency: t(29) = 17.24, p < 0.001, 95% CI = [.43 .54]).

1“Center bias” is the tendency for fixations to cluster around the center of the scene and to be relatively absent in the periphery of the 
image (Tatler, 2007).
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Experiment 1: Results

To determine what role verbal encoding might play in extracting meaning from scenes, we 

asked whether the advantage of meaning over salience in explaining variance in attention 

would hold in each condition. To answer this question, we conducted two-tailed paired 

t-tests within task conditions.

Sensitivity analysis.

To determine whether we obtained adequate effect sizes for the primary comparison of 

interest, we conducted a sensitivity analysis using G*Power 3.1 (Faul, Erdfelder, Lang, 

& Buchner, 2007; Faul, Erdfelder, Buchner, & Lang, 2009). We computed the effect size 

index dz—a standardized difference score (Cohen, 1988)—and the critical t statistic for 

a two-tailed paired t-test with 95% power and a sample size of 30 scenes. The analysis 

revealed a critical t value of 2.05 and a minimum dz of 0.68.

Attention: Scene-level analysis.

We correlated meaning and saliency maps with attention maps to determine the degree to 

which meaning or salience guided visual attention (Figure 3). Squared linear and semipartial 

correlations (R2) were computed within each condition for each of the 30 scenes. The 

relationship between meaning and salience, respectively, and visual attention was analyzed 

using t-tests. Cohen’s d was computed to estimate effect size, interpreted as small (d = 0.2 – 

0.49), medium (d = 0.5 – 0.79), or large (d = 0.8+) following Cohen (1988).

Linear correlations.—In the control condition, when subjects were only instructed to 

memorize scenes, meaning accounted for 34% of the average variance in attention (M = 

0.34, SD = 0.14) and salience accounted for 21% (M = 0.21, SD = 0.13). The advantage 

of meaning over salience was significant (t(29) = 6.07, p < .001, 95% CI = [0.09 0.17], d 
= 0.97, d 95% CI = [0.58 1.36], dz = 1.10). In the articulatory suppression condition, when 

subjects additionally had to repeat a sequence of digits aloud, meaning accounted for 37% of 

the average variance in attention (M = 0.37, SD = 0.17) whereas salience accounted for 23% 

(M = 0.23, SD = 0.12). The advantage of meaning over salience was also significant when 

the task prevented verbal encoding (t(29) = 6.04, p < .001, 95% CI = [0.09 0.19], d = 0.88, d 
95% CI = [0.53 1.22], dz = 1.12).

Semipartial correlations.—Because meaning and salience are correlated, we partialed 

out the shared variance explained by both meaning and salience. In the control condition, 

when the shared variance explained by salience was accounted for, meaning explained 15% 

of the average variance in attention (M = 0.15, SD = 0.10), while salience explained only 

2% of the average variance once the variance explained by meaning was accounted for (M = 

0.02, SD = 0.02). The advantage of meaning over salience was significant (t(29) = 6.07, p < 

.001, 95% CI = [0.09 0.18], d = 1.98, d 95% CI = [0.86 3.10], dz = 1.15). In the articulatory 

suppression condition, meaning explained 16% of the average unique variance after shared 

variance was partialed out (M = 0.16, SD = 0.11), while salience explained only 2% of the 

average variance after shared variance with meaning was accounted for (M = 0.02, SD = 
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0.03), and the advantage was significant (t(29) = 6.05, p < .001, 95% CI = [0.09 0.19], d = 

1.95, d 95% CI = [0.85 3.04], dz = 1.09).

To summarize, we found a large advantage of meaning over salience in explaining 

variance in attention in both conditions, for both linear and semipartial correlations. For 

all comparisons, the value of the t statistic and dz exceeded the thresholds obtained in the 

sensitivity analysis.

Attention: Fixation analysis.

Following our previous work (Henderson & Hayes, 2017; Henderson et al., 2018), we 

examined early fixations to determine whether salience influences early scene viewing 

(Parkhurst et al., 2002; but see Tatler et al., 2005). We correlated each feature map (meaning, 

salience) with attention maps at each fixation (Figure 3b). Squared linear and semipartial 

correlations (R2) were computed for each fixation, and the relationship between meaning 

and salience with attention, respectively, was assessed for the first three fixations using 

paired t-tests.

