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A B S T R A C T

This study proposes a decision support system (DSS) that integrates GIS, analytics, and
simulation methods to help develop a priority-based distribution of COVID-19 vaccines in a
large urban setting. The methodology applies novel hierarchical heuristic-simulation procedures
to create a holistic algorithm for prioritising the process of demand allocation and optimising
vaccine distribution. The Melbourne metropolitan area in Australia with a population of over
five million is used as a case study. Three vaccine supply scenarios, namely limited, excessive,
and disruption, were formulated to operationalise a two-dose vaccination program. Vaccine
distribution with hard constraints were simulated and then further validated with sensitivity
analyses. The results show that vaccines can be prioritised to society’s most vulnerable segments
and distributed using the current logistics network with 10 vehicles. Compared with other
vaccine distribution plans with no prioritisation, such as equal allocation of vaccines to local
government areas based on population size or one on a first-come-first-serve basis, the plans
generated by the proposed DSS ensure prioritised vaccination of the most needed and vulnerable
population. The aim is to curb the spread of the infection and reduce mortality rate more
effectively. They also achieve vaccination of the entire population with less logistical resources
required. As such, this study contributes to knowledge and practice in pandemic vaccine
distribution and enables governments to make real-time decisions and adjustments in daily
distribution plans. In this way any unforeseen disruptions in the vaccine supply chain can be
coped with.

. Introduction

The Coronavirus Disease 2019 (COVID-19) is one of the major global pandemics since the outbreaks of SARS in 2002 and MERS
n 2012 (Wu and McGoogan, 2020). As of January 2021, COVID-19 has infected over 85 million people in 190 countries and resulted
n the death of more than 1.8 million globally (BBC News, 2020). To reduce the risk of infection and fatalities, many governments are
ow administering plans to roll out mass vaccination of their citizens. On December 11, 2020, the U.S. Food and Drug Administration
FDA) issued the first emergency use authorisation for a vaccine developed by pharmaceutical companies. The emergency use
uthorisation allows the COVID-19 Vaccines to be distributed in the U.S. (FDA, 2021). Other countries, such as Australia, also
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granted approvals for the use of different vaccines and begun mass inoculation to protect their nationals against the COVID-19
virus. Owing to the unprecedented scale of infection, hundreds of thousands of doses of vaccine need to be administered at hospitals
and vaccine centres in a short period of time (Department of Health, Australian Government, 2020a). While mathematical models
can help optimise the allocation and distribution of vaccines, the uncertainty of supply and the huge size of the problem render
an exact solution infeasible, especially when decision has to be made in a very short period time under uncertainty. Given these
challenges and the complexity of vaccine supply chains, governments will benefit from evidence-based planning to help optimise
vaccine allocation and distribution processes. Simply put, it is a race against time.

The supply of COVID-19 vaccines is limited at the beginning of the production cycle. It would then be difficult for most
overnments to meet the huge demand for vaccines, and be able to mass vaccinate the populace within a time threshold with finite
esources. Allocation of vaccine also needs to be prioritised based on different levels of susceptibility, exposure and accessibility to
accine centres (Centers for Disease Control and Prevention, 2020). Furthermore, due to other stringent supply chain constraints,
uch as an extreme cold storage requirement and a short shelf life, proper planning and formulation of distribution strategy are
eeded to maximise usage and minimise waste. A standard sequential-planning approach to formulating delivery strategy may be
ll-suited for COVID-19 vaccines (McKinsey & Company, 2020). All sorts of uncertainties where the allocation and distribution
lanning process need to be considered, may arise. An integrated approach with multiple supply scenarios must be embraced to
elp formulate the appropriate strategies and dispensing policies for the vaccine supply chain to achieve the best possible outcome.

Once the vaccine is available, each and every individual needs to be vaccinated to protect against COVID-19 (Docherty et al.,
020). However, not all individuals are equally susceptible since some are more susceptible than others. Furthermore, not all
ndividuals could be inoculated due to a supply constraint of vaccines during the initial production cycle. Hence, allocation and
ispensing of vaccines require priority-based planning which schedules inoculation of the populace based on susceptibility and
xposure levels. Population at risk to COVID-19 is also influenced by the environment or context in which they live. Higher density
reas are at an elevated risk given the likelihood of community transmission. Many studies (Suleyman et al., 2020; Zhou et al., 2020)
ave identified other vital risk factors, such as age and chronic health conditions. The conditions have significantly contributed
o higher COVID-19 related mortality. Allocation and dispensing of vaccines in pandemics investigated in most previous studies,
owever, have considered these criteria individually rather than holistically (Deo et al., 2020). Given the projected limited supply of
accines during the initial production cycle, it is imperative to design an allocation technique that takes into account multi-factored
ontexts within which vaccines can be inoculated to the people needing them the most, on a large scale.

Age (Medlock and Galvani, 2009), chronic medical conditions (Kee et al., 2007) and exposure (Persad et al., 2020; McMorrow
t al., 2019; Uscher-Pines et al., 2006) are vital factors, which need to be integrated when prioritising people for vaccination. There
re only a few studies that have aggregated these critical factors into a finer spatial scale to generate a prioritisation scheme. In
articular, co-morbidity of the population, such as high blood pressure and chronic health conditions (e.g., cancers, diabetes), are
ot yet fully integrated into estimating the susceptibility of people to COVID-19 at a disaggregate level. Given the availability of
o-morbidity data, a new risk index estimating susceptibility levels needs to be generated by aggregating mortality risk factors at
geographic scale. This will help formulate an equitable and effective vaccine distribution plan to remove any potential risk faced
y the most vulnerable groups.

There is also an urgency to formulate an optimised supply network to distribute vaccines from the centralised warehouse to
ospitals or medical centres where the vaccines will be administered. Previous studies have shown that operational constraints such
s multi-dose vaccination, storage requirement, shorter expiry date upon opening, higher cost of wastage, and variegated vaccination
eeds of vulnerable community groups can pose significant logistics challenges at the downstream vaccine supply chain (Abrahams
nd Ragsdale, 2012). Storage capacity at vaccine centres can also influence distribution efficiency (Shittu et al., 2016). Previous
tudies have investigated various factors, such as transport and storage capacity (Lee et al., 2011), consolidation (Brown et al.,
014), scheduling preferences of patients, scheduling inconvenience (Abrahams and Ragsdale, 2012), and cold or non-cold chain
ransportation (Lin et al., 2020) when examining vaccine supply chain performance. However, to date there is no comprehensive
tudy which simultaneously integrates these factors in a single unified solution framework. Given the complexity of a time-sensitive
OVID-19 vaccine supply chain, a robust holistic approach needs to be developed to optimise the priority-based distribution of
accines to the wider community. To meet such a need, this study proposes a two-stage scheme to prioritise the allocation of vaccine
acks and then develop an efficient plan for the distribution of COVID-19 vaccines. The scheme is then tested and validated through
imulation with scenario analysis using Melbourne, the second largest city in Australia with over 5 million residents (Australian
ureau of Statistics, 2020), as a study area.

This study makes several both theoretical and practical contributions to the subject matter. First of all, empirical analysis using
elbourne as a study corroborates some of the vaccine allocation strategies put forward by recent studies such as Chen et al. (2020)

nd Foy et al. (2021). Next, the study is the first attempt to combine demand prioritisation and efficient distribution arrangement
n a single framework making it a truly practical decision support system for COVID vaccination planners and decision makers.
he system is designed to incorporate short delivery time window, extreme cold storage requirement, capacity constraint and
emand uncertainties in the downstream vaccine supply chain. Finally, the framework combines different tools and algorithms
o automate the entire process and produce outcomes in a reasonable timeframe. This novel approach enables decision-makers to
enerate operational plans in real time to support in situ operational decisions. Real-time decision-making capability is critical to
aximising the effectiveness and efficiency of the COVID-19 vaccination program.

The remainder of paper is as follows. A literature review on pandemic vaccine allocation and distribution planning studies
s given in Section 2 to help identify the research gap. Section 3 describes the problem in detail and the assumptions involved.
2

ection 4 presents the solution approach and the framework. The application of the proposal framework to a real case study is
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provided in Section 6. Section 7 discusses the results with a focus on the robustness of the algorithm based on sensitivity analysis.
Section 8 provides managerial insights of this study. The article concludes in Section 9 with a discussion on the key contributions
and implications of the study, its limitations and the direction for future research.

2. Related works

First reported in December 2019 in Wuhan City, Hubei Province of mainland China, the COVID-19 disease was quickly
ransmitted to other parts of the world (WHO, World Health Organization, 2020a). Despite its relatively low case fatality rate,
he disease is highly contagious and spreads rapidly within and between populations. Governments throughout the world have
nforced severe measures, such as self-isolation, wearing of masks, social distancing, quarantine and even partial or total lockdown
f cities and countries, to control the diffusion of the virus (Anderson et al., 2020). Nonetheless, many people have been infected
r deceased in the pandemic. As such, tremendous global effort has been invested in developing a vaccine to mitigate the risk of
nfection.

Although COVID-19 infects people of all ages, evidence suggests that two groups of people are at higher risk of being infected by
he disease. According to a situation report issued by the World Health Organisation (WHO, World Health Organization, 2020b), the
wo groups are older people (i.e., those over 60 years of age) and those with underlying medical conditions (such as cardiovascular
isease, diabetes, chronic respiratory disease, and cancer). The risk of severe disease gradually increases with age starting from
round 40 years. As such, most of the studies on COVID-19 vaccine allocation strategies focus on reduction of mortality and morbidity
ates (Chen et al., 2020; Foy et al., 2021). Since supply of the COVID-19 vaccine will be limited at the beginning, an effective
rioritisation scheme to allocate the vaccines to the most needed populace will be critical if the vaccination program is to succeed.

In view of the importance of vaccine prioritisation and distribution during a pandemic crisis such as COVID-19, relevant works
ill be reviewed according to two major themes: (1) prioritisation of vaccine allocation; and (2) optimisation of vaccine distribution.

.1. Prioritisation of vaccine allocation

Prioritising the allocation of a vaccine against an epidemic or pandemic such as COVID-19 to prevent the disease from spreading
s of great importance to many governments, especially when the population of the infected area is large and vaccination facilities
re limited. The determination of who gets the vaccine first can be a very difficult task (Persad et al., 2020). Epidemic vaccine
rioritisation (EVP) as well as efficient distribution of vaccines to those needing it most, in order to prevent the infectious diseases
preading constitute the most important healthcare challenges in large urban areas. Appropriate EVP not only can reduce mortality
nd healthcare expenses but also minimise political destabilisation and claims of injustice (Uscher-Pines et al., 2006). EVP can be
ased on groups, such as healthcare personnel and long-term care facility residents, as well as geographical areas, such as densely
opulated metropolitan areas (Gamchi et al., 2020). Allocation decisions can be ethically and logistically complex, given the limited
nd uncertain supply of vaccines and the competing priority groups with distinct risk profiles and vaccine acceptability (Huang et al.,
017).

Careful design of a vaccine prioritisation strategy is a crucial public policy challenge (Buckner et al., 2020). Prioritisation of
accine allocation must be empirically and objectively determined (Bubar et al., 2020). For example, Chen et al. (2020) used
linical and demographic indicators, for instance age, to prioritise vaccination. With the help of an age-structured simulation
odel, the researchers concluded that older groups should be given priority due to their vulnerability. Govindan et al. (2020)
ivided community residents into four groups based on the risk level of their immune system (namely, very sensitive, sensitive,
lightly sensitive, and normal) and two indicators (age and pre-existing diseases, such as diabetes, heart problems, or high blood
ressure). Furthermore, they are required to observe the regulations of their class to prevent a sudden surge in demand in the
ealthcare system. Such arrangements would help manage demand in a healthcare supply chain and break down or decelerate
he virus chain. Buccieri and Gaetz (2013) emphasised the ethical dimensions of vaccine prioritisation. They opined that during
n epidemic or pandemic, such as the pH1N1 influenza in 2009, homeless people who generally have poor health should be
iven priority for vaccination. Medlock and Galvani (2009) used different demographic variables, mortality or incidence rates
nd age groups to prioritise vaccination. They concluded that the elderly and school children should be given priority because
f their vulnerability. Others focus on the groups subject to high risk due to direct contact. Uscher-Pines et al. (2006) prioritised
ifferent groups including hospital service workers, people at high risk and hospitalised cases. Deo et al. (2020) used socioeconomic
haracteristics as the basis of prioritisation and contended that frontline healthcare workers and people in the 60+ age group,
ith moderate or severe comorbidities, or low income should be given priority. Research by Kee et al. (2007) in South Korea

oncluded that, in addition to patients with specific illnesses such as chronic diseases, people over the age of 65 years should be
iven priority for vaccination. Similarly, Persad et al. (2020) prioritised vaccination for healthcare workers, essential workers and
eople in high-transmission settings, people with medical vulnerabilities such as diabetes, pulmonary disease, cardiac disease, and
besity. In another study, McMorrow et al. (2019) argued that adults, children with tuberculosis disease, HIV-infected adults and
regnant women should receive the vaccine first. In the same vein, Abbasi et al. (2020) prioritised vaccination using a segmentation
ystem which deals with allocation of vaccine to medical centres based on the priority of individuals who registered their request
or vaccine in a medical centre. The mathematical model proposed is generic and can take any possible prioritisation as input. For
he case study, however, only age group is used for prioritisation as an illustration.

Our review shows that most studies have focused on socioeconomic characteristics and age for prioritising epidemic vaccination.
3

eographical aspects as well as comorbidities of the population, such as high blood pressure, cancers, diabetes are given less priority.
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Owing to the limited supply of vaccines especially during the early stages of vaccination, it may not be possible to vaccinate
the population in all geographical areas at the same time. Prioritisation based on geographical areas is equally important due
to differences in the exposure to physical contact, socio-economic status, co-morbidity outcomes and remoteness. Gamchi et al.
(2020) used an infected–recovered model and a bi-objective vehicle routing problem method to prioritise city districts and citizens
of Tehran for COVID-19 vaccine distribution. Prioritisation of city districts was based on priority groups, such as pregnant women
and children under six months of age. However, no location-based method was used to prioritise areas. Also, the geographical scale
used for vaccine distribution was very large and general. To be practical, a finer geographical scale has to be employed to accurately
prioritise areas and the populace for vaccine distribution. In another study, Acharya and Porwal (2020) used a comprehensive set
of social, economic, and epidemiological variables as well as availability of healthcare facilities to identify high-risk areas in India.
Again, however, the geographical scale of the entire country was selected thus limiting the practical use of the outcome. Also, the
importance or the weight of each indicator in the prioritisation has not been specified. In Australia, Liu and Xian (2020) used health
and demographic indicators (e.g., age, cancer, and other clinical variables) to classify communities at high risk of certain diseases to
conduct the corresponding therapeutic measures. The prioritisation is again very general and applicable on a national scale leading
to the conclusion that a major city such as Melbourne is not considered a high-risk area in most of its metropolitan area. Obviously,
for vaccination against a pandemic such as COVID-19, a much smaller scale, for instance local areas, should be used to achieve a
more precise prioritisation in order to be practical.

Previous studies on vaccine allocation have shed light on prioritisation. Keeling and White (2011) used the SIR (susceptible–
nfectious–recovered) model to target vaccination against H1N1 influenza virus in Great Britain. The population was prioritised
y age, level of risk of disease prevalence, and epidemiological characteristics of high-risk groups. Epidemiological scenarios were
ested with different onset times for the start of vaccination, different numbers of districts initially infected, and different levels of
ransmission heterogeneity in each district. They concluded that targeting of vaccination towards regions experiencing high levels of
nfection would generally reduce the total number of cases. Araz et al. (2012) used mathematical modelling to prioritise counties in
rizona, U.S.A for vaccine distribution against the A/H1N1 pandemic in 2009. Four different prioritisation strategies, including pro
ata, sequential by population, sequential by peak, and reverse sequential by peak, were examined. Adoption of a pro rata policy,
.e., distributing according to population size, was regarded as the most effective strategy. Venkatramanan et al. (2019) used mobility
nd travel time patterns as well as influenza epidemic seasonal intensity patterns to model vaccine allocation across the states of the
SA. Greedy optimisation algorithm method was used to model the allocation problem. The population was divided into groups,

ncluding susceptible, exposed, infected, recovered, and vaccinated and modelled separately. Under this classification, the southern
nd southeastern states were identified as of high priority for vaccine allocation. Chen et al. (2020) used an age-structured SAPHIRE
odel and the standard least squares model parameter estimation method to evaluate the outcome of various vaccine allocation
olicies. They concluded that with constant daily supply of limited amount of vaccine, allocating them to the oldest group first
ould be most effective to reduce mortality rate. With increase in constant daily supply, more vaccines could be allocated to the
ounger groups to help reduce infection rate.

Table B.1 in Appendix B summarises the reviewed literature on prioritisation of vaccination. It reveals that only a few studies have
sed ‘‘individual medical condition’’ as an indicator for vaccine prioritisation (Liu and Xian, 2020). Also, location and geographical
istribution of the vaccine has not been considered especially at a finer spatial granularity within a large metropolitan city.
urthermore, the time of distribution, the location and the capacity of vaccine centres as well as the target groups were only taken
nto account in a few studies. These inadequacies would need to be addressed in order to develop a practical and effective allocation
lan to prioritise COVID-19 vaccination.

.2. Optimisation of vaccine distribution

In addition to prioritisation of vaccine allocation, an efficient and effective distribution of vaccines to the populace is equally
mportant to successfully mitigate risk and prevent the transmission of diseases to the wider community. The goal is to ensure that
here would be adequate vaccines shipped to the medical centres in time to meet demand while ensuring the capacity of the centres
ould not be exceeded. Owing to the huge demand, the COVID-19 vaccines are unlikely to be supplied to any country at once

n large quantity. They would likely be supplied in batches to maintain a sustainable and equitable replenishment system to meet
he global needs. The extreme cold storage requirement and short shelf life of the vaccines, together with the limited dispensing
apacity of vaccine centres, could also impede the supply of the vaccines to effectively inoculate people within the expected time
hreshold.

The fact that the vaccines have to be stored in extremely low temperatures and, once thawed, must be administered within
everal hours has created tremendous difficulties in distribution. It implies that the thawed vaccines can only be delivered from the
entral storage location to the vaccine centres within a narrow time widow and must be used almost immediately. Unpredictable and
ynamic emergency situations can also pose critical challenges when implementing a planned distribution strategy. These situations
an include simultaneous random arrival of many people, even with prior booking for different time slots, at a vaccine centre waiting
or inoculation, thereby increasing the risk of person-to-person transmission. Furthermore, ’no-shows’ of people with prior bookings
t a vaccine centre can lead to possible waste of precious vaccines which cannot be frozen again for future use. All these variables
nd constraints will need to be considered when designing the vaccine distribution system to ensure practicality and success.

There are significant differences in determining optimal vaccine distribution arrangements between normal and pandemic
accination due to demand, scale, exposure, time–space thresholds and other operating constraints in the latter. Most studies on
4

ypical vaccine supply chain are based on a cost-efficiency argument and the effectiveness of procurement, allocation and distribution



Transportation Research Part E 159 (2022) 102598S. Shahparvari et al.

s
t
(
d
e
i
v
o

v
N
t
o
e
a
2
e
(
e
t
d
p
p
d
D
o
v

a
l
A
a
o
F
m
h
g

3

l
h
t
v
o
m
o

v
i
a

to provide vaccination to a wider population. For example, using simulation and mathematical modelling, Lee et al. (2011) explored
the impact of a newly introduced vaccine on the existing vaccine supply chain and concluded that additional transport and
storage capacity would be required to effectively distribute the new vaccine. Abrahams and Ragsdale (2012) considered scheduling
preferences of patients and argued that operational management challenges, such as multi-dose vaccine packages, rapid spoilage
upon opening, high cost of wastage, and unique vaccination needs of patients, could all seriously compromise the effectiveness of
vaccine distribution. Based on the method used by Lee et al. (2011), Brown et al. (2014) explored how the introduction of the
new vaccine could affect cost and availability in the downstream vaccine supply chain. The results indicated that consolation of
distribution levels to streamline the distribution process could be the best option in terms of cost and efficiency.