Linear correlations.—In the control condition, meaning accounted for 37% of the 

average variance in attention during the first fixation, and 14% and 13% during the second 

and third fixations, respectively (1: M = 0.37, SD = 0.19; 2: M = .14, SD = .11; 3: M = .13, 

SD = .10). Salience accounted for 9% (1: M = .09, SD = .11), 8% (2: M = 0.08, SD = 0.09), 

and 7% of the average variance (3: M = 0.07, SD = 0.09) during the first, second, and third 

fixations, respectively. The advantage of meaning was significant for all three fixations (1: 

t(29) = 8.59, p < .001, 95% CI = [0.21 0.34], d = 1.70, d 95% CI = [1.08 2.31]; 2: t(29) = 

3.40, p = .002, 95% CI = [0.03 0.11], d = 0.66, d 95% CI = [0.23 1.08]; 3: t(29) = 4.21, 

p < .001, 95% CI = [0.03 0.08], d = 0.60, d 95% CI = [0.29 0.90]). For subjects in the 

suppression condition, meaning accounted for 42% of the average variance during the first 

fixation (M = 0.42, SD = 0.18), 21% during the second (M = 0.21, SD = 0.15), and 17% 

during the third fixation (M = 0.17, SD = 0.13). Salience accounted for 10% of the average 

variance during the first fixation (M = 0.10, SD = 0.10) and 9% during the second and third 

fixations (2: M = 0.09, SD = 0.09; 3: M = 0.09, SD = 0.09). The advantage of meaning over 

salience was significant for all three fixations (1: t(29) = 10.27, p < .001, 95% CI = [0.26 

0.38], d = 2.12, d 95% CI = [1.39 2.92]; 2: t(29) = 5.49, p < .001, 95% CI = [0.08 0.17], d 
= 0.90, d 95% CI = [0.51 1.29]; 3: t(29) = 4.49, p < .001, 95% CI = [0.04 0.12], d = 0.71, d 
95% CI = [0.35 1.06]).

Semipartial correlations.—To account for the correlation between meaning and 

salience, we partialed out shared variance explained by both meaning and salience, then 

repeated the fixation analysis on the semipartial correlations. In the control condition, after 

the shared variance explained by both meaning and salience was partialed out, meaning 

accounted for 30% of the average variance at the first fixation (M = 0.30, SD = 0.16), 

10% of the variance during the second fixation (M = 0.10, SD = 0.09), and 8% during the 

third fixation (M = 0.08, SD = 0.06). After shared variance with meaning was partialed out, 

salience accounted for only 2% of the average unique variance at the first and third fixations 

(1: M = 0.02, SD = 0.03; 3: M = 0.02, SD = 0.03) and 3% at the second fixation (M = 0.03, 
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SD = 0.04). The advantage of meaning was significant for all three fixations (1: t(29) = 8.58, 

p < .001, 95% CI = [0.21 0.34], d = 2.66, d 95% CI = [1.34 3.97]; 2: t(29) = 3.40, p < .001, 

95% CI = [0.03 0.11], d = 0.99, d 95% CI = [0.28 1.70]; 3: t(29) = 4.21, p < .001, 95% CI 

= [0.03 0.08], d = 1.10, d 95% CI = [0.44 1.76]). In the articulatory suppression condition, 

after the shared variance with salience was partialled out, meaning accounted for 34% of the 

average variance during the first fixation (M = 0.34, SD = 0.15), 14% at the second fixation 

(M = 0.14, SD = 0.12), and 10% during the third fixation (M = 0.10, SD = 0.09). After the 

shared variance with meaning was partialled out, on average salience accounted for 2% of 

the variance at all three fixations (1: M = 0.02, SD = 0.03; 2: M = 0.02, SD = 0.02; 3: M = 

0.02, SD = 0.03). The advantage of meaning was significant for all three fixations (1: t(29) = 

10.27, p < .001, 95% CI = [0.26 0.38], d = 3.25, d 95% CI = [1.67 4.85]; 2: t(29) = 5.49, p < 

.001, 95% CI = [0.08 0.17], d = 1.46, d 95% CI = [0.69 2.22]; 3: t(29) = 4.49, p < .001, 95% 

CI = [0.04 0.12], d = 1.25, d 95% CI = [0.51 1.99]).

In sum, early fixations revealed a consistent advantage of meaning over salience, counter 

to the claim that salience influences attention during early scene viewing (Parkhurst et al., 

2002). The advantage was present for the first three fixations in both conditions, when we 

analyzed both linear and semipartial correlations, and all effect sizes were medium or large.

Memory: Recognition.

To confirm that subjects took the memorization task seriously, we totaled the number of 

hits, correct rejections, misses, and false alarms on the recognition task for each subject, 

each of which ranged from 0 to 30 (Figure 4a). Recognition performance was high in both 

conditions. On average, subjects in the control condition correctly recognized scenes shown 

in the memorization task 95% of the time (Mhits = 0.95, SDhits = 0.06), while subjects who 

engaged in the suppression task during memorization correctly recognized scenes 90% of 

the time (Mhits = 0.90, SDhits = 0.09). Subjects in the control conditions falsely reported 

that a foil scene had been present in the memorization scene set 3% of the time on average 

(Mfalse alarms = 0.03, SDfalse alarms = 0.03), and those in the suppression condition false 

alarmed an average of 4% of the time (Mfalse alarms = 0.04, SDfalse alarms = 0.07). Overall, 

subjects in the control condition had higher recognition accuracy, though the difference in 

performance was small.

We then computed d’ with log-linear correction to handle extreme values (ceiling or floor 

performance) using the dprime function from the psycho package in R, resulting in 30 data 

points per condition (1 data point/subject; Figure 4b). On average, d’ scores were higher in 

the control condition (M = 3.30, SD = 0.55) than the articulatory suppression condition (M = 

2.99, SD = 0.74). The difference in performance was not significant, and the effect size was 

small (t(58) = 1.83, p = 0.07, 95% CI = [−0.03 0.64], d = 0.47, d 95% CI = [−0.05 1.00]).

In sum, recognition was numerically better for subjects who were only instructed to study 

the scenes as opposed to those who additionally completed an articulatory suppression task, 

but the difference was not significant.
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Experiment 1: Discussion

The results of Experiment 1 suggest that incidental verbalization does not modulate the 

relationship between scene meaning and visual attention during scene viewing. However, 

the experiment had several limitations. First, we implemented the suppression manipulation 

between-subjects rather than within-subjects out of concern that subjects might infer the 

hypothesis in a within-subject paradigm and skew the results. Second, because numerical 

cognition is unique (Maloney et al., 2019; van Dijck & Fias, 2011), it is possible that another 

type of verbal interference would affect the relationship between meaning and attention. 

Third, we tested relatively few scenes (N=30).

We conducted a second experiment to address these limitations and replicate the advantage 

of meaning over salience despite verbal interference. In Experiment 2, the verbal 

interference consisted of sequences of common shape names (e.g., square, heart, circle) 

rather than digits, and the interference paradigm was implemented within-subject using 

a blocked design. We added 30 scenes to the Experiment 1 stimulus set, yielding 60 

experimental items total.

We tested the same two competing hypotheses in Experiments 1 and 2: If verbal encoding 

mediates the relationship between meaning and attentional guidance, and the use of 

numerical interference in Experiment 1 was insufficient to disrupt that mediation, then the 

relationship between meaning and attention should be weaker when incidental verbalization 

is not available, in which case meaning and salience may explain comparable variance 

in attention. If verbal encoding does not mediate attentional guidance in scenes and our 

Experiment 1 results cannot be explained by numerical interference specifically, then we 

expect meaning to explain greater variance in attention both when shape names are used as 

interference and when there is no verbal interference.

Experiment 2: Methods

The method for Experiment 2 was the same as Experiment 1, with the following exceptions.

Subjects.

Sixty-five undergraduates enrolled at the University of California, Davis participated for 

course credit. All were native speakers of English, at least 18 years old, and had normal or 

corrected-to-normal vision. They were naive to the purpose of the experiment and provided 

informed consent as approved by the University of California, Davis Institutional Review 

Board. Four subjects were excluded from analysis because their eyes could not be accurately 

tracked, and an additional subject was excluded due to excessive movement; data from the 

remaining 60 subjects were analyzed.

Shapes and Shape Sequences.

We selected the following common shapes for the suppression task: circle, cloud, club, 

cross, arrow, heart, moon, spade, square, and star. Names for the shapes were either 

monosyllabic (N=8) or disyllabic (N=2). Shape sequences consisted of 3 shapes randomly 

sampled without replacement from the set of 10.
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Stimuli.