Storage capacity can also affect downstream vaccine supply chain performance. For example, through scenario testing using
imulation, Shittu et al. (2016) analysed the impact of variances in vaccine supply and demand in Nigeria. They concluded
hat proper redesign of existing vaccine supply chain could be crucial to improving capacity utilisation. Similarly, Lee et al.
2011) examined the efficiency of an existing multi-tiered vaccine supply chain in Mozambique in comparison with an alternative
istribution design through simulation. The results revealed that, by delivering directly from national depot to district stores in
ach province and then to health centres without going through the provincial stores, the alternative distribution design tends to
ncrease availability of vaccines and reduce logistics costs. These analyses suggest that proper distribution design of the downstream
accine supply chain can improve utilisation of storage capacity. Subsequently, the overall distribution efficiency and effectiveness
f vaccination program will improve.

Owing to short supply and huge demand commonly for vaccines as well as time–space constraints, most studies on pandemic
accine supply chains focus on prioritising allocation of vaccines to the neediest in the populace as discussed previously.
evertheless, rapid distribution of medical supplies plays a crucial role in the effectiveness and efficiency of disaster response, hence

he overall performance of the healthcare system (Al Theeb and Murray, 2017; Dessouky et al., 2013). Therefore, upon determination
f the priority groups for vaccination, delivery of vaccine to the targeted groups becomes primarily an assignment problem (Gamchi
t al., 2020). Studies on distribution of vaccines and other medical supplies in humanitarian aid settings mainly focus on a few
spects. They include vehicle routing with different minimisation objectives, such as total distribution time (Özdamar and Demir,
012), distribution cost (Balcik et al., 2008), unsatisfied demand or unserved victim (Özdamar and Yi, 2008; Tan et al., 2009), and
vacuation time (Tan et al., 2009). Mathematical modelling is commonly adopted in these studies. For example, Al Theeb and Murray
2017) presented a multi-objective model considering commodity delivery, victim evacuation, and relief workers assignment. Li
t al. (2016) developed a model to optimise the medicine distribution routes by minimising the total cost of refrigeration storage,
ransportation, and vehicle fixed costs. Vehicle routing is critical in healthcare services when resources are inadequate, and the
emand is geographically spreading (Harper et al., 2005; Syam and Côté, 2010). There are studies on applying the vehicle routing
roblem (VRP) in the distribution planning of healthcare-related products. For example, Moghadam and Seyedhosseini (2010)
resented a specific VRP to reduce the unmet demand in drug distribution. Ceselli et al. (2014) considered a double channel
istribution problem, including the distribution centre and routing strategies, to distribute vaccines or drugs in an emergency.
espite the critical importance of time in a pandemic vaccine distribution system such as that required for COVID-19, the objectives
f minimising distribution time and unmet demand remain unchanged. As such, the VRP approach to optimise assignment and
ehicle routing is still relevant and applicable.

Despite the frequent occurrence of epidemics and pandemics in the last two decades such as SARS, pH1N1, MERS, studies that
im at designing and building an efficient distribution network to deliver the vaccines to those who need them most are relatively
imited (Abrahams and Ragsdale, 2012; Brown et al., 2014; Buccieri and Gaetz, 2013; Medlock and Galvani, 2009). Table B.2 -
ppendix B summarises the reviewed literature on optimisation of distribution of vaccines and medical supplies. Revealed here is
lack of research on building an efficient distribution network that takes into account priority demand allocation, waiting time

f and staff levelling, as well as vehicle routing to ensure that the vaccines will be effectively delivered to the neediest people.
urthermore, these studies usually only investigate certain aspects of the distribution problem and have not fully incorporated the
ultitude of factors and constraints affecting the optimisation of a vaccine supply chain to mitigate infection risk. The need for a
olistic approach to designing a pandemic vaccine supply chain is more critical in the case of COVID-19 in view of its profound
lobal healthcare and economic impacts.

. Problem description

The COVID-19 vaccine is being produced by several companies using different technologies and storage requirements. A robust
ogistics system must be established to make the vaccine supply chain as efficient as possible. The Pfizer vaccine, in particular, is
ighly vulnerable to contamination and requires storage at an extremely low temperature. Even when refrigerated at the correct
emperature, it is only effectively useable for a period of about two weeks. The mRNA-based technology required to produce the
accine is only used at Pfizer’s plants which are in the United States, Belgium and Germany. At this stage, Pfizer vaccines can
nly be supplied from these manufacturing plants via airfreight. Australia is planning to secure 10 million doses to cover five
illion Australians in 2021 once the vaccine is approved by the Therapeutic Goods Administration under the federal Department

f Health (Department of Health, Australian Government, 2020a).
To develop an efficient COVID-19 vaccine supply chain in Australia, it is important to consider a range of constraints within which

accines will have to be allocated to vaccine centres (VCs) for mass inoculation. Vaccines need to be manufactured on short notice
n large quantities and delivered on a long haul from overseas. The vaccines need to be stored in refrigerated warehouses/vehicles
5

nd then distributed across large geographic catchments within a restricted time window. Owing to the limited supply of vaccines
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Fig. 1. Problem definition: On each day, available vaccines need to be distributed from cooler storage to the 𝑉 𝐶𝑠 within a certain time window (𝑇𝑊𝑑𝑎𝑦𝑛 ). On
𝑑𝑎𝑦1+𝑘, people who have already received the first dose will become top priority to receive the second dose of vaccine. Each 𝑉 𝐶, based on type, has specific
service capacity. The plus symbols indicate the locations of the 𝑉 𝐶𝑠, and the black dots indicate the locations of people. The black dots show the population
who are waiting to receive their first vaccination dose. The red dots indicate the high priority demands in each suburb assigned for receiving their first dose of
the vaccine. The green dots indicate people who are due to receive the second dose of vaccination on the day. The grey coloured dots show the people who
have received both doses of vaccine. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

at the beginning, allocation has to be prioritised based on certain criteria to get the vaccine to the most needed populace first.
This is essential if the effectiveness of controlling the virus infection is to be maximised. Furthermore, the vaccine is required to be
injected twice with one dose initially, followed by a booster shot three weeks later. Missing out on the second dose can significantly
reduce the protection of the recipient. The timing is critical as the second dose must be injected 21 days later in order to get the
best result. Other factors, such as different packaging of vaccines, capacity of delivery vehicles, serving capacity and random arrival
of participants at VCs, no-shows, short shelf life of vaccines upon thawing and WHO multiple-dose vaccine vial policy, etc., can
pose significant challenges in the daily routing and scheduling of delivery vehicles. These constraints pose a complex distribution
problem in the vaccine supply chain as shown in Fig. 1.

An effective and efficient vaccine supply chain requires a solution approach which would integrate the following practical
assumptions and the underlying constraints. The vaccine packages are imported and stored in a centralised Government Designated
Deep Cold Storage (GDDCS) facility and then distributed to the 𝑉 𝐶𝑠 at which participants would arrive to receive vaccination.

– The vaccines are sequentially delivered in packages to the 𝑉 𝐶𝑠 from the GDDCS on daily basis.
– Two doses of vaccine need to be dispensed to each recipient with 21 days interval.
– Vaccine packs are distributed among 𝑘 facilities to sequentially serve population segmented on various priority levels.
– The vaccine shelf life at fridge temperature is 6 days.
– The capacity of 𝑉 𝐶𝑠 is flexible which can be increased to double capacity from the original capacity by calling more medical

staff.
– The duration of vaccination per person ranges from 8 to 12 minutes.
– All vaccine packs received and opened at 𝑉 𝐶𝑠 must be used within the same day in 7 hours.
– Vaccine delivery at the 𝑉 𝐶𝑠 per day is set for 3-hour time window.

ithin these assumptions, this study aims to develop a mathematical model to effectively distribute the vaccine packages. To achieve
his aim, the following questions have to be answered:

– Who needs to take the vaccine first to minimise the risk of infection? (Stage I)
– Which are the areas with high level of susceptibility to COVID-19? (Stage I)
– What is the daily assignment and schedule to efficiently distribute vaccines to population based on priority levels to the nearest

𝑉 𝐶? (Stage II)
– What is the best amount of vaccine packs to be assigned to each 𝑉 𝐶 to minimise vaccine degradation? (Stage II)
– What is the best capacity (number of staff required for vaccination) in each 𝑉 𝐶 to minimise service waiting time? (Stage II)
– What is the best daily assignment vaccine packs and routing of vehicles with minimum required couriers from GDDCS to the

𝑉 𝐶𝑠? (Stage II)

Appendix G shows the mathematical formulation of the problem which comprises two models, namely assignment model
ppendix G.1, capacity allocation model Appendix G.2. While these optimisation models can help identify an optimal arrangement
f vaccine allocation and distribution for small size problem, the amount of calculation increases exponentially when the problem
6
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Fig. 2. Solution method framework. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

size increases. Real-time application becomes infeasible as the computation time becomes exceedingly long (see Appendix I). For
a city with millions of people such as Melbourne waiting for vaccination, these models become impractical in helping healthcare
planners to allocate and distribute vaccines on a daily basis. An efficient algorithm amalgamating mathematical modelling and
heuristic that can produce a good enough solution in a relatively short period of time has to be employed instead. As such, the
problem is reformulated as a math-heuristic algorithm using an integrated approach combining the three aspects of the problem —
assignment, capacity allocation.

A framework to obtain a solution to this problem on a daily basis using the Holistic algorithm Alg. III is shown in Fig. 2 which
comprises two stages. The first stage is to prioritise the allocation of vaccines to the neediest based on nine key prioritisation criteria
identified from the literature. A geodatabase and fuzzy logic are used to spatially prioritise areas of vaccination demand in the study
area. The second stage consists of three sub-stages to form a holistic system incorporating demand allocation, capacity balancing
and vehicle routing to generate an efficient distribution plan. In allocating the priority demand determined in the first stage, eight
hierarchical heuristic algorithms are integrated to obtain the daily assignments from the central storage location of vaccines to
the 𝑉 𝐶𝑠 where the vaccines are dispensed. A simulation engine is then used to simulate the many possible scenarios, such as
mass random arrival of participants, to achieve the best resource balancing at the 𝑉 𝐶𝑠 in terms of participant waiting time and
vaccination staff levelling. Finally, the balanced daily assignments will be distributed to the 𝑉 𝐶𝑠 through efficient vehicle routing
to be obtained through heuristics including Monte Carlo and greedy algorithms. Various performance measures, such as average
waiting and service time, number of trucks for delivery and total travelling distance, are used at each sub-stage to ensure the best
outcome is obtained. Fig. 1 illustrates the proposed problem of this study.

4. Solution approach

As shown in the solution method framework (Fig. 2), the objective of Stage I is to identify, locate, and prioritise people who
are in need of vaccination by screening attributes including health condition, age, and population density of the locale using spatial
analytical method. Once the daily priority demands for vaccine are determined, demands for the individual 𝑉 𝐶𝑠 will be assigned
considering the waiting time and the best serving capacity at the 𝑉 𝐶𝑠. After that, the optimal vehicle routes from the GDDCS to
the 𝑉 𝐶𝑠 will be calculated. These challenges are to be overcome in Stage II as described in the section below.
7
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This integration exponentially escalates the complexity level of the problem (Pardalos, 1993) meaning that no commercial
olver/method would be able to optimally solve the problem in an exact method with reasonable computational time. As such,
n integrated hierarchical GIS-heuristic-simulation approach incorporated with heuristics to help generate semi-optimal daily
accination plans in relatively short period of time is proposed. It addresses the problem covering all the five modelling concepts
o be solved using eight algorithms and measured by seven system performance improvement indices.

.1. Stage I- Spatial analysis

In Stage I, the first step is to prepare a geodatabase. Nine key criteria identified from the literature are used to spatially prioritise
reas of vaccination demand (Table C.2). The fuzzy logic method is used to standardise the scale of each criterion (see Appendix D.3).
riteria weights obtained from the literature (Table C.2) are applied to the criteria layer in the GIS geodatabase. How each criterion
ispersed on the GIS geodatabase of the Melbourne metropolitan area is depicted separately in Fig. C.2.

To apply each of the weighted criteria and extract an output with priority values, the fuzzy overlay function is used to overlay
he criteria layers in GIS (see Appendix D for more details). Since the scale of the original survey data is in ‘mesh blocks’,1 the

Inverse distance weighting (IDW) method interpolation method is applied to delineate the prioritised values (Fig. 3(a)).

In the final step, the linguistic fuzzy values (Fig. 3(a)) are converted to numerical interval values as input for Stage II. A
defuzzification process is performed using the ‘reclassify’ approach in GIS (Fig. 3(b)). The final outputs of Stage I are the top priority
demand locations and scores (Fig. 3(c)).

4.2. Stage II-Distribution pattern analysis

Stage II includes three main subsections as Priority demand allocation (Subsection Appendix H.1; Fig. 2-blue area), Resource
(staff) balancing (simulation-optimisation) (subsection Appendix H.1.1; Fig. 2-green area), and vaccine distribution pattern (subsec-
tion Appendix H.1.2; Fig. 2-red area) that all integrated in the Holistic algorithm III. Using other inputs, the algorithm follows the
three main steps to generate the best daily values for the decision variable 𝐵𝐴𝑆𝑆𝑑 as the Balanced Vaccine Allocation of day 𝑑, and
𝑅𝑆𝑑 as the daily couriers vaccine distribution pattern through designed sequential progressive iterations (see Table A.1 for the
omenclature and Appendix H for detailed explanations).

In below, the pseudo-code for the holistic algorithm is provided. It contains iterations for each day. The iteration continues until
ll demands get both doses (line 2). On each day, the data of the centres will be given for any update (line 4). In addition, each day
package of vaccines will be received (line 5). Regardless of its amount, it aggregates on the reserved vaccines (𝑃𝑟) from previous
ays (line 6). Next, if the reserved vaccines become larger than the maximum reserve capacity (line 7), the excess vaccines will
e perished and minus from the reserved vaccines (line 8). If the number of reserved vaccines is less than the maximum capacity
𝑇𝑀𝐶) of the day, the total amount will be prepared for the day vaccination. Otherwise, a part of the vaccines as the amount of
MC will be separated and prepared for the vaccination in the day, and the rest of them will be reserved for the next days (line
–12). The prepared vaccines will first be assigned to the second dose due of the day. Whatever is left from the second dose, will
e assigned to the leftover first doses demands. If the prepared vaccines are less than the second doses due of the day, some of the
emands cannot get their second dose on time, hence, their vaccine cycle will be expired, thus, they should take their first doses
gain (line 15–21). Whoever gets his first dose, will be on the queue for taking their second dose after the interval time (line 22–24).

The amount of prepared vaccines determines which distribution strategy to choose. If the amount exceeds the total intrinsic
apacity of the centres (TCC), the centre should operate over their capacity; otherwise, they can work under their capacity. The
GA-Excess algorithm IV and HGA-Shortage algorithm VI are developed to address the allocation of vaccines regarding the chose

1 Mesh blocks are the smallest geographical area defined by the ABS (2017) and form the building blocks for the larger regions of the Australian Statistical
eography Standard (ASGS). All other statistical areas or regions are built up from or, approximated by whole mesh blocks. They broadly identify land use

uch as residential, commercial, primary production and parks, etc. The ASGS boundaries by areas can be ordered as SA4, SA3, SA2, SA1 (suburbs), and mesh
8

locks). Most mesh blocks contain 30 to 60 dwellings.



Transportation Research Part E 159 (2022) 102598S. Shahparvari et al.

p

t

strategy (line 25–29). After the allocation of vaccines among the centres, Algorithm X balance the staff of the centres (line 30).
Lastly, the Algorithm XI plans the distribution of vaccine to the centre with refrigerated trucks (line 31).

Algorithm I: Holistic Algorithm III - Pseudo Code
1 𝑑 ← 1;
2 while all the population have not still got their two dosages of vaccines do

// PRIORITY DEMAND ALLOCATION (SECTION Appendix H.1)

3 if there are some needs for vaccine on day 𝑑 then
4 CC ← data of the centres;
5 𝑃𝑛𝑒𝑤 ← the entry package of vaccine that arrived at day 𝑑;
6 𝑃𝑟 ← 𝑃𝑟 + 𝑃𝑛𝑒𝑤;
7 if 𝑃𝑟 is greater than the maximum amount possible for reserving and vaccination in six days then
8 The excess amount will be perished

9 if 𝑃𝑟 is greater than the maximum amount possible for vaccination in one day then
10 𝑃𝑑 ← the maximum amount possible for vaccination in one day
11 else
12 𝑃𝑑 ← 𝑃𝑟
13 𝑃𝑟 ← 𝑃𝑟 - 𝑃𝑑 ;
14 Second dose takers ← ⊘;
15 if 𝑃𝑑 is greater than the second dose due on day d then
16 Second dose takers←Assign the demands on second dose due on the day 𝑑 for vaccination;
17 𝑃𝑑 ← The remained vaccines for the first doses;
18 else
19 Second dose takers ← Assign the amount of supplied demands (𝑃𝑑 ) on second dose due on the day d;
20 The left demands that did not get their second doses are expired, and they will get their first doses later again;
21 𝑃𝑑 ← 0;

22 first dose takers ← ⊘;
23 if 𝑃𝑑 is greater than zero then
24 First dose takers ← Assign the amount of top prioritised supplied demands (𝑃𝑑 ) on the first doses;
25 The ones who have taken their first doses will be on the list for taking their second doses after the interval time;

26 Queue ← Second dose takers + first dose takers;
27 if the vaccination demands in the Queue are greater than the Total Centres Capacities then
28 Allocate the demands to the Vaccine Centres using HGA-Excess (Algorithm IV)

29 else
30 Allocate the demands to the Vaccine Centres using HGA-Shortage (Algorithm VI)

// RESOURCE (STAFF) BALANCING (SECTION Appendix H.1.1)

31 Balance the staff in centre with SimulationEngine (MonteCarloOptimisation,Algorithm X) ;;

// VACCINE DISTRIBUTION PATTERN (SECTION Appendix H.1.2)

32 Distribute the vaccines to the VCs using MonteCarloGreedySimulation (Algorithm XI) ;

33 𝑑 ← 𝑑 + 1;
34 Return the courier distribution plan for day 𝑑;

5. Numerical experiment

To assess the effectiveness of the developed solution approach, sets of numerical experiments are designed using various sample
roblems. The proposed solution approach’s performance III strongly relies on the three algorithms of HGA-Excess IV, HGA Shortage

VI (including the Heuristic and Repair algorithms (Algs. VIII, V and VII which are embedded), and Monte Carlo algorithm XII (which
he greedy algorithm XI is included). We have compared the performance of both the HGA-Excess and HGA-Shortage algorithms with

the developed counterpart Heuristic Particle Swarm Optimisation (HPSO) algorithms (see Appendix I.2 - Algs. XIII and XIV). The
performance of the Monte Carlo greedy algorithm has been evaluated by Bodaghi et al. (2020). To ensure that variations of the
algorithm inputs are captured in the fitness value, each case is repeated and analysed for thirty iterations. The algorithms are coded
in MATLAB and run on a PC with a 3.8 GHz CPU with 16 GB RAM. The mean 𝜇 and standard deviation 𝜎 of thirty runs in several
cases are presented in Appendix I.2 - Table I.2 as follows.

The results in Appendix I.2 - Table I.2 indicate that the outcomes of the both HGA-Excess and Shortage algorithms can outperform
the relative HPSO algorithms by at least 3.26% in the case 8 - Excess and 1.99% in case 4 - Shortage.

Appendix I.2 - Fig. I.1 illustrates another comparison as the convergence graph for solving Cases 3 Appendix I.2 - Figs. 1(a), 1(c)
and 6 Appendix I.2 - Figs. 1(b), 1(d) in the numerical example with both methods after 1000 iterations. The computation time is
7321.2 s. Using the above instances explained, the suggested HGA-Excess and HGA-Shortage algorithms’ performance is validated.
9

The figures indicate that the HGA algorithm can obtain better outcomes in the same scenarios within a certain period of time.
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6. Case study area

6.1. Characteristics and properties

In this research, the Greater Melbourne Metropolitan Area (GMMA) is chosen as the study area. The GMMA is located in the
outhern part of the state of Victoria in Australia occupying an area of 9991.51 km2 (Fig. C.1). With a population of 5.078 million

(2.3% annual growth rate), the GMMA is considered the second most populous urban area in Australia (ABS, 2020; DHHS, 2020).
The average population density was calculated to be 1,618 people per km2 using mesh SA1 population data (DHHS, 2020). The
nner city, with an average density of 3,700 people per km2, has the highest population density. The median age of people in the
MMA is 36 years and people aged 65 years and over constitute 14.0% of the population. Melbourne is a very multicultural place
nd most of its residents are non-indigenous (94%). The first confirmed case of COVID-19 in Australia was identified on 25 January
020, in the GMMA, when a man who had returned from Wuhan, China, tested positive for the virus (DHHS, 2020). From that
ate to the last date of this study period (24/08/2021), 21,526 people were infected with the coronavirus in the GMMA. Fig. C.1
hows the GMMA location by Statistical Areas Level 1 (SA1) and the COVID-19 infection as at 24/08/2021. Just as the virus itself
s highly variable and complex, its spread in geographical terms is highly dynamic and unstable. Appendix C - Fig. C.1, which is
rawn based on DHHS data, shows that the western, southeastern and northeastern areas of the GMMA have experienced higher
ates (active cases per 100,000) of infection since the outbreak.