Scenes were 60 digitized (1024×768) and luminance-matched photographs of real-world 

scenes. Thirty were used in Experiment 1, and an additional 30 were drawn from another 

study. Of the additional scenes, 16 depicted outdoor environments, and 14 depicted indoor 

environments, and each of the 30 scenes belonged to a unique scene category. People and 

text were not present in any of the scenes

Another set of 60 digitized images of comparable scenes (similar scene categories from 

the same time period, no people depicted) served as foils in the memory test. Thirty of 

these were used in Experiment 1, and an additional 30 were distractor images drawn from 

a previous study. The Experiment 1 scenes and the additional 30 scenes were equally 

distributed across blocks.

Apparatus.

The apparatus was identical to that used in Experiment 1.

Scene Memorization Procedure.

Subjects were informed that they would complete two separate experimental blocks, and that 

in one block each trial would begin with a sequence of 3 shapes that they would repeat aloud 

during the scene viewing period.

Following successful calibration, there were 4 practice trials to familiarize subjects with the 

task prior to the experimental trials. The first 2 practice trials were control trials, and the rest 

were articulatory suppression trials. These consisted of shape sequences (e.g., cloud arrow 

cloud) that were not repeated in the experimental trials. Before the practice trials, subjects 

were shown all of the shapes used in the suppression task, alongside the names of each 

shape (Figure5a). Subjects pressed any button on a button box to advance throughout the 

task.

The trial procedure was identical to Experiment 1, except that the pre-scene articulatory 

suppression condition displayed the instruction “Study the sequence of shapes shown below. 

Your task is to repeat these shapes over and over out loud for 12 seconds while viewing an 

image of the scene”, followed by a sequence of 3 shapes (e.g., square, heart, cross) until the 

subject pressed a button (Figure 5b).

Memory Test Procedure.

Following the experimental trials in each block, subjects performed a recognition memory in 

which 30 experimental scenes they saw earlier in the block and 30 foil scenes that they had 

not seen previously were shown. The remainder of the recognition memory task procedure 

was identical to that of Experiment 1. The procedure repeated 60 times, after which the 

block terminated.

Following completion of the first block, subjects started the second with another calibration 

procedure. In the second block, subjects saw the other 30 scenes (and 30 memory foils) 

that were not displayed during the first block, and participated in the other condition 
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(suppression if the first block was the control, and vice versa). Each subject completed 

60 experimental trials and 120 recognition memory trials total. The scenes shown in each 

block and the order of conditions were counterbalanced across subjects.

Attention maps.

Attention maps were generated in the same manner as Experiment 1.

Meaning maps.

Meaning maps for 30 scenes added in Experiment 2 were generated using the same 

procedure as the scenes tested in Experiment 1, with the following exceptions.

Raters were 148 UC Davis undergraduate students recruited through the UC Davis online 

subject pool. All were 18 years or older, had normal or corrected-to-normal vision, and 

reported no color blindness. Subjects received course credit for participation.

In each survey, catch patches showing solid surfaces (e.g., a wall) served as an attention 

check. Data from 25 subjects who did not attend to the task (responded incorrectly on fewer 

than 85% of catch trials), or did not respond to more than 10% of the questions, were 

excluded. Data from the remaining 123 raters were used to construct meaning maps.

Saliency maps.

Saliency maps were generated in the same manner as in Experiment 1.

Map normalization.

Maps were normalized in the same manner as in Experiment 1.

Map analyses.

We determined the degree to which saliency and meaning overlap for the 30 new scenes 

by computing feature map correlations (R2) across the maps of 30 scenes, excluding 

the periphery to control for the peripheral downweighting associated with center biasing 

operations. On average, meaning and saliency were correlated (R2 = 0.51), and this 

relationship differed from zero (meaning and saliency: t(29) = 23.52, p < 0.001, 95% CI 

= [.47 .56]).

Sensitivity analysis.

We again conducted a sensitivity analysis, which revealed a critical t value of 2.00 and a 

minimum dz of 0.47.

Scene-level analysis.

We correlated meaning and saliency maps with attention maps in the same manner as 

in Experiment 1. Squared linear and semipartial correlations (R2) were computed within 

each condition for each of the scenes. The relationship between meaning and salience with 

visual attention was analyzed using t-tests. Cohen’s d was computed, and effect sizes were 

interpreted in the same manner as the Experiment 1 results.
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Fixation analysis.

We examined early fixations to replicate the early advantage of meaning over image 

salience observed in Experiment 1 and previous work (e.g., Henderson & Hayes, 2017). We 

correlated each feature map (meaning, salience) with attention maps at each fixation (Figure 

6b). Map-level correlations and t-tests were conducted in the same manner as Experiment 1.

Experiment 2: Results

We sought to replicate the results of Experiment 1 using a more robust experimental design. 

If verbal encoding is not required to extract meaning from scenes, we expected an advantage 

of meaning over salience in explaining variance in attention for both conditions. We again 

conducted paired t-tests within task conditions.

Scene-Level Analysis

Linear correlations.—Meaning accounted for 36% of the average variance in attention in 

the control condition (M = 0.36, SD = 0.16) and salience accounted for 25% (M = 0.25, SD 
= 0.14; Figure 6). The advantage of meaning over salience was significant and the effect size 

was large (t(59) = 6.74, p < .001, 95% CI = [0.08 0.15], d = 0.80, d 95% CI = [0.53 1.07], dz 

= 0.79). Meaning accounted for 45% of the variance in attention in the suppression condition 

(M = 0.45, SD = 0.15) and salience accounted for 27% (M = 0.27, SD = 0.13). Consistent 

with Experiment 1, the advantage of meaning over salience was significant even with verbal 

interference, and the effect size was large (t(59) = 9.83, p < .001, 95% CI = [0.14 0.22], d = 

1.24, d 95% CI = [0.91 1.58], dz = 1.30).

Semipartial correlations.—To account for the relationship between meaning and 

salience, we partialed out the shared variance explained by both. When the shared variance 

explained by salience was accounted for in the control condition, meaning explained 15% 

of the average variance in attention (M = 0.15, SD = 0.10), while salience explained 3% 

of the average variance after accounting for the variance explained by meaning (M = 0.03, 

SD = 0.05). The advantage of meaning over salience was significant, and the effect size was 

large (t(59) = 6.75, p < .001, 95% CI = [0.08 0.15], d = 1.52, d 95% CI = [0.86 2.17], dz = 

0.90). Meaning explained 20% of the unique variance on average after shared variance was 

partialed out in the articulatory suppression condition (M = 0.20, SD = 0.12), and salience 

explained 2% of the average variance after shared variance with meaning was accounted for 

(M = 0.02, SD = 0.04), and the advantage was significant with a large effect size (t(59) = 

9.83, p < .001, 95% CI = [0.14 0.22], d = 2.19, d 95% CI = [1.38 3.00], dz = 1.25).

Consistent with Experiment 1, we found a large advantage of meaning over salience in 

accounting for variance in attention in both conditions, for both linear and semipartial 

correlations, and the value of the t statistic and dz exceeded the thresholds obtained in the 

sensitivity analysis.

Fixation Analysis

Linear correlations.—In the control condition, meaning accounted for 30% of the 

average variance in attention during the first fixation (M = 0.30, SD = 0.19), 17% during 
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the second (M = .17, SD = .13), and 16% during the third (M = .16, SD = .13). Salience 

accounted for 11% of the variance at the first fixation (M = .11, SD = .13) and 10% of the 

variance during the second and third fixations (2: M = 0.10, SD = 0.11; 3: M = 0.10, SD = 

0.11). The advantage of meaning was significant for all three fixations, and effect sizes were 

medium or large (1: t(59) = 8.17, p < .001, 95% CI = [0.15 0.24], d = 1.17, d 95% CI = 

[0.80 1.54]; 2: t(59) = 3.62, p = .001, 95% CI = [0.03 0.11], d = 0.57, d 95% CI = [0.23 

0.90]; 3: t(59) = 3.36, p < .001, 95% CI = [0.02 0.09], d = 0.46, d 95% CI = [0.17 0.74]). 