.2. Criteria and weights

For prioritisation of vaccine allocation, the required criteria are derived and assembled from a comprehensive investigation and
thorough review of the literature and meta-analysis studies. Previous epidemiological meta-analysis studies have confirmed the

ole of these selected variables in increasing the risk of death following coronavirus infection. As such, allocating vaccines in priority
o people meeting these criteria would be more effective to curb the infection. These criteria include epidemiological risk factors
uch as individual and Socio-physiological characters of vulnerable groups in the GMMA. They can be categorised into nine types
ased on health conditions (C-1:C-7), ageing (C-8), and population density (C-9) as documented in Appendix C.

These criteria increase the risk of death upon infection with the virus, although it does not mean that anyone who has one of these
haracteristics will be infected. Nevertheless, they are appropriate and important factors in prioritising vaccination. As weighting is
crucial step in FL-GIS prioritisation process, we use Odds Ratios (OR), a measure of association between exposure and an outcome

ommonly adopted in meta-analysis studies, as the weight of the criteria. As described in the following steps, the weights obtained
rom the literature review are applied to create the criteria maps. Table C.2 shows the selected criteria (symbolised by the letter C)
y definition, weights, meta-analysis references and data source.

.3. Data and geodatabase

In this study we used three types of dataset. The first dataset is related to the information of SA1 population, people with
onfirmed COVID-19 disease and 104 test centres. The disease data were recorded in SA1 (postcodes) level from 25 January 2020
o 24 September 2020 by the Department of Health and Human Services (DHHS), State Government of Victoria, Australia. There
ave been 18,816 people infected with the virus in Melbourne, of which 518 were active. Fig. C.1 shows the EBS2 rates of COVID-19
er 100,000 for the GMMA (high range = 1048 and low range = 8.3). The second type of dataset is administrative and statistical
oundaries (SA2 and SA1) GIS vector format which are obtained from the Spatial Department of the Victorian State Government
nd Australian Bureau of Statistics (ABS, 2020). In addition, Open Street Standard Map is used to introduce the study area. These
patial data are used in FL-GIS visualisation process Appendix D.3. The third type of dataset includes information concerning nine
elected criteria. This dataset is the basis of FL-GIS model application and is compiled from the available databases, and Victorian
tate government resources, which have been tabulated in details in Table B.1.
Priority areas Fig. 3(a) shows the output map of the FL-GIS method based on the IDW method (see Appendix D.3 for details). As

hown on the map, different areas of the city are clustered with high priority (red), moderate (yellow) and low priority (green). In
erms of areal coverage, 3347.81 km2 fall in high and 6643.63 km2 on moderate and low priority range categories. Based on this
plit, 33.5% of the city area is given a higher priority of vaccination.

Fig. 3(b) shows the classified (defuzzified) priority ranked map. On this map, the GMMA is classified into five priority areas
catchments) based on priority values obtained from the applied FL-GIS method. According to this map, 419,780 (9.35%) people
ive in priority area 1 (red coloured), 888,771 (19.79%) in catchment 2 (orange coloured), 1,100,286 (24.51%) in catchment 3
yellow coloured), 1,175,488 (26.18%) in catchment 4 (light green coloured) and 904,441 (20.14%) in catchment 5 (dark green
oloured) respectively (based on 2016 census data). Population calculations based on the 2016 census data also show that 1,308,551
eople, equivalent to 29.15% of the city population, are in the high priority of vaccination. About 41% of the GMMA postcodes are
ocated in catchments 1 and 2 with high-ranged priority areas. Fig. 3(c) delineates the mesh blocks areas and related priorities. In
his study, the GMMA’s COVID-19 test centres Appendix C - Fig. C.1 are assumed to be the vaccine centres Appendix C - Table C.1.

2 Empirical Bayesian Smoothed (EBS) is a technique employed for smoothing and preventing bias in raw rates (Marek et al., 2014) EBS balances event rates,
10

specially for areas with limited populations (Nyadanu et al., 2019).
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Fig. 3. Priority areas for vaccination; 3(a): IDW-interpolated map based on Fuzzy method by priority ranges; 3(b): Defuzzified ranking of areas in order of
priority for vaccination; 3(c): Top priority demand distribution pattern within the SA1 centroids. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

7. Results and discussion

In this section, two scenarios of vaccine supply distribution have been analysed to evaluate the performance of the proposed
solution framework in generating vaccine distribution patterns under different circumstances. The parameter settings have been
tuned before computational analysis in the below scenarios:

7.1. Scenario I - Limited daily supply (supply shortage )

In this scenario, it is assumed that vaccine supplies are limited to 50,000 doses per day which is 44.9% of the original total
capacity of the VCs at 113,000. Appendix F - Fig. F.1 shows the output of applying simulation engine in one day for staff balancing
(reallocation) in the vaccine centres. The initial capacity allocation in Stage II has been calculated based on the direct Euclidean
distance between the demands and the VCs as 𝐴𝑆𝑆 and VC capacities. In some cases, however, not all the assigned demand could
serve since the VCs capacity considered in the 𝐴𝑆𝑆 is not enough to finish all the vaccinations within the 7 hours. For instance,
in Day 1-VCs type A, only 2,982 from the entire 3,108 assigned population could be served within 7 working hours. The average
time in vaccine centres with current vaccination capacities is 41’:53 minutes which exceeds the 30 minutes allowed Appendix F
- Fig. 1(a). There is, however, another factor that should be taken into consideration, which is the last time the people left their
homes to be served. In this case it is assumed that after 5.5 hour from the beginning of the vaccination, demand population has a
maximum 1.5 hours lead time to spend on the road and the allocated VC.

Appendix F - Fig. 1(b) visualises the best capacity in each VCs type A. Considering the new updated capacities, the key
performances have been improved and cover the entire 3,108 assigned population Appendix F - Fig. 1(b). Appendix F - Fig. 1(d)
shows an example of results of staff optimisation with 68 vaccine centres.
11
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The daily balanced coverage plan for Days 1, 10 and 22 are plotted in Appendix F - Figs. 2(a) , 2(b) and 2(c) respectively. Results
how that in this scenario 1.11% of the demand population can be vaccinated on the first day of vaccination (accounts for 12% of
op priority demand population 1). On Day 10, 100% of the daily supplied vaccines have been used for vaccination of cumulative
otal 11.14% of the top priority demand population. 9.2% of top priority demand 2 have also been served. Appendix F - Fig. 2(b).

By Day 22, 23.39% of the total population have received their first dose of the vaccination (Appendix F - Fig. 2(c) - (yellow
ots)) which are those population areas ranked as top first (red spots), or second (orange spots) in Fig. 3(c). Considering the 21-day
accination gap assumption, these people are due to receive their second dose of the vaccine. Since there is a shortage in the daily
accine supply, all vaccines are used to vaccinate 1.11% of the population who received their vaccines on the first day (green dots)
ith 0% assignment for vaccination of new first dose demand. The maximum load of vaccination on this day is 1,806 while the
verage number of people vaccinated is 480 in all the VCs with 74% 𝐴𝑉 𝐶𝑠. Results also indicate that, on this day, 13 trucks as a

minimum are required to timely distribute the vaccines to the active VCs with 7,207 and 1,190 vaccines as the maximum and the
minimum load, respectively, within the daily three-hour time window each visiting 6.8 VCs on average.

In this scenario, 100% of all the people who have received their first dose of vaccine and 93.57% received their second dose in
174 days Appendix F - Fig. 2(d). The remaining 6.43% will need to wait until their due date which starts on Day 190. Therefore,
there will be no vaccination between Day 174 and Day 190. The vaccination of the remaining population will finish by Day 195
(as low priority people would receive their first dose between Day 169 and Day 174).

Appendix F - Fig. 2(e) shows the daily vaccine supply and capacity thresholds. Fig. 2(f) shows the daily assignment required. The
blue lines indicate the number of required active VCs, while the red and yellow lines show the average number of required vehicles
(trucks) and visited VCs per day, respectively. The average number of vehicles required to distribute the vaccines is around 8 trucks
per day visiting around 10 VCs. As shown in Appendix F - Fig. 2(f), there is always a shortage in capacity reflected as fluctuations
in the number of daily required VCs. The total computational time for this was 6956 s. In Appendix F - Fig. 2(d), it is mentioned
that there will not be any need for vaccination from Day 175 to Day 190. From Day 190 onward, some VCs and vehicles will still
be required to serve the remaining second dose takers.

7.2. Scenario II - Excessive daily supply (excessive supply )

In this scenario, it is assumed that the supply is limited to 150,000 vaccines per day. This daily constant vaccine supply is greater
than the total original capacity (113,000 per day) of all 𝑉 𝐶𝑠. Whenever there is a demand yet the supply is sufficient, the 𝑉 𝐶𝑠 are
ssumed to work with a capacity increase which can be twice the size of the original capacity maximum. In this case, the 𝑉 𝐶𝑠 are

planned to work with 34.8% over capacity. As a result, considering the excess in the amount of available vaccines, 3.34% of top
priority population can be covered on the first day of vaccination Appendix F - Fig. 3(a). In 10 days, 33.43% of the population is
covered Appendix F - Fig. 3(b). On Day 21, almost 70.18% of the demand received their first dose of the vaccine. Day 22 is the
due date for those 3.34% people vaccinated on Day 1 to receive their second dose Appendix F - Fig. 3(c). In this scenario, by Day
51, 100% of the people will have received their first dosage, and 70.18% received their second dosage. It means that there is no
population left to receive the first dose of vaccine and no population is due to be vaccinated from Day 51 to Day 64. The remaining
29.82% who received their first vaccination dose in the period Days 42 to 51 should wait until their due date starts from Days 64 to
72. The results was obtained in 5984 s. The daily distribution plan for the above-mentioned Days is plotted in Appendix F - Fig. F.5.

7.3. Resilience analysis

The presented supply chain is designed to implement plans of Vaccination by the opinion of DM. Yet, unanticipated events
may change the distribution process unlike what it is planned. The most significant ones are vaccine supply disruption and drop in
capacity of some (or all) centres. Such disruptions are very likely to happen in the vaccine supply chain (Lemmens et al., 2016).
Hence, a resilient and flexible system is necessary to survive from such disruptions. In this section, two stress tests are arranged to
evaluate the resiliency of the supply chain under the disruptions. The aim of the experiment is to assess the system performance
during and after disruptions, quantifying ’’time to survive (TTS)’’ and ‘‘time to recover (TTR)’’ (Ciancimino et al., 2012; Dominguez
et al., 2014). The TTRs for disruptions are presumed in the examples. To analyse the system’s performance each day, the accumulated
vaccinated target demands in the scenario and the optimal plan will be compared (Hausman, 2004).

A DM’s assumptive optimal plan is to supply and vaccinate the target demands in the following order. In the first 21 days, 50,000
demands are supplied their vaccines for their first doses of vaccination. From Day 22 to 41, 100,000 vaccines, from Day 42 to 63,
150,000 vaccines and Days 64 and 65, 222,600 vaccines are supplied for first and second dosage demands. Day 63 gets 143,566
vaccines to finish the rest of the first dosages and respond to its second dosages. For the rest of the plan, 100,000 vaccines daily
are received until the full coverage of second dosages and finish the vaccination process at day 88 (Fig. 4(a)).

7.3.1. Supply disruption
In this scenario, the process supposed to be as optimal plan, but after day 56, the supply confront some disruptions, which

disrupted the vaccination process. The fluctuation in supply happens from Day 56, when a package of 1,500,000 is received. This
amount exceeds the vaccine expiration limit threshold (blue line). Considering the presumed characteristics of the vaccines, the
received package can be used for a maximum of six days at maximum level TMC. The amount of vaccines over the blue line cannot
be used in the next six days become perished. As a result, with no supply from Days 57 to 63, the received vaccines cover the
12

demands for both dosages until Day 62 (Fig. 5(a)).
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Fig. 4. Resilience analysis comparison bar charts.

Those demands whose second dosage due are on Days 62, 63 and 69 to receive are expired because of no supply and no reserved
accine, subsequently, they need to repeat their first dosages with the next earliest supply. Such shortage in supply is considered
isruption for the vaccination operation. The system absorbs the expiration disruptions as it is noted in (Fig. 5(a)). As soon as the
upply recovers from the deviation, the performance starts to recover the drop in vaccination rate. (Fig. 5(a) - day 64). Those people
ho need to repeat their first vaccination will receive their second vaccination 21 days later on Days 85, 86 and 91 (Fig. 4(c) supply
isruption-:red line border — Day 91 is due for second dose for demands expire on Day 69) (Fig. 4(c)). Hence, the process become
ight days longer than what it is in the optimal plan to adapt with the disruptions. Figs. 5(c) and 5(d) depict the performance of
he system for both the supply disruption scenario and the optimal plan based on each day. As it is shown in Fig. 5(d), disruptions
re absorbed by the system on the days that the scenario deviates from the optimal plan.

The TTS, the maximum time that the system match supply with demand after a disruption (Simchi-Levi and Simchi-Levi, 2020),
s always greater than TTR (Golan et al., 2020). It is obvious from the supply disruption scenario that soon after recovering from
he disruption, the system match the demands with the input supply. Because the system match demands with supply instead of
atching supply with demands, the system is rigidly resilient for supply disruption (Fig. F.6 for daily vaccine disruption routing
lan).

.3.2. Capacity drop disruption
This section evaluates the resiliency of the system for the disruption of capacity drop of the VCs. The drop of capacity can have

ny reason in the supply chain. Regardless of the reasons, we assess the performance of the system under the designed stress test.
he optimal operation plan is explained in Section 7.3. It is assumed that the daily supply of vaccine to be the same as the optimal
lan. Two disruptions from drop in capacities happen in this scenario. The drops can be for drop in one VC or more. The first one
appens from day 56 to day 60, which the total capacities drops to 70,000 from 111,300. The other one, happens on Day 65 when
he total capacity drops to zero (Fig. 4(b)). The four-stage of resilience – plan, absorb, recover, adapt – provided by NAS to respond
uch adverse events over time (Linkov et al., 2014) is visible in the (Fig. 5(b)). This scenario takes 15 days longer than the optimal
lan. And for the rest of days after the optimal plan, the supply considered to be matching with the demands, to avoid mixing
apacity drop disruption with supply disruption.

The responses of system to the disruptions confirm resiliency. After the drop in capacity get back to full operation, the
erformance starts to adapt with the new situation after the disruption through matching demands with the supply (Fig. 5(b)).
13
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Fig. 5. Resilience analysis; optimal and actual plan comparison. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)

This concludes that the TTS of the supply chain is absolutely greater than the TTR (Golan et al., 2020; Simchi-Levi and Simchi-Levi,
2020).

7.4. Sensitivity analysis on supply

Based on the number of daily supply packages and required days for vaccinations in Fig. 6, a sensitivity analysis is also examined.
he results indicate that serving demands with maximum allowed capacity of 226,000 vaccines per day (TMC threshold - red line),
he entire GMMA’s vaccination could finish in 42 days. On average, 82 days are required to vaccinate the entire population of the
MMA working with the original TCC capacity threshold (green line) (Fig. 6(a)). The number of required daily active centres (𝐴𝑉 𝐶)

has a direct relation with the number of received vaccines. The more vaccine received, the shorter is the vaccination period, and
the higher is the number of VCs required to actively serve the population daily (Fig. 6(c) - orange line). Fig. 6(b) indicates the
results that having a shorter vaccination period requires a higher number of vehicles (gray line) on average loading more amount
of vaccines (blue line) to supply to the VCs within the three-hour time window from the central GDDCS.

8. Managerial implications

This study provides evidence-based management insights to support both operational and strategic decision making in the vaccine
rollout process. The solutions and plans generated in this study can inform the current ‘COVID-19 Vaccine National Rollout Strategy’
14
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Fig. 6. Sensitivity analysis- Fig. 6(b) shows the vaccine supply-vaccination days trade-off; Fig. 6(b) shows results for required number of vehicles and related
loads. Fig. 6(b) shows the number of average required active vaccine centres — vaccination days trade-off. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

through a well-informed, geo-targeted and prioritised approach to the implementation of three-phase vaccine rollout program in
Australia. The potential limits estimated by the model can be used as benchmarks by the Department of Health to guide evidence-
based operational planning and execution of the vaccination program. Knowing the constraints, network capacity and thresholds
under different scenarios is important to mitigate risks of community transmission through the deployment of prevention strategies.
Agencies responsible for vaccine rollout would be able to generate efficient solutions across plausible supply scenarios, namely
limited, excessive and disruption (the DM’s plan in resilience analysis section), within a reasonable computational time. The proposed
centralised distribution system will allow the government agencies to have a full visibility, control and coordination of the supply
network in Melbourne. In this section, management implications onto both operational and strategic decisions on vaccine rollout
across the populace are discussed.

– Spatially integrated prioritisation: Vaccination should provide the equitable protection from COVID-19 of all people living
in Australia. However, given the limited and uncertainty of vaccine supplies, prioritisation may an effective strategy to ensure
the vaccines are first inoculated to most vulnerable groups. The prioritisation groups ready for vaccination, segmented by
locations and risk levels, provide an efficient and safe allocation mechanism for the government agency to reduce the risk of
infection and associated mortality. Static policies with prioritisation of demand in the allocation of limited supply of vaccines
can significantly reduce mortality and infection rates when compared to the situation with no prioritisation of demand or
where the allocation is driven by population size (Chen et al., 2020; Foy et al., 2021). In addition, the spatially integrated
vaccination strategy, prioritising both exposure risk and neighbourhood, would reduce infection risk and prevent community
transmission when compared to a strategy that prioritises merely based on age alone (Brown et al., 2014).

– Priority-based daily allocation of vaccines: The daily vaccine allocation plans will equip the Department of Health to
manage vaccine stock levels, ensuring an efficient coordination, tracking and timely allocation of vaccines to locations where
they are most needed. Vaccine allocation schedules are generated to help the Department to make nuanced decision on daily
allocation of vaccines across the distribution network. Knowing the minimum number of days needed to vaccinate population
with the first and second dose or both across different locations will help setting up benchmarks for monitoring the efficiency
of vaccine allocation and dispensing. In all scenarios, all the people in the priority 1 can be vaccinated with the first dose
of vaccine within 10 days; the entire population in Victoria can be vaccinated with the first dose within 174 days maximum
(average 82 days); and the majority (average 73.5%) vaccinated with the second dose. The daily allocation plan provides
empirical evidence to guide the execution of the ‘phased approach to COVID-19’ as planned by the ’Centers for Disease Control
and Prevention’ (CDC) in the USA based on four prioritised groups for initial vaccination: healthcare personnel, non-healthcare
essential workers, adults with high-risk medical conditions, and people over 65 years of age. The simulation results in Figs. 6(b)
and F.1, and 6(c), for instance, can guide health planners to make informed decision on determining daily vaccine requirements
as well as staff capacity utilisation, number of daily active vaccine centres, daily required vehicles and loads, across the demand
nodes. The allocation tool is versatile and scalable as it allows additional vaccines to be allocated to support ‘ring-fencing’ to
reduce community transmission from rapidly emerging clusters.

– Integrated and distributed vaccine supply chain: The logistics of vaccine distribution is complex and atypical, which require
specific storage, transportation and allocation requirements of different vaccines. In the 2021–22 federal budget, the Australian
Government has allocated almost A $234 million for vaccine distribution, cold storage and purchase of consumables. The two-
stage approach, combining prioritisation of demand allocation with heuristic algorithm, has generated optimal daily vaccine
distribution routing plans (Figs. F.4–F.6). These plans would enhance the analytic capability of government agencies as well
as private logistics providers to provide a complete spatial coverage whilst minimising transportation costs. Further, estimated
number of refrigerated vehicles required to distribute the vaccines can make the operations relatively efficient and easy to
manage. Logistics providers assigned with the distribution tasks will benefit from knowing the minimum number of trucks
15
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required to timely distribute vaccines to active VCs with known maximum and the minimum load within the daily three-hour
time window. The use of centralised distribution network will enable the Health Department to manage information visibility
across the vaccine supply chain, material control (track and trace) and the supply agility to shift resources to optimise need-
based vaccine distribution. Vaccine allocation and centralised distribution can be embedded as a secured integrated web-based
distributed system to include purchasing, ordering, storing through to allocation, distribution and inoculation of vaccines via
designated vaccination centres.

– Decision-support system tool with visualisation capability: The DSS, integrating spatially analysis with heuristics and
simulation approach, provides a relatively more practical toolkit than outputs from pure optimisation through mathematical
modelling. This is because of the NP-hard nature of the problem, which can render finding an optimal solution impossible in
large cases. The simulation approach integrated with various heuristics permits a quick analysis of the likely outcomes of a
proposed allocation and distribution system. This is due to, firstly, unforeseen fluctuations in vaccine supply, and secondly,
the effect of re-allocating limited resources to achieve the set objectives, which may change with time and uncertainty). The
visual outputs from GIS-based analysis enable non-technical planners and health experts to visualise the complexity of multi-
tiered vaccine supply chain and the likely impact of their decisions on the effectiveness and efficacy of vaccination allocation
and physical distribution. DSS may also render the visual interface more user-friendly and valuable in practice. Five major
catchments in Melbourne will help health advisers in spatial planning to differentiate COVID-19 risk levels and exposure
by localities. This geo-targeted approach can assist policymakers in formulating effective spatially-integrated health policies
and operational plans to create priority-based zoning to enhance spatial accessibility to vaccine centres. The delineation of
catchment areas will also enable transport providers to effectively distribute vaccines whilst keeping the delivery cost low.
Again, this functionality provides valuable insights for healthcare experts to readily evaluate the pros and cons of certain policy
options prior to making the final decision.

9. Conclusion

This study developed an integrated platform, combining prioritisation of demand with assignment and daily distribution of
vaccine packs to vaccine centres in Melbourne. Priority groups and vulnerable areas were identified and mapped for vaccine
allocation and distribution. A FL-GIS integrated model is developed to delineate priority areas for vaccination in the GMMA using
key risk factors. A holistic algorithm, amalgamating several heuristics to allocate the prioritised demand, compute daily assignment,
balance waiting time, calculate staff resource utilisation, and optimise vehicle routes. It is the first attempt to provide an alternative
based on a holistic algorithm to the traditional optimisation approach in generating the best solution to the problem within an
acceptable computational time within the bounds of various constraints and uncertainties. By combining both demand prioritisation
with assignment and distribution in a single platform, the chance of finding the best arrangement has improved when compared to
handling the two tasks separately.

The results of the FL-GIS and IDW method and adding priority values to mesh blocks level (Stage I) show improvement in
accuracy, readability and expressiveness. Melbourne is delineated into five main catchments based on spatially weighted ranks,
which enables the population at risk to be calculated by priority value. This mapped output is then used in Stage II to identify the
best sites for the establishment of vaccine centres.

The methodology developed in this study has several merits. First is the determination of appropriate weights of each of the
criteria to map the priority groups in Melbourne. The different weights applied to the criteria embed varying risk levels to COVID-
19 reflect situations such as the risk of death from COVID- 19 is twice as high in the elderly as in smokers. This additional step
improves the guidelines for prioritisation of vaccines to the neediest and disadvantaged. Second is the visual analytic capability to
spatially represent the vaccine allocation and scheduling by locations. Visual outputs are simpler to comprehend, relatively easier
to integrate in healthcare plans and practically operational to support in-situ decision-making during crisis. Finally, the algorithm
nd model are generic, interoperable and adaptable to different cities and regions. It is a versatile decision support tool that helps
ind the most efficient vaccine distribution arrangement.

There are, however, limitations of this study. Firstly, the current COVID-19 test centres are assumed to be vaccine centres for the
ase study. Recent media release indicates the possibility of using General Practitioners or pharmacies to be vaccine administrating
nits. The addition of these units with varying capacities may provide much wider coverage and necessitate a new vaccine allocation
chedule due to the reconfiguration of the vaccine supply network. Secondly, mesh blocks, instead of individuals, are used to
rioritise demand for vaccination. This is due to the lack of access to highly confidential individual level information. The use
f a web-portal however will enable people to self-report their personal details and make it accessible to the Health Department to
e used for vaccine allocation. In recent days, vaccines are re-allocated to areas which are at higher risk of community transmission
y the Government. Further, the use of centroids of mesh blocks may not represent the weighted centre of population, which may
ffect the routing and scheduling. If information on the exact locations of individuals and their health conditions were known,
rioritisation at mesh block level could be easily refined at an individual level. Through the web portal, government agency can
btain the individual level details for demand prioritisation and allocation of vaccines based on scheduled appointments. Finally,
o-morbidity data on health at a smaller geographic scale could enable health agency to identify and prioritise spatial pockets of
cute health challenges. The design of the DSS is driven by a centralised distribution and vaccination program, which is currently in
lace in Australia, that controls and regulation the procurement, storage, allocation and dispensing of vaccines to population. Future
esearch will build a DSS to support a decentralised model to operate in a multi-agency decision-support structure with specific tasks
16
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ppendix A. Nomenclature

Table A.1
Nomenclature; list of sets, indices, parameters, and decision variables.

Symbol Definition Symbol Definition

.𝐸𝐶 Suffix for excessive capacity of related variable; .𝐼𝐷 Suffix for location ID of population of related variable;

.𝑃 𝑜𝑝 Suffix for population of related variable; .𝑃 𝑜𝑠.𝑆𝐶 Position (chromosome) of particle in a shortage strategy;

.𝑄𝑢𝑎𝑙𝑖𝑡𝑦 The quality (fitness) of the particle (individual); .𝑅 Suffix for the initial results;

.𝑇𝐷𝑖𝑠𝑡 Suffix for total distance of related variable; .𝑇 𝑝𝑜𝑝 Suffix for total population of related variable;
𝛼 Probability rate of Monte Carlo selection process; 𝐴𝐴 Set of assigned demand points (equal to 𝑋 decision variable of

Assignement model);
𝐴𝐷 Set of Average distance of demands and allocated 𝑉 𝐶𝑠 ; 𝐴𝐿𝑇 .𝐼𝐷 Set of IDs of the available 𝑉 𝐶𝑠 from the current position of truck 𝑣;
𝐴𝐿𝑇 .𝑇 Set of travel times to available 𝑉 𝐶𝑠 from the current position of

truck 𝑣;
𝐴𝑆𝑆 Demand assignment of day 𝑑 to 𝑉 𝐶𝑠;

𝐴𝑣𝑣 Truck availability for next destination; binary parameter; 𝐴𝑉 𝐶 Set of numbers of active vaccine centres;
𝐵𝐴𝑆𝑆 Balanced capacity assignment of the service centres ; 𝐵𝐶 Maximum movements in staff re-allocation;
𝐵𝐷 Balanced distribution; 𝐵𝑜𝑓𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒The particle with best quality (fitness) in the last set of particles;
𝐵𝑜𝑓𝑠𝑤𝑎𝑟𝑚 The particle with overall best quality (fitness); 𝐶 Assigned capacity of VCs in the 𝐴𝑆𝑆𝑑 for simulation;
𝐶𝑖 Allocated capacity to the centre 𝑖; 𝐶1 A random coefficient number in Delta in Alg. XI;
𝐶𝐶 Set of Original capacities of the 𝑉 𝐶; 𝐶𝐶𝑇 Current capacity of vaccine distribution ;
𝐶𝐷 Capacity difference; 𝐶ℎ𝑟 Chromosome;
𝐶𝑙𝑖𝑒𝑛𝑡𝑠 Set of numbers (ID) of the pre allocated Demands to a centre; 𝐶𝑜𝑠𝑡𝑖𝑗 The distance between centre 𝑖 to centre 𝑗;
𝐶𝑅𝑆𝑑 Couriers distribution of day 𝑑 within time window 𝑡𝑤; 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑐𝑜𝑠𝑡 Unchanged cost in process of the Alg. IX;
𝑑 Counter for vaccination day; 𝑑𝑖𝑗 The Euclidean distance between centre 𝑗 and demand 𝑖;
𝐷𝑠 Set of coordinates of Demand point 𝑠; 𝐷1 A random coefficient number in 𝑉𝑐𝑢𝑟𝑟𝑒𝑛𝑡 in Alg. XI;
𝐷𝐶𝐷 Dynamic capacity difference; 𝐷𝑒𝑙𝑡𝑎 Distance of particle from Bofparticle and Bofswarm;
𝐷𝐸𝑉 Difference of centres’ capacity from constraint; 𝐷𝑖𝑓𝑓𝑖 Remaining capacity of 𝑉 𝐶𝑠 𝑖;
𝐷𝐼𝑆 Set of distances from allocated demand points to a centre; 𝐷𝑖𝑠𝑡 Distance between the demand and 𝑉 𝐶𝑠;
𝐷𝑖𝑠𝑡𝑚𝑎𝑡𝑟𝑖𝑥𝑖𝑗The Euclidean distance between centre 𝑗 and demand 𝑖; 𝐷𝑀 Decision maker;
𝐷𝑃𝑜𝑝𝑖 Population of the demand point 𝑖 (in each day 𝑑) ; 𝐷𝑆𝑇 ID number of the next destination of truck 𝑣 in day 𝑑;
𝐷𝑇 Central vaccine storage place (depot); 𝐷𝑉 Delivered vaccines to 𝑉 𝐶𝑠 in day 𝑑;
𝐸𝑙𝑖𝑡𝑒 Individual with the least amount of fitfuncion; 𝐸𝑇 Expiration time of vaccine packages;
𝐸𝑥𝑐𝑒𝑠𝑠 Excessive load; 𝐹𝐷 Set of locations’ IDs with no unmet demand;
𝑓𝑖𝑡 Fitness ; 𝑔 Counter for offsprings of the crossover;
𝑗, 𝑗′ index of demand points; 𝐼𝐷𝐶 ID number of 𝑉 𝐶𝑠;
𝐼𝐹𝐶 Individual for crossover; 𝐼𝐹𝑀1 Selected particles for muting by mutation 1;
𝐼𝐹𝑀2 Selected particles for muting by mutation 2; 𝐼𝑁𝐷 Set of IDs (numbers) of centre corresponding the allocating

demands point;
𝑖𝑛𝑡 Interval gap for receiving second dose of vaccine; 𝑘 Counter for demands for the assignment model;
𝐿𝑣 Load of vehicle 𝑣; 𝐿𝑜𝑐𝑎𝑙 Prefix for local variables (Set of demand points temporary

allocated to 𝑉 𝐶𝑠);
𝐿𝑉 Levelled capacity of 𝑉 𝐶; ℳ Set of IDs (numbers) of the 𝑉 𝐶𝑠;
𝑀𝐶 Maximum capacity of 𝑉 𝐶; 𝑀𝑢𝑡𝑎𝑛𝑡1 The individual that has been muted by mutation 1;
𝑀𝑢𝑡𝑎𝑛𝑡2 The individual that has been muted by mutation 2; 𝑁 Set pf Population of IDs of demands for assignment model;
𝒩 Set of IDs (numbers) of the Demand points; 𝑛𝑐 Number parent particles for crossover;
𝑁𝐺 Next generation of results; 𝑛𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 Number of iteration for the GA;
𝑁𝑀 Nominated 𝑉 𝐶𝑠 for serving demand; 𝑛𝑚1 Number of individuals to get mutated by the mutation 1;
𝑛𝑚2 Number of individuals to get mutated by the mutation 2; 𝑁𝑜𝑇 Number of trucks in day 𝑑 to distribute vaccines;
𝑛𝑝𝑜𝑝 Population of initial results in HGA Alg.s; 𝑂𝐶 Overall capacity of 𝑉 𝐶𝑠;
𝑂𝑓𝑓𝑠 𝑉 𝐶𝑠 with zero overall capacity; 𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔1The first child of parent 1 and parent 2;
𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔2The second child of parent 1 and parent 2; 𝑂𝑃 Over populated centres;
𝑃𝑁𝑒𝑤 New received package; 𝑃𝑑 Package of vaccines of day 𝑑;
𝑃𝑟 Reserved vaccines; 𝑃𝑎𝑟𝑒𝑛𝑡1 The individual that is a parent for the crossover;
𝑃𝑎𝑟𝑒𝑛𝑡2 Another individual for parenting in the crossover; 𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖 The particle I in the swarm;
𝑝𝑐 Chance of being parent for the individuals in a generation; 𝑃𝐷𝐶𝐷 Peak dynamic capacity difference;
𝑝𝑚1 Mutation probability rate 1; 𝑝𝑚2 Mutation probability rate 2;
𝑃𝑜𝑝𝑖 The individual 𝑖 in the generation; 𝑃𝑟𝑖𝑜 Priority ranking of mesh block area centroid;
𝑄𝑢𝑒𝑢𝑒 Set of demand points’ IDs waiting for vaccination of the day; 𝑅 Distance between all the demands and their nearest centre;
𝑅𝑎𝑡𝑖𝑜 Accuracy measure index; 𝑅𝐶 Remaining capacity;
𝑅𝑠 Euclidean distance between demand and nearest centre; 𝑆 The number of supply for the assignment model;
𝑠 A counter for centres; 𝑆𝑖𝑆𝑒𝑞 Set of vaccine distribution sequences;
𝑆𝑐𝑜𝑟𝑒𝑘 Chance of selecting centre 𝑘 in the chromosome; 𝑆ℎ𝑜𝑟𝑡𝑎𝑔𝑒 Shortage load;
𝑆𝑄𝑣 Set of sequence of truck 𝑣 visiting 𝑉 𝐶𝑠; 𝑆𝑅𝑤 Surplus population in overpopulation 𝑉 𝐶𝑠 of 𝑤(iteration);

(continued on next page)
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Table A.1 (continued).
Symbol Definition Symbol Definition

𝑆𝑇 1 Set of demands’ numbers as Service takers (first dose
vaccination);

𝑆𝑇 2 Set of demands’ numbers as Service takers (second
dose vaccination);

𝑡 A counter for demand points; 𝑇𝐶𝐶 Total centres capacity;
𝑇𝐷𝐶 Total capacity difference; 𝑇𝑀𝐶 Total maximum capacity of 𝑉 𝐶𝑠;
𝑇𝑃𝐷1 Top priority demand layer 1 (first dose vaccination); 𝑇𝑃𝐷2 Top priority demand layer 2 (second dose vaccination);
𝑇𝑆 Vehicle (truck) capacity; 𝑇𝑇𝑣 Travel time of truck 𝑣 from current 𝑉 𝐶 to the next 𝑉 𝐶;
𝑇𝑊 Time window for vaccine delivery; 𝑈 A Boolean variable to terminate the loop in the Alg. IX;
𝑈𝐶 Undelivered vaccine demand of 𝑉 𝐶𝑠; 𝑈𝐶 𝑂𝐶 that can change during the process of Alg. IX;
𝑈𝐹1 Set of not working with full of excess capacity centres; 𝑣 Index of couriers trucks;
𝑣 A counter for the trucks; 𝑉𝑐𝑢𝑟𝑟𝑒𝑛𝑡 current speed for changing;
𝑉𝑝𝑎𝑠𝑡 Speed of changing in the last generation; 𝑉 𝐶𝑘 .𝑇 𝑑𝑖𝑠𝑡Total distance of the allocated demands to the centre 𝑘;
𝑉 𝐶𝑘 .𝑇 𝑝𝑜𝑝Total population of the allocated demands to the centre 𝑘; 𝑉 𝐶𝑙 Vaccine centre’s load;
𝑉 𝐷𝐶𝐷 Valley dynamic capacity difference; 𝑉 𝑅 vehicle sequence with minimum travel time;
𝑊𝑗 Population of the assigned demand point 𝑖; 𝑊 𝑖𝑛𝑛𝑒𝑟 Index of the centre that has been selected for muting;
𝑊𝐿𝐷2𝑑 Set of number of demands as waiting list (second dose

vaccination) on day 𝑑;
𝑋𝑖𝑗 Allocated population of point 𝑗 to centre 𝑖;

𝑋𝑘 Decision variable of the assignment model; 𝑋𝑋 Sum of chromosomes with less excess amount;
𝑌 .𝑑1 Total maximum daily required demand for dose 1; 𝑌 .𝑑2 Total maximum daily required demand for dose 2;
𝑌 𝑌 Sum of chromosomes with less shortage amount; 𝑧 A counter for crossover operation;
𝑍𝑀𝐵 Number of allowed set of destinations collection; 𝑍𝑇 Vaccine expiration threshold;

Appendix B. Related works

Table B.1
A selective summary of most recent literature on pandemic vaccine supply chain.
Authors Objectives Methodology Variables Priority group

Uscher-Pines
et al. (2006)

To review national
pandemic influenzas
prioritisation plans

Descriptive statistics Vaccine and antiviral priority
groups, group rankings, goals of
pharmaceutical interventions, the
inclusion of scenarios and
population size

Healthcare workers, essential
service providers, people at high
risk, children, elderly, key
decision-makers, influenzas cases,
hospitalised cases and
unvaccinated

Kee et al. (2007) To assess the level of
influenza vaccine coverage,
to understand the driving
forces and barriers to
vaccination and determine
vaccination interventions
for the South Korean
population

Cross-sectional descriptive
statistics

Demographic data, Vaccination
rate, Factors associated with
vaccination

The priority groups recommended
for annual vaccination includes
persons aged ≥65 years, persons
with chronic illness such as
chronic cardiopulmonary disease,
diabetes, chronic liver disease and
malignancy, residents of
long-term care facilities,
healthcare personnel and
pregnant women.

Medlock and
Galvani (2009)

To evaluate current
vaccine allocation policies
and to determine the
optimal strategy

Age-structured Simulation
model

Number of mortalities, contact
rates, the duration of the
infectious period, years of life
lost, weighing deaths by the
expected remaining years of life
for different ages, contingent
valuation, cost associated with
vaccination, cost associated with
illness and valued death.

17 age groups (ages 0, 1 to 4; 5
to 9; 10 to 14; … ; 70 to 74; and
75 and older).

Keeling and
White (2011)

To targeting vaccination
against novel infections:
risk, age and spatial
structure for pandemic
influenza in Great Britain

SIR (susceptible,infectious,
recovered) model

Age groups (5–14 years old and
then 15–24 years old), regions,
risk-groups, time periods to
vaccination

Most affected regions of the
country where the virus is most
prevalent should be given priority

Araz et al.
(2012)

To geographic
prioritisation of
distributing pandemic
vaccines (Arizona, USA)

Geospatial and
demographically-structured
model, mathematical
modelling

Age groups, number of people in
county, vaccine Efficacy,
vaccination rate, transmission
probability, Vaccine Supply Data

Areas with high population size
being the priority

Lee et al. (2012) To determine optimal
vaccination allocation
policies during the H1N1
pandemic in Mexico

Non-Linear Dynamic
mathematical model

The age distribution of the
population, age specific vaccine
efficacy, hospitalisation rates,

6 age groups (1 = 0–5 yr, 2 =
6–12 yr, 3 = 13–19 yr, 4 = 20–39
yr, 5 = 40–59 yr, 6 ≥ 60 yr)

(continued on next page)
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Table B.1 (continued).
Authors Objectives Methodology Variables Priority group

Buccieri and
Gaetz (2013)

To evaluate ethical
pandemic planning policies

Mixed method (Descriptive
statistics and interviews)

Gender, demographic factors, fear
of infection, lack of concern,
access to community-based
clinics, access to a regular doctor,
promotional campaign.

Homeless individuals in Toronto

Huang et al.
(2017)

To explore the optimal
allocation of several
vaccine types to certain
priority groups.

Optimisation model The five priority groups and
regions were taken as input.

Pregnant women, infants (0–3
years old); people between ages
of 4–24; and adults at high risk
and infant care givers.

Takahashi et al.
(2017)

Toe targeting at-risk areas
to vaccination against the
measles in the African
Great Lakes region

Sensitivity analysis,
generalised additive
models (GAMs)

Vaccinated and unvaccinated
population variables, population
age,

Some areas had never been
vaccinated and were ’hot spots’ in
terms of risk of disease and thus
given priority for vaccination

Lessler et al.
(2018)

To map cholera burden in
sub-Saharan Africa and
assess how geographical
targeting could lead to
more efficient interventions
and vaccination

Descriptive statistics and
Bayesian mapping

Population variables, disease data, Countries located in central and
east Africa (at high risk of
disease) should be given priority

McMorrow et al.
(2019)

To prioritise between
different influenza vaccine
risk groups

Descriptive statistics Socio-economic variables, Rates
of influenza, Vaccine efficacy,

Pregnant women, HIV-infected
adults aged 15–64 years, Children
aged 6–23 months, Adults aged
>65 years, Healthcare workers,
Adults and children with TB and
chronic illnesses.