In the suppression condition, meaning accounted for 45% of the average variance during the 

first fixation (M = 0.45, SD = 0.17), 32% during the second (M = 0.32, SD = 0.16), and 

25% during the third (M = 0.25, SD = 0.15). Salience accounted for 13% of the average 

variance during the first fixation (M = 0.13, SD = 0.10),15% during the second (M = 0.15, 

SD = 0.14), and 11% during the third (M = 0.11, SD = 0.08). The advantage of meaning 

over salience was significant for all of the three fixations (1: t(59) = 14.01, p < .001, 95% CI 

= [0.28 0.37], d = 2.21, d 95% CI = [1.63 2.79; 2: t(59) = 7.65, p < .001, 95% CI = [0.12 

0.21], d = 1.13, d 95% CI = [0.75 1.50]; 3: t(59) = 8.20, p < .001, 95% CI = [0.10 0.17], d = 

1.10, d 95% CI = [0.76 1.44]).

Semipartial correlations.—Because meaning and salience were correlated, we partialed 

out shared variance explained by both and analyzed semipartial correlations computed 

for each of the initial three fixations. In the control condition, after the shared variance 

explained by both meaning and salience was partialed out, meaning accounted for 23% of 

the average variance at the first fixation (M = 0.23, SD = 0.16), 11% of the variance during 

the second (M = 0.11, SD = 0.11), and 9% during the third (M = 0.09, SD = 0.10). After 

shared variance with meaning was partialed out, salience accounted for 3% of the average 

unique variance at the first fixation (M = 0.03, SD = 0.06) and 4% at the second and third (2: 

M = 0.04, SD = 0.08; 3: M = 0.04, SD = 0.06). The advantage of meaning was significant 

for all three fixations (1: t(59) = 8.17, p < .001, 95% CI = [0.15 0.24], d = 1.71, d 95% 

CI = [1.06 2.36]; 2: t(59) = 3.62, p < .001, 95% CI = [0.03 0.11], d = 0.74, d 95% CI = 

[0.28 1.20]; 3: t(59) = 3.37, p < .001, 95% CI = [0.02 0.09], d = 0.69, d 95% CI = [0.24 

1.15]). In the suppression condition, after the shared variance with salience was partialled 

out, meaning accounted for 35% of the variance on average during the first fixation (M = 

0.35, SD = 0.16), 20% of the variance at the second (M = 0.20, SD = 0.14), and 16% during 

the third (M = 0.16, SD = 0.12). After the shared variance with meaning was partialled out, 

on average salience accounted for 2% of the variance at the first and third fixations (1: M 
= 0.02, SD = 0.04; 3: M = 0.02, SD = 0.03) and 3% of the variance at the second (M = 

0.03, SD = 0.06). The advantage of meaning was significant for all three fixations, with large 

effect sizes (1: t(59) = 14.01, p < .001, 95% CI = [0.28 0.37], d = 3.06, d 95% CI = [2.03 

4.08]; 2: t(59) = 7.65, p < .001, 95% CI = [0.12 0.21], d = 1.61, d 95% CI = [0.98 2.25]; 3: 

t(59) = 8.20, p < .001, 95% CI = [0.10 0.17], d = 1.66, d 95% CI = [1.04 2.28]).

The results of Experiment 2 replicated those of Experiment 1: meaning held a significant 

advantage over salience when the entire viewing period was considered and when we limited 

our analysis to early viewing, both for linear and semipartial correlations.
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Memory: Recognition.: As an attention check, we totaled the number of hits, correct 

rejections, misses, and false alarms on the recognition task for each subject (Figure 7a). The 

totals for each response category ranged from 0 to 30. Recognition performance was high in 

both conditions. In the control condition, subjects correctly recognized scenes shown in the 

memorization task 97% of the time on average (Mhits = 0.97, SDhits = 0.18), while subjects 

correctly recognized scenes 91% of the time after they had engaged in the suppression 

task during memorization (Mhits = 0.91, SDhits = 0.29). In the control condition, subjects 

falsely reported that a foil had been present in the memorization scene set 1% of the time 

on average (Mfalse alarms = 0.01, SDfalse alarms = 0.11), and in the suppression condition, 

the average false alarm rate was 2% (Mfalse alarms = 0.02, SDfalse alarms = 0.15). Overall, 

recognition accuracy was higher in the control condition than the suppression condition, 

though the difference was small.

We then computed d’ in the same manner as Experiment 1 (Figure 7b). In the control 

condition, d’ scores were higher on average (M = 3.43, SD = 0.60) than in the suppression 

condition (M = 2.76, SD = 0.71). To determine whether the difference in means was 

significant, we conducted a paired t-test, which revealed a significant difference with a large 

effect size (t(59) = 6.62, p < 0.001, 95% CI = [0.47 0.88], d = 1.01, d 95% CI = [0.64 1.39]).