Venkatramanan
et al. (2019)

To optimise spatial
allocation of seasonal
influenza vaccine under
temporal constraints, USA

Greedy optimisation
algorithm

Population, Airline flows,
Commuter flows, Disease
dynamics, population mobility

Southern and southeastern states
of the United States were
identified as priority centres

Acharya and
Porwal (2020)

To provide vulnerability
index for identification of
vulnerable regions in India
in terms of COVID-19
epidemic prevalence

Descriptive statistics and
mapping

The comprehensive
socioeconomic, epidemiological
and availability of healthcare
variables

Central and eastern regions are a
priority

Chen et al.
(2020)

To determine the optimal
allocation policies for the
COVID-19 vaccine.

Age-structured Simulation
model

The number of individuals in
each of the seven compartments,
the population size, the
transmission rate, the contact
rate, the discount factor of the
transmission rate, the average
time (from exposed to infectious,
from pre-symptomatic infectious
to symptomatic infectious, from
symptomatic infectious to
recovered, from ascertained
infectious to isolation, from
isolation to recovered), the
fraction of ascertainment in each
age group, the level of permitted
economic activities, the amount
of vaccination allocated to each
age group.

Seven compartments (susceptible,
exposed, Pre-symptomatic
infectious, un-ascertained
infectious, ascertained infectious,
isolated, and removed) and five
age group (0–17, 18–44, 45–64,
65–74 and 75+).

Deo et al. (2020) To examine the challenges
of COVID-19 vaccine
distribution

Descriptive statistics,
Multi-parameter model

Age, co-morbidity, income and
profession

60 Plus Years, Moderate or severe
comorbidities, Frontline
healthcare and other essential
workers, Low Income

(continued on next page)
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Table B.1 (continued).
Authors Objectives Methodology Variables Priority group

Gamchi et al.
(2020)

To prioritisation of Tehran
city districts and
individuals for vaccine
distribution

Infected–recovered (SIR)
model and bi-objective
vehicle routing problem
(VRP) method

Number of susceptible individuals,
Number of infected individuals,
Number of recovered individuals,
Disease transmission rate, Natural
death rate, Fixed cost of
immunisation, Total available
doses of required vaccine,
Vaccination time in regions,
Distance between regions, etc.

Areas in which ratio of Pregnant
women is high, Areas where ratio
of children under 6 months of
age is high

Liu and Xian
(2020)

To identify and locate
potentially vulnerable
demographic groups in
terms of epidemic
prevalence against the
transmission of COVID-19
disease

COVID-19 Susceptibility
Index

Age, cancer, diabetes,
cardiovascular disease, obesity
and lung disease

Vulnerable segments of the
population are generally situated
away from capital cities

Persad et al.
(2020)

To prioritise access to
COVID-19 vaccines

Descriptive statistics None Healthcare workers; other
essential workers and people in
high-transmission settings; and
people with medical
vulnerabilities associated with
poorer COVID-19 outcomes, such
as diabetes, pulmonary disease,
cardiac disease, and obesity.

Table B.2
A selective summary of most recent literature on optimisation of vaccine distribution design..
Authors Objectives Methodology Assumptions Findings

Balcik et al.
(2008)

To deliver relief supplies
from local distribution
centre(LDC) to
beneficiaries affected by
disasters efficiently using a
vehicle-based last mile
distribution system

A mixed integer
programming model that
determines delivery
schedules for vehicles and
equitably allocates
resources, based on supply,
vehicle capacity, and
delivery time restrictions

Location of the LDC is
predetermined. Its capacity is
sufficient to serve its service
region

Number of nodes, routes and
partial-allocation options, penalty
costs, LDC-supply and vehicle
capacities, vehicles’
characteristics, etc. can make the
problem very complex and
difficult to find a preferred
solution.

Medlock and
Galvani (2009)

To determine optimal
vaccine allocation for five
outcome measures: deaths,
infections, years of life
lost, contingent valuation,
and economic costs.

A mathematical model
parametrised with
survey-based contact data
and mortality data from
influenza pandemics

Limited supply of vaccines;
Vaccinate the most valued based
on age structure but not risk or
occupation; Nonlinear constrained
optimisation.

Optimal vaccination is achieved
by prioritisation of schoolchildren
and adults aged 30 to 39 years.
Consideration of age-specific
transmission dynamics is
paramount in the desired
allocation of influenza vaccines.

Lee et al. (2011) To examine the impacts of
new vaccines on existing
vaccine supply chain in
terms of storage or
transport capacity.

Discrete-event simulation
model based on HERMES
and deterministic
mathematical
equation-based model
(EBM models to simulate
introducing various new
vaccines to a district in
Thailand

Children would present to clinics
for immunisation when they
reach the appropriate age

New vaccine introduction can
exceed refrigerator space
transport cold space at district
and sub-district levels As such,
additional storage capacity at the
provincial level would be
required.

Abrahams and
Ragsdale (2012)

To design a decision
support tool for clerical
staff in a healthcare clinic
using a familiar,
affordable, and accessible
software platform.

A binary integer
programming model and a
genetic algorithm solution
technique with
conventional scheduling
approaches

Multiple vaccines; Single time slot
of constant duration; All patients
receive the needed vaccines;
Number of patients is less than or
equal to the number of available
time slots; Single patient queue
and a single server

Computational results show that
significant cost savings can be
achieved with the decision
support system while
simultaneously considering
scheduling preferences of patients
and mitigating scheduling
inconvenience.

(continued on next page)
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Table B.2 (continued).
Authors Objectives Methodology Assumptions Findings

Özdamar and
Demir (2012)

To develop transportation
plans of the last mile
delivery and pick-up
problem in large-scale
disaster relief

A hierarchical cluster and
route procedure (HOGCR)
for coordinating vehicle
routing in large-scale
post-disaster distribution
and evacuation activities

Operational logistics plans are
devised based on estimates of
deliveries and evacuations
necessary information such as
population is known with
certainty

The proposed optimisation
approach can obtain in 15 min
CPU time solutions within a
percentage deviation of less than
12% from a strong lower bound
for large-scale relief networks.

Dessouky et al.
(2013)

To help design an efficient
pharmaceutical supply
chain with strategic
locations to place
warehouses and inventories
and optimal routes for
distribution vehicles

Mathematical models to
solve facility location and
vehicle routing problems in
the context of a response
to a large-scale emergency

The plans need to be flexible
enough to accommodate
contingencies of daily operations.
They must consider the stochastic
nature of the problem, such as
uncertain demand, traffic
conditions, etc.

Analysis using a hypothetical
anthrax emergency in Los Angeles
County shows the approach can
help design a effective
pharmaceutical supply chain to
meet urgent needs.

Brown et al.
(2014)

To explore different
potential redesigns of the
Benin vaccine supply chain
and how they would
compare with simply
adding refrigerators and
freezers to the current
vaccine supply chain.

A discrete-event simulation
model called HERMES
(Highly Extensible
Resource for Modelling
Event-Driven Supply
Chains)

Demand for vaccines is modelled
stochastically at each location
through vaccination sessions Data
are drawn from a Poisson
distribution around the expected
number of patients from yearly
census estimates

Operational costs can be reduced
while vaccine availability
increased by streamlining the
distribution system from four to
three levels.

Ceselli et al.
(2014)

To determine the efficient
distribution of vaccines or
drugs through the
simultaneous and
coordinated use of
distribution centres and
vehicles

A mathematical model to
solve a combined location
and routing problem. An
exact algorithm based on
column generation with
three different types of
columns and
branch-and-bound is
devised to find the best
solution.

Once a delivery site is visited, all
people assigned to it will get the
drugs within a very short time.
Assignment of delivery sites to
distribution centres is known
beforehand. All vehicles travel at
the same speed

Results of numerical experiments
show that the proposed algorithm
is able to quickly find the optimal
value in most of the instances.

Li et al. (2016) To minimise the overall
cost (including
refrigeration storage cost,
vehicle fixed cost, and
transportation cost) of
medicine distribution in a
certain region

A transport-distance-
constrained local
community medicine
distribution route
optimising model is
established and solved
using a tabu-search-based
algorithm

Not stated. Simulated results show that the
proposed algorithm is able to
obtain an optimum distribution
scheme cost with minimum
transportation cost.

Shittu et al.
(2016)

To explore the effects of
variance in supply of and
demand for vaccines in
Nigeria on storage capacity
requirements

An improved discrete-event
simulation model based on
HERMES

Monthly requirements are
independent random variables.
Any required vaccines not
available are back ordered and
delivered as soon as possible

More vaccine storage capacity is
needed than is currently available
to cope with the variation;
Situation can be improved with
proper redesign of the vaccine
supply chain.

Gamchi et al.
(2020)

To distribute vaccines
among different regions to
control the spread of
communicable diseases in
the aftermath of a disaster

A bi-objective
mathematical model to
simultaneously minimise
the total social cost
incurred by infected
individuals before and
after vaccination as well as
the cost of assigning
appropriate vehicles to
routes considering their
capacity

The epidemic process follows the
SIR model before receiving the
vaccines; Vaccine demand for
each priority group in each
region should be fully satisfied;
One vehicle only serves one
particular route

With only limited amounts of
vaccines, considering high-risk
groups as priority groups would
help practitioners effectively
assign the available vaccine
doses. This will help to minimise
the social cost incurred by
infected individuals.

Appendix C. Case study area and criteria

– Smoking (C-1): Current smoking groups (especially men over 65 years old) have a higher risk (OR = 2.51) of developing
critical COVID-19-related illness or death (Zheng et al., 2020a)

– Cancer (C-2): People who have any critical and advanced type of cancers are at higher risk (OR = 3.04) of mortality from
COVID-19 infection (Parohan et al., 2020a)

– Obesity (C-3): Obesity defined as a body mass index (BMI) > 25 (BMI > 30 is severe obesity). Based on previous meta-analysis
studies, obesity is associated with significant morbidity and excess mortality factor (OR = 3.68) for critical illness and death
following COVID-19 infection (Hussain et al., 2020a)
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Fig. C.1. Spatial location of GMMA by SA1 boundaries and Empirical Bayesian Smoothed (EBS) COVID-19 rates.

Table C.1
Greater Metropolitan Melbourne Area COVID test centres (assumed to be vaccine centres) and capacities.

Type Category Quantity CC (vaccines) Staffs (per day)

1 Community Health Respiratory Clinic A 11 1000 8
2 Drive-through Facility B 30 2000 16
3 GP Respiratory Clinic C 10 500 4
4 Hospital Respiratory Clinic D 14 1000 8
5 Pathology Collection Centre E 28 500 4
6 Private GP clinic F 3 300 2
7 Walk-through clinics G 8 800 6

– Heart disease (C-4): Heart (cardiovascular) disease can greatly affect the prognosis of the illness and the death risk (OR =
2.19) of the patients infected (Zheng et al., 2020a)

– Hypertension (C-5): Hypertension (high blood pressure) is a global health problem associated with increased risk of death
following COVID-19 infection (Lu et al., 2020a)

– Diabetes (C-6): Diabetes is one of the leading causes of morbidity and mortality throughout the world (Takahashi et al., 2017)
and positively correlated with COVID-19 mortality (Lu et al., 2020b)

– Respiratory disease (C-7): Respiratory diseases can also greatly affect the prognosis of the illness and the risk of death (OR
= 2.15) of patients in critical illness (Zheng et al., 2020a)

– Ageing (C-8): People who are 65 years old or more constitute the most vulnerable groups with the highest risk of death upon
infection (OR = 6.01) (Zheng et al., 2020b)

– Population density (C-9): Higher population density might be responsible for more interaction as well as COVID-19
transmission (Mishra et al., 2020; Sarkar, 2020)

Criteria
See Fig. C.2.
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Fig. C.2. Criteria map; C-1: Smoking C-2: Cancer; C-3: Obesity; C-4: Heart disease; C-5: Hypertension, C-6: Diabetes; C-7: Respiratory disease; C-8: Ageing; C-9:
Population density.
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Table C.2
Criteria used for the prioritisation of the city areas for vaccination in the most epidemiological studies. Previous epidemiological meta-analysis studies have been
used to calculate the weight of criteria.

Sym. Factors (criteria) Definition Weight Meta-analysis source Data source

𝐶-1 People aged over 18 who are
current smokers (Daily smoker
ratio)

Proportion of adult (18+ years) population,
by smoking status (in percent)

2.51 Zheng et al. (2020b) ABS (2020)

𝐶-2 Cancer incidence per 1,000
population

The total number of malignant cancers
(rate)

3.04 Parohan et al. (2020b) DHHS (2020)

𝐶-3 People reporting being obese
(ratio)

Proportion of adult (18+ years) population,
who were overweight (pre-obese or obese)
(in percent)

3.68 Hussain et al. (2020b) VHISS (2017)

𝐶-4 People reporting heart disease
(ratio)

People reporting heart disease (in percent) 5.19 Zheng et al. (2020b) DHHS (2020)

𝐶-5 People reporting high blood
pressure (Hypertension ratio)

People reporting high blood pressure (in
percent)

3.32 Lu et al. (2020b) DHHS (2020)

𝐶-6 People reporting type 2 diabetes
(ratio)

The percentage of people who have type 2
diabetes (in percent)

3.73 Lu et al. (2020b) DHHS (2020)

𝐶-7 People reporting respiratory
disease (ratio)

The percentage of people who reported
having current respiratory disease

5.15 Zheng et al. (2020b) DHHS (2020)

𝐶-8 The people aged over 65 years
(ratio)

The ratio of people 60 and over to total
population

6.06 Zheng et al. (2020b) ABS (2020)

𝐶-9 Population density (per sq.km) Persons per square kilometre (per sq.km) 2.49 Mishra et al. (2020) Sarkar (2020)

Appendix D. Fuzzy GIS approach materials

D.1. Phase I: FL-GIS spatial model

D.1.1. Fuzzy Logic
Upon preparing the initial data, a geodatabase was generated using the ArcCatalog environment which is one of the plugins of

rcGIS 10.7 software (ESRI, Redlands, CA, USA). The geodatabase includes points (city location and test centres), linear (roads) and
olygonal features (Mesh block, SA1 and SA2 boundaries). The Geocentric Datum of Australia (GDA2020) coordinate system was
sed for country and regions level as official and reference system. The 𝑊𝐺𝑆−1984−𝑈𝑇𝑀−𝑍𝑜𝑛𝑒−55𝑆 projection system was used
or SA2 and SA1 map layers in GIS. This projection coordinate system enables researchers to create a map that accurately shows
istances, areas or directions (Shabanikiya et al., 2020; Pishgar et al., 2020) and is suitable for use between 144◦E and 37◦S where
he study area is located. Upon creating the geodatabase, we defined SA1 level as the base map for all analyses. Since most of the
ity data are collected at the SA1 level, this level permits more appropriate analysis (compared to the SA2 and mesh block levels)
nd implementation of FL-GIS model. Finally, all the data of the selected criteria were joined to the SA1 level map and groundwork
as laid for further analysis.

Spatial related features often do not have clearly defined boundaries, and concepts can better be expressed with degrees of
embership to a fuzzy set than with a binary (1 or 0) classification (Kainz, 2007). In fuzzy logic, the classes are defined as sets. The

heory of fuzzy sets was introduced by Zadeh (1965). In conventional logic, the degree to which an individual (z) being a member
r not of a given set (A) is expressed by the membership function 𝑀𝐹𝐵 . The membership function 𝑀𝐹𝐵 can take the value 0 or 1

as shown below in an example of a set being an interval [𝑏1, 𝑏2]:

𝑀𝐹𝐵(𝑧) =

⎧

⎪

⎨

⎪

⎩

1 if 𝑏1 ≤ 𝑧 ≤ 𝑏2
0 if 𝑧 < 𝑏1, or, 𝑧 > 𝑏2

(D.1)

where (𝑏1) and (𝑏2) define the exact boundaries of the set (A) (Malczewski, 1999). Mathematically, a fuzzy set (A) is defined as
follows (Gorsevski et al., 2006):

If (z) denotes a space of objects, then the fuzzy set (A) in (Z) is the set of ordered pairs

𝐴 = {𝑧,𝑀𝐹 𝐹
𝐴 (𝑧)}, 𝑧 ∈ 𝒵 (D.2)

where the membership function 𝑀𝐹 𝐹
𝐴 (𝑧) is referred to as the ‘‘degree of membership of (z) in (A)’’. The higher the membership

value of 𝑀𝐹 𝐹
𝐴 (𝑧), the more z belongs to the set. The various fuzzy membership functions are defined in FL (Burrough et al., 2015).

Several membership function integrated with GIS includes Gaussian, Large, Small, MSLarge, MSSmall, Near and Linear (ESRI, 2020).
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D.2. Standardisation of criteria layers and weighing of criteria

Data normalisation is an essential part of any MCDM process (Jahan and Edwards, 2015). This approach usually converts
riteria with different measurement units to a common scale in the interval [0–1] (Pavličić, 2001). The fuzzy sets have a high
apability in normalising spatial data and they are compatible with Geographic Information Systems (Ribeiro et al., 2014). Due
o the different scale of each criterion (e.g. rate, percentage and count) (Table C.2), fuzzy membership functions were applied to
tandardise the criteria maps (fuzzification) using the spatial analytical tool in GIS. We tested different membership functions and
ound that the fuzzy linear function gave the best results. The fuzzy linear transformation function applies a linear function between
he user-specified minimum and maximum values (Raines et al., 2010):

𝜇(𝑋) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 if x < min
1 if x > max

(𝑥−𝑚𝑖𝑛)
(𝑚𝑎𝑥−−𝑚𝑖𝑛) otherwise.

(D.3)

where min and max are user inputs. Anything below the minimum will be assigned a 0 (definitely not a member) and anything
bove the maximum a 1 (definitely a member) (ESRI, 2020). Upon fuzzification of the criteria maps, weights extracted from previous
tudies (Table C.2) were applied to the criteria fuzzy maps by using the raster calculator in GIS as below:

Standardised (fuzzified) weighted maps =
∼

𝐶1𝑓 × 2.51;
∼

𝐶2𝑓 × 3.04;
∼

𝐶3𝑓 × 3.68;
∼

𝐶4𝑓 × 5.19;
∼

𝐶5𝑓 × 3.38;
∼

𝐶6𝑓 × 3.73;
∼

𝐶7𝑓 × 5.15;
∼

𝐶8𝑓 × 6.0
(D.4)

.3. The fuzzy overlay model

The final step in prioritising urban areas for vaccination is to implement fuzzy overlay of criteria maps using GIS. The overlay
ype lists the methods available to combine the data based on FL in GIS. Five methods are available, namely fuzzy And, fuzzy Or,
uzzy Product, fuzzy Sum, and fuzzy Gamma (Abdulrazzaq et al., 2020). In this study, the fuzzy gamma type is used. The fuzzy
amma type is an algebraic product of fuzzy product and fuzzy sum, which are both raised to the power of gamma. The generalised
unction is as follows (ESRI, 2020):

𝜇𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝛱𝑛
𝑖=1𝜇𝑖 for fuzzy algebraic product

𝛱𝑛
𝑖=1(𝜇𝑖 − 1) for fuzzy algebraic sum

(Fuzzy algebraic sum)𝜆 × (Fuzzy algebraic product)1−𝜆 for fuzzy 𝛾

(D.5)

𝜇𝐶 =
[

𝛱𝑛
𝑖=1𝜇1

]𝛾
𝑋

[

1 −𝛱𝑛
𝑖=1(1 − 𝜇𝑖)

](1−𝛾)
(D.6)

where 𝛾 is a user input variable selected from the range [0, 1]. We tested different 𝛾 values (0, 0.50, 0.75 and 0.90). Finally,
.90 was chosen as an efficient value to be applied in the overlay of criteria maps.

.4. Interpolation (IDW) and defuzzification

The interpolation method often chosen by geoscientists is Inverse distance weighted (IDW) implemented in GIS (Lu and Wong,
008). Inverse distance weighted (IDW) interpolation determines cell values using a linearly weighted combination of a set of sample
oints. The IDW method can be viewed as a process of minimising a deviation function between the expected value and the sample
alues (Li et al., 2020). After overlapping, the values obtained from the previous step were joined onto the residential mesh blocks
y zonal statistics in GIS. The IDW method was used to obtain more accurate results in logical representation and eliminate the
istortion of the final output map. The results was a smoothed weighted map that became the basis for the areal prioritisation.

Defuzzification is the process of conversion of aggregated fuzzy set into one crisp value (Van Leekwijck and Kerre, 1999). In the
inal step of FL-GIS modelling, defuzzifying the overlaid output map (standardised and weighted) was carried out to convert the fuzzy
et values to numeric values with clearly defined boundaries using the natural break classifier and converted into a conventional
inal priority map. In all the analyses, cell size for raster (image format file in GIS) maps is defined as 30 × 30 metre. The final
umeric classified output map was prepared to introduce areas in the prioritisation of vaccination.
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Fig. E.1. Fixed chromosome for VCs.

Fig. E.2. Excessive chromosome structure for 𝑉 𝐶𝑠.

Appendix E. Algorithms chromosomes

E.1. Definitions

Centre Capacity (𝐶𝐶𝑖): A vaccine centre has a certain initial capacity indicating the original daily capacity (𝐶𝐶𝑖). Total Centre
Capacity (𝑇𝐶𝐶) is the summation of all centres’ capacities to cover demands (𝑇𝐶𝐶 =

∑𝑛
𝑖 𝐶𝐶𝑖). Fig. E.1 depicts the structure of its

solution space as chromosome.
Maximum Capacity (𝑀𝐶): It is assumed that the centres can serve at maximum double their original capacities (𝐶𝐶𝑖); Total

Maximum Capacity (𝑇𝑀𝐶) is the summation of all centres’ maximum capacities 𝑇𝑀𝐶 =
∑𝑛

𝑖 𝑀𝐶𝑖, and 𝑇𝑀𝐶 = 2 × 𝑇𝐶𝐶. Daily
distributing packages of vaccines could be maximum be at Total Maximum Capacity level as 𝑇𝑀𝐶, accordingly (0 ≤ 𝑃𝑑 ≤ 𝑇𝑀𝐶).

Overall Capacity (𝑂𝐶𝑖): A Vaccine centre could serve 𝑂𝐶𝑖 amount of vaccines per day. The 𝑂𝐶𝑖 of each 𝑉 𝐶 could vary in the
range of zero to 𝑀𝐶𝑖 (0 ≤ 𝑂𝐶𝑖 ≤ 𝑀𝐶𝑖). 𝐷𝑖𝑓𝑖 is the difference of a centre’s overall capacity to its original capacity. Put simply, the
amount of vaccines that the 𝑉 𝐶𝑖 is serving demands related to its initial capacity of 𝐶𝐶𝑖 (𝑂𝐶𝑖 = 𝐶𝐶𝑖+𝐷𝑖𝑓𝑖). Hence, depending on the
amount of distributing vaccines the Total Overall Capacity (𝑇𝑂𝐶) of centres can be more or less than 𝑇𝐶𝐶 (𝑇𝑂𝐶 = 𝑇𝐶𝐶 + 𝑇𝐷𝑖𝑓 ).
In cases that the vaccines are distributed to all the Vaccine Centres for vaccination, 𝑇𝑂𝐶 could be equal to available daily package
𝑃𝑑 (𝑇𝑂𝐶 = 𝑃𝑑).

E.2. Solution space structure design (Chromosomes)

The amount of 𝑃𝑑 , determines which algorithm of capacity allocation to proceed, 𝐻𝐺𝐴 − 𝑆ℎ𝑜𝑟𝑡𝑎𝑔𝑒 or 𝐻𝐺𝐴 − 𝐸𝑥𝑐𝑒𝑠𝑠.

E.2.1. HGA-Excess solution space (𝐶ℎ𝑟.𝐸𝐶)
If the distributing vaccines is more than 𝑇𝐶𝐶, then HGA-Excess must keep the amount of different capacity of each centre in the

range of 0 to 𝐶𝐶𝑖. In other words, at least some of the centres must work over their 𝐶𝐶𝑖. No centre works more than twice its 𝐶𝐶𝑖
and no centre works under its 𝐶𝐶𝑖.

In HGA-Excess, we define 𝐸𝐶𝑖 = 𝐷𝑖𝑓𝑖;

Lemma E.1. When 𝑇𝐶𝐶 ≤ 𝑃𝑑 , the different amount of capacity of each centre (𝐸𝐶𝑖), related to its original capacity (𝐶𝐶𝑖), is a positive
number and is less than its 𝐶𝐶𝑖 (0 ≤ 𝐸𝐶𝑖 ≤ 𝐶𝐶𝑖)

Proof. Given 𝑇𝐶𝐶 ≤ 𝑃𝑑 , it can be concluded that 𝑇𝐶𝐶 ≤ 𝑃𝑑 ≤ 𝑇𝑀𝐶. The different amount of vaccines for serving relating to
𝑇𝐶𝐶, which here defined as 𝑇𝐷𝑖𝑓 , defines as 𝑇𝐸𝐶 (𝑇𝐷𝑖𝑓 = 𝑇𝐸𝐶). When, 𝑇𝐶𝐶 ≤ 𝑃𝑑 ≤ 𝑇𝑀𝐶, then 𝑇𝐶𝐶 ≤ 𝑇𝑂𝐶 ≤ 𝑇𝑀𝐶. Since
𝑇𝑂𝐶 = 𝑇𝐶𝐶 + 𝑇𝐸𝐶, it can be assumed that 𝑇𝐶𝐶 ≤ 𝑇𝐶𝐶 + 𝑇𝐸𝐶 ≤ 𝑇𝑀𝐶. This equation can be written as 0 ≤ 𝑇𝐸𝐶 ≤ 𝑇𝐶𝐶. Since
𝑇𝐶𝐶 =

∑𝑛
𝑖 𝐶𝐶𝑖 and 𝑇𝐸𝐶 =

∑𝑛
𝑖 𝐸𝐶𝑖, it can be assumed that 0 ≤ 𝐸𝐶𝑖 ≤ 𝐶𝐶𝑖. The solution space of the problem, hence, can be stated as

0 ≤ 𝐸𝐶𝑖 ≤ 𝐶𝐶𝑖 which is a positive number and less that its 𝐶𝐶. 𝐸𝐶𝑖 for centre 𝑖 = 1 to 𝑛 will be computed by HGA-Excess algorithm
IV. The Excess Repair Algorithm algorithm V ensures the solutions in always within the range if mentioned solution space. □

The HGA-Excess generates the elements in 𝐸𝐶 chromosome in a way that the distance between centres and their assigned
demands is minimal. The solution space structure can be shown as follows in Fig. E.2:

E.2.2. HGA-Shortage solution space (𝐶ℎ𝑟.𝑆𝐶)
In HGA-shortage, we define 𝑆𝐶𝑖 = 𝐷𝑖𝑓𝑖;

Lemma E.2. When 𝑃𝑑 < 𝑇𝐶𝐶, the different amount of capacity of each centre (𝑆𝐶𝑖), related to its initial capacity (𝐶𝐶𝑖), is a negative
number and more than its −𝐶𝐶
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Fig. E.3. Shortage chromosome structure for 𝑉 𝐶𝑠.

Proof. Given 𝑃𝑑 < 𝑇𝐶𝐶, it can be concluded that 0 ≤ 𝑃𝑑 < 𝑇𝐶𝐶, then 0 ≤ 𝑇𝑂𝐶 < 𝑇𝐶𝐶. Since 𝑇𝑂𝐶 = 𝑇𝐶𝐶 + 𝑇𝑆𝐶, it can be
assumed that 0 ≤ 𝑇𝐶𝐶 +𝑇𝑆𝐶 < 𝑇𝐶𝐶. The equation can be written as −𝑇𝐶𝐶 ≤ 𝑇𝑆𝐶 < 0. Since 𝑇𝐸𝐶 =

∑𝑛
𝑖 𝐶𝐶𝑖 and 𝑇𝑆𝐶 =

∑𝑛
𝑖 𝑆𝐶𝑖,

it can be assumed that −𝐶𝐶𝑖 ≤ 𝑆𝐶𝑖 < 0, which is the solution space if the problem is in this condition. If the distributing vaccines is
less than 𝑇𝐶𝐶, then HGA-Shortage algorithm VI keeps the amount of different capacity of each centre in the range of −𝐶𝐶𝑖 to zero
and the Shortage Repair Algorithm VII is designed for this job. In this condition, at least some of the centres must work under their
𝐶𝐶𝑖 thresholds. None of the 𝑉 𝐶𝑠 works more than its 𝐶𝐶. □

The HGA-Shortage optimises the elements in 𝑆𝐶 chromosome. It balances the 𝑆𝐶𝑖 and hence 𝑂𝐶𝑖 in a way that the distance
between active centres, 𝐴𝑉 𝐶, and their assigned demands be minimised. The chromosome structure can be shown as follows in
Fig. E.3:

Appendix F. Result visualisation

Fig. F.1. Simulation - Performance indicators - Fig. 1(a) shows before and Fig. 1(b) shows after applying the staff levelling optimisation in the simulation engine
in a group in one day.
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Fig. F.2. Scenario I- Daily vaccination coverage. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)
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Fig. F.3. Scenario II- Daily assignment plan.
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Fig. F.4. Scenario I - Daily vaccine distribution routing plan.
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Fig. F.5. Scenario II - Daily vaccine distribution routing plan.
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Fig. F.6. Scenario III - Daily vaccine distribution routing plan.

Appendix G. Problem formulation (Math-Heuristic Alg. II)

The proposed problem can be formulated using the Math-heuristic algorithm. The pseudo-code of the proposed algorithm in
shown in Algorithm II below:
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Algorithm II: Math-Heuristic algorithm
Inputs : 𝑃𝑟𝑖𝑜,𝐼𝑛𝑡 ← given by 𝐷𝑀 ; 𝐸𝑇 ← given by 𝐷𝑀 ; Counter of day: 𝑑 ← 1; Sort demand points by 𝑃𝑟𝑖𝑜; 𝑃𝑅 ← 0; 𝑍𝑇 ← 𝐸𝑇 × 𝑇𝑀𝐶;
Outputs : 𝐵𝐴𝑆𝑆𝑑 ,𝐶𝑅𝑆𝑑

1 while (∑𝑖 𝐷𝑃𝑜𝑝𝑖 > 0, OR, 𝑊𝐿𝐷2𝑑 ≠ ⊘) do /* TILL WHEN THERE IS NEED FOR NEW VACCINE PACKAGE */
// PRIORITY DEMAND ALLOCATION (SECTION Appendix H.1)

2 if (𝐷𝑃𝑜𝑝𝑖 > 0), AND, (𝑊𝐿𝐷 ≠ ⊘, AND, 𝑇𝑃𝐷2 > 𝐸𝑇 ) then
3 𝑇𝐶𝐶 ←

∑

𝑗 𝐶𝐶𝑗 ;
4 𝑇𝑀𝐶 ←2 ×𝑇𝐶𝐶;
5 𝑃𝑁𝑒𝑤 ← given by 𝐷𝑀 ;
6 𝑃𝑅 ← 𝑃𝑅 + 𝑃𝑁𝑒𝑤;
7 if 𝑃𝑅 > 𝑍𝑇 then /* PERISHING OF VACCINES */
8 𝑃𝑅 ← 𝑍𝑇

9 if 𝑃 > 𝑇𝑀𝐶 then /* SURPLUS FOR NEXT DAY */
10 𝑃𝑑 ← 𝑇𝑀𝐶;
11 𝑃𝑅 ← 𝑃 - 𝑇𝑀𝐶
12 else
13 𝑃𝑑 ← 𝑃𝑁𝑒𝑤;
14 𝑃𝑅 ← 0;

15 𝑌 .𝑑2 ←
∑

𝑊𝐿𝐷2𝑑 .𝑃 𝑜𝑝;
16 𝑌 .𝑑1 ←

∑

𝐷.𝑃𝑜𝑝;
17 if 𝑃𝑑 > 𝑌 .𝑑1 + 𝑌 .𝑑2 then /* CHECK IF THE DISTRIBUTING PACKAGE IS MORE THAN DAILY NEED */
18 𝑃𝑑 ← 𝑌 .𝑑1 + 𝑌 .𝑑2;
19 𝑃𝑅 ← 𝑃𝑅 + 𝑃𝑑 − (𝑌 .𝑑1 + 𝑌 .𝑑2);

20 𝑄𝑢𝑒𝑢𝑒, 𝑆𝑇 2𝑑 ← ⊘ ; /* SECOND DOSE DEMAND CALCULATION */
21 𝑇𝑃𝐷2 ← 0;
22 𝐴𝐴 ← ⊘;

23 𝐴𝐴 ← Model Assignment: Model I (𝑊𝐿𝐷2𝑑 .𝑃 𝑜𝑝, 𝑝𝑑 );

24 𝑇𝑃𝐷2 ←
∑

𝑗 (𝐴𝐴𝑗 ×𝑊𝐿𝐷2𝑑 .𝑃 𝑜𝑝𝑗 );
25 if 𝑇𝑃𝐷2 ≤ 𝑝𝑑 then /* DOSE EXPIRATION */
26 for 𝑡 = 1 to length(𝑊𝐿𝐷2𝑑 .𝑝𝑜𝑝) do
27 if 𝐴𝐴𝑡 = 0 then /* FIRST DOSE FOR EXPIRED DEMAND */
28 𝐷.𝑝𝑜𝑝𝑡 ← 𝑊𝐿𝐷2𝑑 .𝑃 𝑜𝑝
29 else
30 𝑆𝑇 2.𝐼𝐷 ← 𝑊𝐿𝐷2.𝐼𝐷𝑡 ∪ 𝑆𝑇 2.𝐼𝐷

31 𝐴𝐴 ← ⊘;
32 if 𝑝𝑑 > 𝑇𝑃𝐷2 then /* IF VACCINES REMAIN FOR THE FIRST DOSES */
33 𝑝𝑑 ← 𝑝𝑑 − 𝑇𝑃𝐷2;

34 𝐴𝐴 ← Model Assignment: Model I (𝐷.𝑃𝑜𝑝, 𝑝𝑑 );

35 if ∑𝑖 𝐴𝐴𝑖 ≥ 𝑝𝑑 then
36 for 𝑡 = 1 to ∑

𝑖 𝐴𝐴𝑖 do
37 if 𝐷.𝑝𝑜𝑝𝑡 = 0 then
38 𝐴𝐴𝑡 = 0
39 else
40 𝑆𝑇 1.𝐼𝐷 ← 𝑆𝑇 1.𝐼𝐷 ∪ 𝑡;
41 𝑆𝑇 1.𝑃 𝑜𝑝 ← 𝐷.𝑃𝑜𝑝𝑡;
42 𝑇𝑃𝐷1 ← 𝑇𝑃𝐷1 +𝐷.𝑃𝑜𝑝𝑡;
43 𝐷.𝑃𝑜𝑝𝑡 ← 0;

44 𝑄𝑢𝑒𝑢𝑒 ← 𝑆𝑇 1 ∪𝑆𝑇 2 ; /* TOTAL POPULATION OF BOTH DOSES IN DAY D */
45 𝑃𝑑 ← 𝑇𝑃𝐷1 + 𝑇𝑃𝐷2;
46 if 𝑇𝑃𝐷1 > 0 then /* CREATING WAITING LIST FOR SECOND DOSE VACCINATION */
47 𝑊𝐿𝐷2(𝑑+𝑖𝑛𝑡) .𝐼𝐷 ← 𝑆𝑇 1.𝐼𝐷
48 𝑊𝐿𝐷2(𝑑+𝑖𝑛𝑡) .𝑃 𝑜𝑝 ← 𝑆𝑇 1.𝑃 𝑜𝑝;

49 if 𝑃𝑑 ≥ 𝑇𝐶𝐶; then /* EXCESS IN SUPPLIED PACKAGES */
50 𝐴𝑆𝑆 ← Capacity Allocation Model: Model II (Excess) (𝑄𝑢𝑒𝑢𝑒, 𝑃𝑑 , 𝑇𝐶𝐶, 𝐶𝐶)

51 else /* SHORTAGE IN SUPPLIED PACKAGES */
52 𝐴𝑆𝑆 ← Capacity Allocation Model: Model III (Shortage) (𝑄𝑢𝑒𝑢𝑒, 𝑃𝑑 , 𝑇𝐶𝐶, 𝐶𝐶)

// RESOURCE (STAFF) BALANCING (SECTION Appendix H.1.1)

/* AGENT BASED + DISCRETE PROCESS MODELLING FOR M/K/G QUEUE THEORY SIMULATION (𝐶𝐶) */

53 𝐵𝐴𝑆𝑆𝑑 ← SimulationEngine (MonteCarloOptimisation, Algorithm X) (𝐴𝑆𝑆, 𝑆𝑇 1,𝑆𝑇 2, 𝐶𝐶);
Return : 𝐵𝐴𝑆𝑆𝑑

// VACCINE DISTRIBUTION PATTERN (SECTION Appendix H.1.2)

54 𝐶𝑅𝑆𝑑 ← MonteCarloGreedySimulation (Algorithm XI) (𝑃𝑑 ,𝐵𝐴𝑆𝑆𝑑 𝐶𝐶);

55 d ← d + 1;
Return : 𝐶𝑅𝑆𝑑
33



Transportation Research Part E 159 (2022) 102598S. Shahparvari et al.

W
d

G

W
v
t

A

(
t

a
W
q
f
p

H

e

G.1. Assignment model I

𝑀𝑎𝑥
𝒩
∑

𝑘=1
𝑋𝑘𝑁𝑘 (G.1)

Subject to: (G.2)
𝒩
∑

𝑘=1
𝑋𝑘𝑁𝑘 ≤ 𝑆 (G.3)

𝑋𝑘+1 ≤ 𝑋𝑘 ∀𝑘 ∈ {1, ...,𝒩 } (G.4)

𝑋𝑘 ∈ {0, 1} ∀𝑘 ∈ {1, ...,𝒩 } (G.5)

here 𝒩 is number of demand points. 𝑁𝑘 denotes the population of the points, and 𝑆 defines the number of supply. 𝑋𝑘 is a Binary
ecision variable which returns 1 if the point 𝑘 is assigned, and zero otherwise.

.2. Capacity allocation model

Shortage model - Model II:

𝑀𝑖𝑛
𝒩
∑

𝑖=1

ℳ
∑

𝑗=1
𝑑𝑖𝑗𝑋𝑖𝑗 (G.6)

Subject to:
𝒩
∑

𝑖=1
𝑋𝑖𝑗 = 𝑊𝑗 ∀𝑗 ∈ {1, ...,ℳ} (G.7)

ℳ
∑

𝑗=1
𝑋𝑖𝑗 = 𝐶𝑖 ∀𝑖 ∈ {1, ...,𝒩 } (G.8)

𝐶𝑖 ≤ 𝐶𝐶𝑖 ∀𝑖 ∈ {1, ...,𝒩 } (G.9)

𝑋𝑖𝑗 ∈ + ∀𝑖 ∈ {1, ...,𝒩 },∀𝑗 ∈ {1, ...,ℳ} (G.10)

here ℳ is number of centres and 𝐶𝑖 is an integer decision variable defining allocated capacity to the centre 𝑖, and 𝑋𝑖𝑗 is an integer
ariable of population of the point 𝑗 is allocated to the centre 𝑖. 𝑑 defines matrix of distances. 𝑊 is the vector of the population of
he demand points, and 𝐶𝐶 is the vector of the capacities for the centres.

Excess model - Model III:

(G.6) (G.11)

Subject to: (G.12)

(G.7), (G.8),& (G.13)

𝐶𝐶𝑖 ≤ 𝐶𝑖 ≤ 2 × 𝐶𝐶𝑖 ∀𝑖 ∈ {1, ...,𝒩 } (G.14)

𝑋𝑖𝑗 ∈ + ∀𝑖 ∈ {1, ...,𝒩 },∀𝑗 ∈ {1, ...,ℳ} (G.15)

Objective function (G.6) minimises the total distance of all allocation of the points to the centres.

ppendix H. Holistic algorithm details (Alg. III) sub-algorithms

Stage II includes three main subsections as Priority demand allocation (Appendix H.1; Fig. 2-blue area), Resource (staff) balancing
simulation-optimisation) (Appendix H.1.1; Fig. 2-green area), and vaccine distribution pattern (Appendix H.1.2; Fig. 2-red area)
hat all integrated in the Holistic algorithm III.