For Experiment 2, while recognition accuracy was high overall, recognition was 

significantly better in the control condition, when subjects memorized scenes and did not 

engage in the suppression task.

Experiment 2: Discussion: The attention results of Experiment 2 replicated those of 

Experiment 1, providing further evidence that incidental verbalization does not modulate the 

relationship between scene meaning and visual attention during scene viewing. Recognition 

performance was significantly worse in the suppression condition than in the control 

condition, which we cannot attribute to individual differences given that the interference 

manipulation was implemented within-subject. One possibility is that the shape name 

interference imposed greater cognitive load than the digit sequence interference; however, 

we cannot determine whether that was the case based on the current experiment.

General Discussion: The current study tested two competing hypotheses concerning the 

relationship (or lack thereof) between incidental verbal encoding during scene viewing and 

attentional guidance in scenes. First, the relationship between scene meaning and visual 

attention could be mediated by verbal encoding, even when it occurs incidentally. Second, 

scene meaning guides attention regardless of whether incidental verbalization is available, 

and verbal encoding does not mediate use of scene meaning. We tested these hypotheses 

in two experiments using an articulatory suppression paradigm in which subjects studied 

scenes for a later memorization task and either engaged in a secondary task (digit or shape 

sequence repetition) to suppress incidental verbalization, or had no secondary task. In both 

experiments, we found an advantage of meaning over salience in explaining the variance 

in attention maps whether or not incidental verbalization was suppressed. Our results did 

not support the hypothesis that verbal encoding mediates attentional guidance by meaning 

in scenes. To the extent that observers use incidental verbalization during scene viewing, 
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it does not appear to mediate the influence of meaning on visual attention, suggesting that 

meaning in scenes is not necessarily interpreted through the lens of language.

Our attentional findings do not support saliency-based theories of attentional guidance in 

scenes (e.g., Parkhurst et al., 2002). Instead, they are consistent with prior work showing 

that regions with higher image salience are not fixated more (Tatler et al., 2005) and that 

top-down information, including task demands, plays a greater role than image salience 

in guiding attention from as early as the first fixation (Einhäuser, Rutishauser, & Koch, 

2008). Consistent with cognitive guidance theory, scene meaning—-which captures the 

distribution of information across the scene—-predicted visual attention better in both 

conditions than image salience did. Because our chosen suppression manipulation interfered 

with verbalization strategies without imposing undue executive load (Allen et al., 2017), our 

findings demonstrate that the advantage of meaning over salience was not modulated by 

the use of verbal encoding during scene viewing. Instead, we suggest that domain-general 

cognitive mechanisms (e.g., a central executive) may push attention to meaningful scene 

regions, although additional work is required to test this idea.

Many of the previous studies that showed an effect of internal verbalization strategies (via 

interference paradigms) tested simpler displays, such as arrays of objects (Meyer et al., 

2007), color patches (Winawer et al., 2007), or cartoon images (Trueswell & Papafragou, 

2010), while our stimuli were real-world photographs. Unlike real-world scenes, observers 

cannot extract scene gist from simple arrays, and may process cartoons less efficiently than 

natural scenes (Henderson & Ferreira, 2004). It is possible that verbal encoding exerts a 

greater influence on visual processing for simpler stimuli: the impoverished images may put 

visual cognition at a disadvantage because gist and other visual information that we use to 

efficiently process scenes are not available.

Limitations and Future Directions

We cannot know with certainty whether observers in our suppression task were unable to 

use internal verbal encoding. However, we would expect the secondary verbal task to have 

at least impeded verbalization strategies (e.g., Hermer-Vazquez et al., 1999; Winawer et al., 

2007; Trueswell & Papafragou, 2010; Frank et al., 2012), and that should have impacted 

the relationship between meaning and attention if verbal encoding is involved in processing 

scene meaning. Furthermore, the suppression tasks we used (3-digit or 3-shape sequences) 

were comparable to tasks that eliminated verbalization effects in related work (e.g., Lupyan, 

2009), and so should have suppressed inner speech. We suspect that a more demanding 

verbal task would have imposed greater cognitive load, which could confound our results 

because we would not be able to separate effects of verbal interference from those of 

cognitive load.

Subjects in the control condition did not perform a secondary non-verbal task (e.g., a visual 

working memory task). Given that our findings did not differ across conditions, we suspect 

controlling for the secondary task’s cognitive load would not have affected the outcome. 

Recall that prior work has shown digit repetition tasks do not pose excessive cognitive 

load (Allen et al., 2017), and we would have expected lower recognition accuracy in the 

suppression condition if the demands of the suppression task were too great. However, we 
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cannot be certain the verbal task did not impose burdensome cognitive load in our paradigm, 

and therefore this remains an issue for further investigation.

Our results are limited to attentional guidance when memorizing scenes. It is possible that 

verbal encoding exerts a greater influence on other aspects of visual processing, or that the 

extent to which verbal encoding plays a role depends on the task (Lupyan, 2012). Verbal 

interference may be more disruptive in a scene categorization task, for example, than in 

scene memorization, given that categorization often involves verbal labels.

Conclusion

The current study investigated whether internal verbal encoding processes (e.g., thought in 

the form of language) modulate the influence of scene meaning on visual attention. We 

employed a verbal interference paradigm to control for incidental verbalization during a 

scene memorization task, which did not diminish the relationship between scene meaning 

and attention. Our findings suggest that verbal encoding does not mediate scene processing, 

and contribute to a large body of empirical support for cognitive guidance theory.

Open Practices Statement

The experiment and analyses reported here were not pre-registered. Supplemental material 

available at osf.io/8mbyv/. Data available on request.
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Figure 1. 
Scene memorization trial procedure. (a) A five point fixation array was used to assess 

calibration quality. (b) In the articulatory suppression condition only, the digit repetition task 

instructions were reiterated to subjects along with a three digit sequence. (c) A real-world 

scene was shown for 12 seconds. (d) Subjects were instructed to press a button to initiate the 

next trial, at which point the trial procedure repeated (from a).
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Figure 2. 
(a-d). Meaning map generation schematic. (a) Real-world scene. (b-c) Fine scale (b) and 

coarse scale (c) spatial grids used to deconstruct the scene into patches. (d) Examples of 

scene patches that were rated as either low or high in meaning. (e-h) Examples of saliency 

(e), meaning (f), and attention (g-h) maps for the real-world scene shown in (a). Attention 

maps were empirically derived from viewer fixations in the control condition (g) and the 

articulatory suppression condition (h). For the purpose of visualization, all maps were 

normalized to the same attention map (g).
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Figure 3. 
a) Box plots showing linear correlations (left) and semipartial correlations (right) between 

feature maps (meaning, saliency) and attention maps. The scatter box plots show the 

corresponding grand mean (black horizontal line), 95% confidence intervals (colored box), 

and 1 standard deviation (black vertical line) for meaning (red box) and salience (blue 

box) across 30 scenes. b) Line graphs showing linear correlations (top) and semipartial 

correlations (bottom) between feature maps and attention maps for each fixation (1–38) 

when subjects engaged in a memorization task only (solid lines) or additionally an 

articulatory suppression task (dashed lines). Error bars indicate 95% confidence intervals.
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Figure 4. 
Violin plot showing the total number of recognition task responses for each subject 

(individual points), broken into hits, correct rejections, misses, and false alarms (left). Violin 

plot showing d’ values for each subject (right).
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Figure 5. 
Experiment 2 suppression task stimuli. (a) All 10 shapes and shape names shown to subjects 

prior to the practice trials. (b) In the articulatory suppression condition only, the shape 

repetition task instructions were reiterated to subjects along with a three shape sequence.
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Figure 6. 
a) Box plots showing linear correlations (left) and semipartial correlations (right) between 

feature maps (meaning, saliency) and attention maps. The scatter box plots show the 

corresponding grand mean (black horizontal line), 95% confidence intervals (colored box), 

and 1 standard deviation (black vertical line) for meaning (red box) and salience (blue 

box) across 30 scenes. b) Line graphs showing linear correlations (top) and semipartial 

correlations (bottom) between feature maps and attention maps for each fixation (1–38) 

when subjects engaged in a memorization task only (solid lines) or additionally an 

articulatory suppression task (dashed lines). Error bars indicate 95% confidence intervals.
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Figure 7. 
Violin plot showing the total number of recognition task responses for each subject 

(individual points), broken into hits, correct rejections, misses, and false alarms (left). Violin 

plot showing d’ values for each subject (right).
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