The proposed Holistic algorithm (Alg. III) is an heuristic solution approach integrating eight hierarchical heuristic algorithms
s shown in Fig. 2. The Holistic algorithm comprises three main sub-steps, including Priority Demand Allocation (Alg. III -Line 2),
aiting Time and Resource Balancing (Alg. III -Line 57), and Vaccine Distribution Routing Pattern (Alg. III -Line 58). To answer the key

uestion of ‘‘how many doses of the vaccine should be supplied to each VC today?’’, the output from Stage I will be used as input
or the Holistic algorithm in Stage II. The algorithm is run on a daily basis to develop a vaccine allocation, assignment and delivery
lan.

.1. Priority demand allocation

The first loop defines the extend time horizon to receive new vaccine packages by checking ‘‘if there are yet demands to receive
ither the first or the second dose of vaccination?’’ (Alg. III -Line 1). Based upon the amount of vaccine packages supplied each day,
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a set of three conditions is applied to determine the allocation. Firstly, have all the first dose vaccine-takers been served? Secondly,
is there at least one demand waiting to receive its second dose of vaccination? Thirdly and lastly, is the earliest time for people on
the waiting list to receive their second dose beyond the expiry date of the vaccines? If none of all three conditions are met, no new
package will be supplied as it will be a waste (Alg. III -Line 2). Otherwise, there is a need to place an order for new packages.

On each day, there might be excess packages that must be used within the following 𝐸𝑇 days (six days in this study) before
expiry (Alg. III-Lines 5:6). The excess vaccines will remain in storage and will be added to packages to be received on the following
day (Alg. III-Lines 7:13). The daily distributing amount of vaccines must not exceed total available demands of the day. If this
happens, the excess amount of vaccines is stored during the next days (Alg. III -Lines 13:17). If so, demands of the day (𝑑) which is
due to receive the second dose of vaccination (𝑊𝐿𝐷𝑑) will be pushed to the top of the priority list (𝑆𝑇 2)(Alg. III -Lines 18:40). The
condition in line 20 checks if there is any demand on vaccine for second dose for the day 𝑑. In this situation, the 𝑉 𝐶𝑠 is assumed
o perform with up to 200% of the original vaccination capacity (𝐶𝐶) as maximum capacity 𝑀𝐶. When there are demands for a

second dose that have not been satisfied on their due day, they will be expired and prepared to take another first dose on earliest
further days. (Alg. III-Lines 38:40). If the supplied package sizes 𝑃𝑑 exceed the amount of 𝑆𝑇 2, the remaining ones could be used
to serve the top priority people to receive their first dose (Alg. III-Lines 41:58).

When the daily supplied vaccine packages exceed the total vaccination capacity (𝑇𝐶𝐶) of the 𝑉 𝐶𝑠, the Holistic algorithm calls
for 𝐻𝐺𝐴 − 𝐸𝑥𝑐𝑒𝑠𝑠 (Alg. III -Line 54).

HGA-Excess is designed for the situation when the supplied daily package is greater than or equal to the 𝑇𝐶𝐶. The HGA-Shortage
algorithm (Alg. VI) is designed for the situation when the supplied daily package is smaller than the 𝑇𝐶𝐶 (Alg. III-Line 56). In this
situation, some 𝑉 𝐶𝑠 might not be assigned to serve demand on the same day. Instead, adjacent 𝑉 𝐶𝑠 in the dense priority demand
locations will set to work with an increased 𝑂𝐶 level. In the situation when the daily package equals 𝑇𝐶𝐶, all the 𝑉 𝐶𝑠 will work
with their original 𝐶𝐶.

Heuristic Genetic Algorithm-Excess:
The Heuristic Genetic Algorithm-Excess (Alg. IV) HGA-Excess is designed for when there is excess in daily supplied vaccine packages.

The HGA-Excess includes a Genetic loop with two reinforcing ROULETTEWHEEL modules built in as SHORT-DISTFUNC (Alg. IV-Line
8) and LONG-DISTFUNC (Alg. IV-Line 20). HGA-Excess has 𝐶ℎ𝑟.𝐸𝐶 chromosome which indicates the excess over centre capacity
(𝐶𝐶) when the distributed package 𝑃𝑑 is more than 𝑇𝐶𝐶.

Lemma H.1. When 𝑇𝐶𝐶 ≤ 𝑃𝑑 , the different amount of capacity of each centre (𝐸𝐶𝑖), related to its original capacity (𝐶𝐶𝑖), is a positive
number and is less than its 𝐶𝐶𝑖 (0 ≤ 𝐸𝐶𝑖 ≤ 𝐶𝐶𝑖).

Proof. See Appendix E.2.1 for the proof of lemma and detailed chromosome structure. □

The role of the HeuristicFitFunc is to return the fitness of the called chromosome and also the assignment of the demands in the
queue to each 𝑉 𝐶𝑠 based on the 𝑉 𝐶𝑠’ capacity from the chromosome. The ExcessRepairAlg (Alg. V) is called to ensure that avoid 𝑂𝐶
assignment exceeds from 𝑀𝐶, and 𝐸𝐶 not exceed from 𝐶𝐶. In excess, (Alg. V) ensures that 𝐸𝐶 of the 𝑉 𝐶𝑠 could be zero or greater
than zero and less or equal to 𝐶𝐶 (the 𝑉 𝐶 sent to the related loop for next assignments). Using a developed ROULLETEWEEL, the
SHORT-DISTFUNC module maximises the capacity of the closest 𝑉 𝐶 to the top dense demand areas. In this case, assignments with
less average distance 𝐴𝐷 have higher chance of being selected to increase the 𝐶𝐶 and serve demands. The LONG-DISTFUNC module
(Alg. IV-Line 20) works, reversely. The ROULLETEWEE module finds the best of bests and weakest of weaks by devoting score to
𝑉 𝐶𝑠 based on their Total distance and Total population of one previous assignment. Crossover function is considered to ensure that
results does not trap into local optima and distribute the high score chromosome entire the solution space. (see Appendices E.2.1
and E.2.2 for the chromosome structure visualisation.)

Heuristic Genetic Algorithm-Shortage:
The HGA-Shortage algorithm (Alg. VI) has similar steps as the HGA-Excess algorithm (Alg. IV) as the k-site selection problem, in

which k can be dynamic. The main difference is that it is specifically designed to generate allocation plans when there is shortage
in the number of daily supplied Vaccine Packages. The chromosome 𝐶ℎ𝑟.𝑆𝐶 has negative values.

Lemma H.2. When 𝑃𝑑 < 𝑇𝐶𝐶, the different amount of capacity of each centre (𝑆𝐶𝑖), related to its initial capacity (𝐶𝐶𝑖), is a negative
number and more than its −𝐶𝐶𝑖.

Proof. See Appendix E.2.2 for the proof of lemma and detailed chromosome structure. □

In this algorithm, if an element in the 𝐶ℎ𝑟.𝑆𝐶 chromosome gets the highest absolute amount possible, the related 𝑉 𝐶 gets the
overall capacity of zero VI-Line 16) to avoid serving any demand point. As the result, in some cases not all the 𝑉 𝐶𝑠 will be open in
that day due to package shortage. The generated pattern (𝐶ℎ𝑟.𝑆𝐶 chromosome) will send to HeuristicFitFunc (Alg. VIII for calculating
the fitness function.
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SHORT-DISTFUNC module of HGA-Shortage (Alg. VI-Line 8) has a negative chromosome as input which needs to convert to
positive to ease the calculation (Alg. VI-Line 9). The ROULETTEWHEEL function (Alg. VI-Line 13) selects the elements with less 𝐴𝐷
value (higher scores) in the chromosome 𝐶ℎ𝑟.𝑆𝐶 (Alg. VI-Line 17). The function weakens the amount of the element in related
chromosome 𝐶ℎ𝑟.𝑆𝐶 to reinforce the 𝑂𝐶 of the 𝑉 𝐶𝑖. The ShortageRepairAlg (Alg. VII) repairs the 𝐶ℎ𝑟.𝑆𝐶 by ensuring that 𝑂𝐶
f the 𝑉 𝐶𝑠 could only be zero (no package assigned to that 𝑉 𝐶) or greater than zero (the 𝑉 𝐶 sent to the related loop for next
ssignments). The repaired chromosome is sent to HeuristicFitFunc (Alg. VIII) for choose the best pattern with higher performance
ndex as fitness function. LONG-DISTFUNC module (Alg. VI-Line 19) performing the same steps vice-versa by weakening the score
f the most furthest 𝑉 𝐶𝑠 to the demand points. It weakens a weak element of the chromosome to reduce 𝑆𝐶 and consequently the
verall capacity (𝑂𝐶 = 𝑆𝐶 + 𝐶𝐶) of assigned 𝑉 𝐶. ROULETTEWHEEL and CROSSOVER modules perform as it is in HGA-Excess.
The Heuristic Fitness Algorithm (Alg. VIII) is designed for capacitated allocation interacting with the K-d tree (Alg. IX). 𝐶𝐶

ndicates centres original capacity of all the 𝑉 𝐶𝑠. The chromosome 𝑂𝐶 shows the overall service capacity of the all the 𝑉 𝐶𝑠 (see
ppendix E.1).

In the kd-tree demands and centres have been classified into 𝐴𝑉 𝐶 and 𝐹𝐷 meaning that demands that have at least one uncovered
opulation. The output of the K-d tree algorithm is, hence, local variables (𝐼𝑁𝐷,𝐷𝐼𝑆) which needs to be globalise to synchronise
his to the entire vaccine supply network plan of day 𝑑 by updating the 𝑉 𝐶 dependent variables (Alg. VIII-Line 11:15, and 42:46).
𝐶𝑠 first need to be classified using a binary variable; 1 if the centre has not been assigned any demands yet, and 0 otherwise (the
𝐶 has been assigned a demand population equals to its overall capacity (𝑂𝐶) (Alg. VIII -Lines 16 and 41). Demands in 𝐹𝐷 gets

heir number of uncovered population. Initially, it is equal to the considered the population of demands. Any time a part or whole
f population of a demand covered by a 𝑉 𝐶, its related 𝐹𝐷 will be updated with remained population for further loops (Alg. VIII
line 17 and 40). The incapacitated covered demand points indexed in 𝐼𝑁𝐷 need to be identified in a separated list (𝐶.𝐼𝐷).

Incapacitated allocation of the entire population of a demand point to its closes 𝑉 𝐶 might cause over-assigned of some centres.
or each 𝑉 𝐶, K-d tree allocates the yet uncovered demands (𝐹𝐷 > 0) to the 𝑉 𝐶𝑠 in 𝐴𝑉 𝐶 ≠ 0 list. In this process, K-d tree algorithm
ount the population of centres in ‘‘for loop’’ (Alg. IX-Line 1). Since K-d tree algorithm is not originally designed to run capacitated
ssignments, there could always be some 𝑉 𝐶𝑠 that become over-assigned. Put simply, the total demand population that K-d tree
lgorithm allocates to the 𝑉 𝐶, could be higher than its overall capacity 𝑂𝐶 (Alg. VIII -Line 8). In this case, the algorithm locates
he overpopulated 𝑉 𝐶𝑠, their already assigned demands points, and the population of the demands points. In some cases, hence,
he demand point’s population can be only partially allocated to 𝑉 𝐶(s) while rest of will be called later for assignment in further
terations. In these cases, HeuristicFitFunc distributes the priority population, and allocate only a part of the population to avoid
verpopulation in the 𝑉 𝐶𝑠.

The excessive assigned demands (𝑆𝑅𝑊 ) to the 𝑉 𝐶𝑠 by incapacitated assignment of the kd-tree algorithm first needs to be
dentified (Alg. VIII-Lines 3:7), to be stored (Alg. VIII -Line 8), and later to be repaired and globalised (Alg. VIII-Lines 18:46) to
reate the final performance index of fitness (Alg. VIII-Line 47). There are, however, situation with no excessive demands (i.e, in
he last loop of the ‘while’ in Alg. VIII-Line 1. In this case the 𝐼𝑁𝐷 and 𝐷𝐼𝑆 variable can be directly globalised without need to
epair (Alg. VIII-Lines 9:17).

The loop of allocating continues until all the uncovered demands served.
The k-d tree algorithm (Alg. IX) finds the nearest neighbour of 𝑉 𝐶 for each demand points (Friedman et al., 1983; Ram and

inha, 2019). It this study the 𝑘 is considered one since each demand must only visit one 𝑉 𝐶.

.1.1. Resource (staff) levelling (Simulation-Optimisation)
In this section the second step of Stage II as Resource (Staff) Balancing is explained (Fig. 2 - green area). The Priority Demand

llocation Step generates a daily assignment plan of top priority demands (first and second dose vaccine takers) into the capacitated
𝐶. The ratio of total Euclidean-based distance by the total assigned population is considered as the system performance index.

Obtaining the results for some performance measures such as average service time, average waiting time in 𝑉 𝐶𝑠 (queue length),
ongestion, average lead time (transportation time), average number of people in each hour in centres, total number of demand
erved in each day, and staff required in 𝑉 𝐶 is only possible using the simulation engine. The simulation engine runs on a daily
asis by considering the assignment plan generated in the previous step, aiming to improve the entire system’s performance by
onitoring the above mentioned performances. The simulation engine consists of two interacting agent-based and discrete processes

ased-modelling (discrete event simulation) models having been designed in this step (Alg. III -Line 44). Agent-based modelling is
eveloped to model the transportation demands to 𝑉 𝐶𝑠 (lead time index). Process-based modelling (discrete event simulation) is
ntegrated to model the 𝑀∕𝐺∕𝐾 queue systems to find the rest of the service performance measures (Breuer, 2000).

Algorithm X is developed to improve the computational performance of the simulation-optimisation process in very large cases.
he heuristic examines the 5%, 10%, 15%, and 20% reallocation levels for the 𝑉 𝐶𝑠 with the highest positive and negative differences
etween the current capacity assigned in 𝐴𝑆𝑆 and the best theoretical capacity as maximum movement (𝐵𝐶). The heuristic then
ubtracts one from the maximum (Alg X - line 13) and increases the minimum value by one (Alg X - line 14). The process repeats
ntil the 5% is complete (Alg X - line 12) for 10%C, 15%C, and 20%C scenarios (Alg X - line 7). These capacities will be used as
cenario variables in the Monte Carlo simulation approach to define the optimal capacity reallocation as follows.
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Finally, a Monte Carlo simulation-optimisation approach is developed on the simulation engine to reach an optimal staff
istribution pattern aiming to minimise the objective function of ∑

𝐶𝐶𝑖 − 𝐿𝐶𝑖, where 𝐶𝐶𝑖 is the original capacity for each 𝑉 𝐶,
𝐿𝑉 is the levelled capacity of the 𝑉 𝐶𝑠.

The objective function is considered for the productivity and cost of the capacity. The more demands served within the restricted
time and service constraints, the more value the objective function obtains. Conversely, there is a cost of capacity which is considered
as being subject to time and performance (𝑀∕𝐺∕𝐾) constraints as mentioned above.

In the process of simulation, the time between arrivals intervals will be exponentially distributed with the average of time
between arrivals 7 hours (the maximum time for a Pfizer vaccine to be used after defrosting). The service time is assumed to be
uniformly distributed from 8 to 12 minutes as 𝑀∕𝐺∕𝐾 queue system in the process-based model. The impact of the lead time is
screened in the agent-based model. Actual transportation time has been obtained by Integrated GIS data in Anylogic 8.1 Software.

It is possible to make some changes on the branches’ capacity for at least some of these branches within a certain range. To
guarantee that the last demand will have enough time for transportation time and be served, it was assumed that he/she will
leave home at least one hour before closing the 𝑉 𝐶𝑠. The vaccine centres have been organised into groups in order to improve
the computational time of simulation. It is also assumed that there is a penalty of waiting more than 30 minutes to be served in
each 𝑉 𝐶. All the demands assigned must be served on that day. Given the above-mentioned settings, the Simulation optimises the
number of staff required in each 𝑉 𝐶𝑠 in each day. The output of this step hence would be a daily balanced assignment plan of
𝐵𝐴𝑆𝑆𝑑 (Alg III -Line 48).

H.1.2. Vaccine distribution pattern

The last step of Stage II is named Vaccine Distribution Pattern (Fig. 2). Given the daily balanced assignment vaccination plan,
the vaccines need to be distributed from a central deep-cold storage (Melbourne Airport is assumed to be the central GDDCS depot
(Appendix F - green points) to complete the entire vaccine delivery supply. There is a limit on the number of specified couriers. It is
also assumed that there is a maximum 3-hour delivery time limit to distribute the vaccines to the 𝑉 𝐶𝑠 before 𝑉 𝐶𝑠 open at 9 A.M.

GreedyVaccDistHeuristic (Alg. XI) is designed for the purpose of distributing the package among the 𝑉 𝐶𝑠, while no truck takes
longer than the predefined time window. It is a main returning loop. In each iteration of the loop, a Greedy approach distributes
the required daily package from 𝐵𝐴𝑆𝑆𝑑 . Every iteration that the main loop could not distribute the package in the time window,
t adds another truck to the fleet in order to decrease the maximum tour time of trucks (Alg. XI -Line 2). The main loop continues
ntil the fleet delivers all the vaccines in less than the time window (Alg. XI -Lines 45:47).

It is assumed that all the trucks are heterogeneous with certain reefer container capacity. The greedy algorithm starts with
inimum possible trucks required for delivery. Based on the ratio of the total required packages to deliver to 𝑉 𝐶𝑠 and truck full

apacity, the minimum number of required trucks is calculated as the main input of the Greedy algorithm. In each iteration, for each
ruck, the Greedy algorithm starts assigning one of the top combinations nearest the vaccine centre to the nearest vaccine centre up
ntil the time window allows the assignment (Alg. XI -Lines 10:44). Once the truck reaches its time window, it is removed from the
vailable list of trucks to avoid its further transportation (Alg. XI -Lines 19:20). If all the trucks are removed from the available truck
ist and there are still uncovered vaccine centres, the Greedy algorithm restarts the entire assignment by increasing the number of
vailable trucks by one (Alg. XI -Lines 21:22). The process continues until all the vaccine centres’ demands are satisfied within the
aximum allowed time window of 3 hours.

The proposed GreedyVaccDistHeuristic algorithm XI provides significant benefits that can solve the parallel vaccine distribution
attern. However, due to the complexity of the problem, this method might get stuck in a local optimum. To further improve
his method and to overcome the informational uncertainties, and to minimise the bias against deliveries with long travel times in
istributing vaccines, we have customised the Monte Carlo method to deal with this problem. The structure of this method is similar
o the GreedyVaccDistHeuristic heuristic algorithm except for the decision-making process to select which vehicle is going to cover
he next 𝑉 𝐶. Nonetheless, it can be challenging to determine the appropriate level of randomness and number of iterations. Once
list of capable nodes with capable vehicles is identified, the 𝑉 𝐶 as next destination 𝐷𝑆𝑇 with the lowest travel time is selected

o undertake the service delivery in the GreedyVaccDistHeuristic method. The difference here is that, in an iterative loop, instead of
electing the nearest 𝑉 𝐶 with the least travel time, a list of all close by destination 𝐷𝑆𝑇 are sorted based on their estimated actual
ravel time. 𝛼% of 𝑉 𝐶𝑠 with least travel time 𝑇𝑇 are then screened. Afterwards, in each assignment one 𝑉 𝑇 is randomly selected
rom the screened list. By introducing randomness into the process of identifying the local optimal choice and repeating this process
or a predefined number of iterations, the vaccine distribution plan may improve the GreedyVaccDistHeuristic method. Algorithm XII
37
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Algorithm III: Holistic algorithm (Heuristics-Meta heuristics)
Inputs : 𝑃𝑟𝑖𝑜,𝐼𝑛𝑡 ← given by 𝐷𝑀 ; 𝐸𝑇 ← given by 𝐷𝑀 ; 𝑇𝐶𝐶 ←

∑

𝑗 𝐶𝐶𝑗 ; 𝑇𝑀𝐶 ←2 ×𝑇𝐶𝐶; Counter of day: 𝑑 ← 1; Sort demand points by 𝑃𝑟𝑖𝑜; 𝑃𝑟 ← 0; 𝑍𝑇 ← 𝐸𝑇 × 𝑇𝑀𝐶;

Outputs : 𝐵𝐴𝑆𝑆𝑑 ,𝐶𝑅𝑆𝑑

1 while (∑𝑗 𝐷.𝑃𝑜𝑝𝑗 > 0, OR, 𝑊𝐿𝐷2𝑑 ≠ ⊘) do /* TILL WHEN THERE IS NEED FOR NEW VACCINE PACKAGE */

// PRIORITY DEMAND ALLOCATION (SECTION Appendix H.1)

2 if (∑𝑗 𝐷.𝑃𝑜𝑝𝑗 > 0), AND, (𝑊𝐿𝐷2 ≠ ⊘, AND, 𝑇𝑃𝐷2 > 𝐸𝑇 ) then

3 𝐶𝐶 ← data base (or DM) ;

4 location of centers ← data base ;

5 𝑇𝐶𝐶 ←
∑

𝑖 𝐶𝐶𝑖 ;

6 𝑇𝑀𝐶 ← 2 × 𝑇𝐶𝐶 ;

7 𝑃𝑟 ← 𝑃𝑟 + 𝑃𝑁𝑒𝑤 ;

8 if 𝑃𝑟 > 𝑍𝑇 then /* PERISHING OF VACCINES */

9 𝑃𝑟 ← 𝑍𝑇

10 if 𝑃𝑟 > 𝑇𝑀𝐶 then /* SURPLUS FOR NEXT DAY */

11 𝑃𝑑 ← 𝑇𝑀𝐶;

12 𝑃𝑟 ← 𝑃𝑟 - 𝑇𝑀𝐶

13 else

14 𝑃𝑑 ← 𝑃𝑁𝑒𝑤 ;

15 𝑃𝑟 ← 0;

16 𝑌 .𝑑2 ←
∑

𝑗 𝑊𝐿𝐷2𝑑 .𝑃 𝑜𝑝𝑗 ; /* CHECK IF THE DISTRIBUTING PACKAGE IS LESS THAN DAILY NEED */

17 𝑌 .𝑑1 ←
∑

𝑖 𝐷.𝑃𝑜𝑝𝑖 ;

18 if 𝑃𝑑 > 𝑌 .𝑑1 + 𝑌 .𝑑2 then

19 𝑃𝑑 ← 𝑌 .𝑑1 + 𝑌 .𝑑2;

20 𝑃𝑟 ← 𝑃𝑟 + 𝑃𝑑 − (𝑌 .𝑑1 + 𝑌 .𝑑2);

21 𝑄𝑢𝑒𝑢𝑒, 𝑆𝑇 2𝑑 ← ⊘; ; /* SECOND DOSE DEMAND CALCULATION */

22 𝑇𝑃𝐷2 ← 0;

23 while 𝑊𝐿𝐷2𝑑 .𝐼𝐷 ≠ ⊘ do

24 if 𝑃𝑑 ≥
∑

𝑊𝐿𝐷2𝑑 .𝑃 𝑜𝑝 then /* SECOND DOSE TURN */

25 𝑆𝑇 2.𝐼𝐷 ← 𝑊𝐿𝐷2𝑑 .𝐼𝐷; 𝑆𝑇 2.𝑃 𝑜𝑝 ← 𝑊𝐿𝐷2𝑑 .𝑃 𝑜𝑝;

26 𝑇𝑃𝐷2 ← 𝑇𝑃𝐷2 + ∑

𝑑 𝑊𝐿𝐷2𝑑 .𝑃 𝑜𝑝; ; /* TOTAL POPULATION RECEIVING SECOND DOSE VACCINATION */

27 else /* NOT FULL COVERAGE OF SECOND DOSES */

28 𝑗′ = 1;

29 while 𝑇𝑃𝐷2 < 𝑃𝑑 do

30 𝑆𝑇 2.𝐼𝐷 ← 𝑆𝑇 2.𝐼𝐷 ∪𝑊𝐿𝐷2𝑑 .𝐼𝐷𝑗′ ;

31 𝑆𝑇 2.𝑃 𝑜𝑝 ← 𝑆𝑇 2.𝑃 𝑜𝑝 ∪𝑊𝐿𝐷2𝑑 .𝑃 𝑜𝑝𝑗′ ;

32 𝑗′ ← 𝑗′ + 1;

33 𝑇𝑃𝐷2 ← 𝑊𝐿𝐷2𝑑 .𝑃 𝑜𝑝𝑗′ ;

34 while 𝑗′ ≤ 𝑙𝑒𝑛𝑔𝑡ℎ(𝑊𝐿𝐷2𝑑 .𝐼𝐷) do /* EXPIRATION FOR NOT COVERED OF SECOND DOSES */

35 𝐷𝑗′ .𝑝𝑜𝑝 ← 𝐷𝑗′ .𝑝𝑜𝑝 +𝑊𝐿𝐷2𝑑 .𝑃 𝑜𝑝𝑗′ ; /* EXPIRED DEMAND PREPARATION FOR FIRST DOSE DEMANDS */

36 𝑗′ ← 𝑗′ + 1

37 𝑃𝑑 ← 𝑃𝑑 - 𝑇𝑃𝐷2;; /* FIRST DOSE DEMAND PREPARATION */

38 𝑇𝑃𝐷1 ← 0; ; /* REMAINING VACCINE FOR FIRST DOSE VACCINATION */

39 𝑗 ← 1;

40 𝑆𝑇 1 ← ⊘;

41 while 𝑃𝑑 > 𝑇𝑃𝐷1 do

42 if 𝐷𝑗 .𝑃 𝑜𝑝 ≠ 0 then /* VACCINE IS AVAILABLE FOR FIRST DOSE FOR DAY */

43 𝑆𝑇 1.𝑃 𝑜𝑝 ← 𝑆𝑇 1.𝑃 𝑜𝑝 ∪ 𝐷𝑗 .𝑃 𝑜𝑝

44 𝑆𝑇 1.𝐼𝐷 ← 𝑆𝑇 1.𝐼𝐷 ∪ 𝐷𝑗 .𝐼𝐷;

45 𝑇𝑃𝐷1 ← 𝑇𝑃𝐷1 + 𝐷𝑗 .𝑃 𝑜𝑝;

46 𝐷𝑗 .𝑃 𝑜𝑝 ← 0;

47 𝑗 ← 𝑗 + 1 ; /* GO TO THE NEXT DEMAND POINT */

/* LEVELLING DEMAND POPULATION FOR PACKAGE SHORTAGE */

48 if 𝑇𝑃𝐷1 > 0 then /* CREATING WAITING LIST FOR SECOND DOSE VACCINATION */

49 𝑊𝐿𝐷2(𝑑+𝑖𝑛𝑡) .𝐼𝐷 ← 𝑆𝑇 1.𝐼𝐷

50 𝑊𝐿𝐷2(𝑑+𝑖𝑛𝑡) .𝑃 𝑜𝑝 ← 𝑆𝑇 1.𝑃 𝑜𝑝;

51 𝑄𝑢𝑒𝑢𝑒 ← 𝑆𝑇 1 ∪𝑆𝑇 2 ; /* TOTAL POPULATION OF BOTH DOSES IN DAY D */

52 𝑃𝑑 ← 𝑇𝑃𝐷1 + 𝑇𝑃𝐷2;

53 if 𝑃𝑑 ≥ 𝑇𝐶𝐶; then /* EXCESS IN SUPPLIED PACKAGES */

54 𝐴𝑆𝑆 ← HGA-Excess (Algorithm IV) (𝑄𝑢𝑒𝑢𝑒, 𝑃𝑑 , 𝑇𝐶𝐶, 𝐶𝐶)

55 else /* SHORTAGE IN SUPPLIED PACKAGES */

56 𝐴𝑆𝑆 ← HGA-Shortage (Algorithm VI) (𝑄𝑢𝑒𝑢𝑒, 𝑃𝑑 , 𝑇𝐶𝐶, 𝐶𝐶)

// RESOURCE (STAFF) BALANCING (SECTION Appendix H.1.1)

/* AGENT BASED + DISCRETE PROCESS MODELLING FOR M/K/G QUEUE THEORY SIMULATION (𝐶𝐶) */

57 𝐵𝐴𝑆𝑆𝑑 ← SimulationEngine (MonteCarloOptimisation,Algorithm X) (𝐴𝑆𝑆, 𝑆𝑇 1,𝑆𝑇 2, 𝐶𝐶);

Return : 𝐵𝐴𝑆𝑆𝑑

// VACCINE DISTRIBUTION PATTERN (SECTION Appendix H.1.2)

58 𝐶𝑅𝑆𝑑 ← MonteCarloGreedySimulation (Algorithm 12) (𝑃𝑑 ,𝐵𝐴𝑆𝑆𝑑 𝐶𝐶);

59 d ← d + 1 ;

Return : 𝐶𝑅𝑆𝑑
38
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Algorithm IV: Heuristics Genetic Algorithm- Excess (𝐻𝐺𝐴 − 𝐸𝑋𝐶𝐸𝑆𝑆)
Inputs : 𝑄𝑢𝑒𝑢𝑒 , 𝑃𝑑 , 𝑇𝐶𝐶, 𝐶𝐶
// GENETIC PARAMETERS
Initialisation: nPop ← 60, nIteration ← 1000, PC ← 0.7, NC ← nPop × PC, Pm1 ← 0.15, NM1 ← Pm1 × nPop, Pm2 ← 0.15, NM2 ← Pm2 × nPop, Excess ←

𝑃𝑑 - 𝑇𝐶𝐶

// GENERATING INITIAL POPULATION
1 for i = 1 to nPop do
2 𝐶ℎ𝑟.𝐸𝐶 ← generating a vector with length of VCs, with ∑

𝐶ℎ𝑟.𝐸𝐶 = 𝐸𝑥𝑐𝑒𝑠𝑠;

3 𝑃𝑜𝑝𝑖 .𝐶ℎ𝑟.𝐸𝐶 ← ExcessRepairAlg (Algorithm V) (𝐶ℎ𝑟.𝐸𝐶,𝐸𝑥𝑐𝑒𝑠𝑠, 𝐶𝐶);

4 𝑃𝑜𝑝𝑖 .𝐹 𝑖𝑡 ← HeuristicFitFunc (Algorithm VIII) (𝑃𝑜𝑝𝑖 .𝐶ℎ𝑟.𝐸𝐶, 𝑄𝑢𝑒𝑢𝑒,𝐶𝐶));

5 Pop ← Sort (Pop) by their fitness by ascending order;

// GENETIC LOOP
6 for l =1 to nIteration do
7 Elite ← Pop (1) ; /* TWO TOP GENETIC POPS */

// SHORT-DISTFUNC
8 IFM1 ← select NM1 number of Pop by random ; /* MAXIMISE CAPACITY OF CLOSEST VCS */
9 for i = 1 to NM1 do
10 𝐶ℎ𝑟.𝐸𝐶 ← 𝐼𝐹𝑀1𝑖 .𝐶ℎ𝑟.𝐸𝐶
11 for k =1 to ℳ do
12 𝐴𝐷𝑘 ←

𝑉 𝐶𝑘.𝑇 𝑑𝑖𝑠𝑡
𝑉 𝐶𝑘.𝑇𝑃 𝑜𝑝

;

// ROULETTE-WHEEL(1./ 𝐴𝐷𝑘)
13 for k= 1 to ℳ do
14 𝑆𝑐𝑜𝑟𝑒𝑘 ←

∑𝑘
𝑗=1

1.
𝐴𝐷𝑗

; /* LESS AD VALUES HAVE HIGHER CHANCE OF BEING SELECTED */

15 A ← rand[0,Max{𝑆𝑐𝑜𝑟𝑒𝑘}];
16 Winner ← Find the first score that is less than A;
17 𝐶ℎ𝑟.𝐸𝐶𝑤𝑖𝑛𝑛𝑒𝑟 ← 𝐶𝐶𝑤𝑖𝑛𝑛𝑒𝑟;

18 𝑀𝑢𝑡𝑎𝑛𝑡1𝑖 .𝐶ℎ𝑟.𝐸𝐶 ← ExcessRepairAlg (Algorithm V) (𝐶ℎ𝑟.𝐸𝐶,𝐸𝑥𝑐𝑒𝑠𝑠, 𝐶𝐶);

19 𝑀𝑢𝑡𝑎𝑛𝑡1𝑖 .𝐹 𝑖𝑡 ← HeuristicFitFunc (Algorithm VIII) (Mutant1𝑖.Chr.EC, 𝑄𝑢𝑒𝑢𝑒);

// LONG-DISTFUNC
20 IFM2 ← select NM2 number of Pop by random ; /* MINIMISE CAPACITY OF FURTHEST VCs */
21 for i = 1 to NM2 do
22 𝐶ℎ𝑟.𝐸𝐶 ← (𝐼𝐹𝑀2𝑖 .𝐶ℎ𝑟.𝐸𝐶)
23 for 𝑘 = 1𝑡𝑜ℳ do
24 𝐴𝐷𝑘 ←

𝑉 𝐶𝑘.𝑇 𝑑𝑖𝑠𝑡
𝑉 𝐶𝑘.𝑇𝑃 𝑜𝑝

; /* FITNESS FOR GENOMES OF Chr.E */

// ROULETTE-WHEEL
25 for k= 1 to ℳ do
26 𝑆𝑐𝑜𝑟𝑒𝑘 ←

∑𝑘
𝑗=1 𝐴𝐷𝑗 ; /* BOOST THE CHANCE OF WEAK SCORE GENOMES */

27 𝐴 ← 𝑟𝑎𝑛𝑑[0,𝑀𝑎𝑥{𝑆𝑐𝑜𝑟𝑒𝑘}];
28 Winner ← Find the first score that is less than A;
29 𝐶ℎ𝑟.𝐸𝐶𝑤𝑖𝑛𝑛𝑒𝑟 ← 0;

30 𝑀𝑢𝑡𝑎𝑛𝑡2𝑖 .𝐶ℎ𝑟.𝐸𝐶 ← ExcessRepairAlg (Algorithm V) (𝐶ℎ𝑟.𝐸𝐶,𝐸𝑥𝑐𝑒𝑠𝑠, 𝐶𝐶);

31 𝑀𝑢𝑡𝑎𝑛𝑡2𝑖 .𝐹 𝑖𝑡 ← HeuristicFitFunc (Algorithm VIII) (Mutant2𝑖.Chr.EC, 𝑄𝑢𝑒𝑢𝑒)

// CROSSOVER-FUNC
32 IFC ← select NC number of Pop by random;
33 g ← 1;
34 for z=1 to 𝑁𝐶

2 do
35 Parent1 ← 𝐼𝐹𝐶𝑧 .𝐶ℎ𝑟.𝐸𝐶;
36 Parent2 ← 𝐼𝐹𝐶𝑧+1 .𝐶ℎ𝑟.𝐸𝐶;
37 Child1 ← half of parent1 genomes ∪ half of parent2 genomes;
38 Child2 ← other half of parent1 genomes ∪ Other half of parent2 genomes;

39 𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑔 .𝐶ℎ𝑟.𝐸𝐶 ← ExcessRepairAlg (Algorithm V) (𝐶ℎ𝑖𝑙𝑑1, 𝐸𝑥𝑐𝑒𝑠𝑠, 𝐶𝐶);

40 𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑔 .𝐹 𝑖𝑡 ← HeuristicFitFunc (Algorithm VIII) (𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑔 .𝐶ℎ𝑟.𝐸𝐶, 𝑄𝑢𝑒𝑢𝑒) ;

41 𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑔+1 .𝐶ℎ𝑟.𝐸𝐶 ← ExcessRepairAlg (Algorithm V) (𝐶ℎ𝑖𝑙𝑑2, 𝐸𝑥𝑐𝑒𝑠𝑠, 𝐶𝐶);

42 𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑔+1 .𝐹 𝑖𝑡 ← HeuristicFitFunc (Algorithm VIII) (𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑔+1 .𝐶ℎ𝑟.𝐸𝐶, 𝑄𝑢𝑒𝑢𝑒);

43 𝑔 ← 𝑔 + 2;

44 𝑁𝐺 ← Elite ∪ Mutant1 ∪ Mutant2 ∪ Offspring ; /* STORE THE NEW GENERATION CREATED */
45 𝑁𝐺 ← Sort 𝑁𝐺 by their finesses in ascending;
46 𝑃𝑜𝑝 ← 𝑁𝐺(1,...,𝑛𝑃 𝑜𝑝);

47 𝐴𝑆𝑆 ← 𝑃𝑜𝑝1;
Return : 𝐴𝑆𝑆
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Algorithm V: Excess Repair algorithm
Inputs : 𝐶ℎ𝑟.𝐸𝐶, 𝐸𝑥𝑐𝑒𝑠𝑠, 𝐶𝐶
Initialisation: Over ← The element in 𝐶ℎ𝑟.𝐸𝐶 that is larger than values in 𝐶𝐶 ; // IDENTIFY CENTRES WHICH ARE ABNORMAL

1 𝐶ℎ𝑟.𝐸𝐶𝑂𝑣𝑒𝑟 ← 𝐶𝐶𝑂𝑣𝑒𝑟, 𝑋𝑋 ← 𝐸𝑥𝑐𝑒𝑠𝑠 −
∑

𝐶ℎ𝑟.𝐸𝐶
// BALANCE TOTAL EXCESSIVE CAPACITY

2 while 𝐸𝑥𝑐𝑒𝑠𝑠 ≠
∑

𝑛 𝐶ℎ𝑟.𝐸𝐶; do
3 𝑋𝑋 ← 𝐸𝑥𝑐𝑒𝑠𝑠 - ∑

𝑛 𝐶ℎ𝑟.𝐸𝐶;
4 𝐷𝐸𝑉 ← 𝐶𝐶 − 𝐶ℎ𝑟.𝐸𝐶;
5 𝑈𝐹1 ← [𝐷𝐸𝑉 |𝐷𝐸𝑉 > 0] ; // IDENTIFY CENTRES WHICH STILL HAVE CAPACITY NOT FULL
6 𝐶ℎ𝑟.𝐸𝐶.𝑈𝐹1 ← 𝐶ℎ𝑟.𝐸𝐶.𝑈𝐹1 +𝑋𝑋;

// ASSIGN TO CENTRES WHICH STILL HAVE CAPACITY
7 if 𝐷𝐸𝑉 .𝐶ℎ𝑟.𝐸𝐶.𝑈𝐹1 < 𝑋𝑋 then
8 𝐶ℎ𝑟.𝐸𝐶.𝑈𝐹1 ← 𝐶𝐶.𝑈𝐹1;
9 𝑋𝑋 ← 𝑋𝑋 −𝐷𝐸𝑉 .𝐶ℎ𝑟.𝐸𝐶.𝑈𝐹1;
10 else
11 𝐶ℎ𝑟.𝐸𝐶.𝑈𝐹1 ← 𝐶ℎ𝑟.𝐸𝐶.𝑈𝐹1 +𝑋𝑋;
12 𝑋𝑋 ← 0;

Return : 𝐶ℎ𝑟.𝐸𝐶
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Algorithm VI: Heuristic Genetic Algorithm-Shortage (𝐻𝐺𝐴 − 𝑆𝐻𝑂𝑅𝑇𝐴𝐺𝐸)
Inputs : 𝑄𝑢𝑒𝑢𝑒, 𝑃𝑑 , 𝑇𝐶𝐶, 𝐶𝐶
// GENETIC PARAMETERS
Initialisation: nPop ← 60, nIteration ← 1000, PC ← 0.7, NC ← nPop × PC, Pm1 ← 0.15, Pm2 ← 0.15, NM1 ← Pm1 × nPop, NM2 ← Pm2 × nPop, Shortage

← TCC - 𝑃𝑑
// GENERATING INITIAL POPULATION

1 for i = 1 to nPop do
2 𝐶ℎ𝑟.𝑆𝐶 ← generating a negative vector with length of VCs, with −

∑

𝑆ℎ𝑜𝑟𝑡𝑎𝑔𝑒;

3 Pop𝑖 .𝐶ℎ𝑟.𝑆𝐶 = ShortageRepairAlg (Algorithm VII) (𝐶ℎ𝑟.𝑆𝐶, 𝑆ℎ𝑜𝑟𝑡𝑎𝑔𝑒, 𝐶𝐶)

4 Pop𝑖 .𝐹 𝑖𝑡 ← HeuristicFitFunc (Algorithm VIII) (Pop𝑖 .𝐶ℎ𝑟.𝑆𝐶, 𝑄𝑢𝑒𝑢𝑒, 𝐶𝐶)

5 Pop ← Sort (Pop) by their fitness by ascending order

// GENETIC LOOP
6 for l =1 to nIteration do
7 Elite ← Pop (1)

// SHORT-DISTFUNC
8 IFM1 ← select NM1 number of Pop by random;
9 for i = 1 to NM1 do
10 𝐶ℎ𝑟.𝑆𝐶 ← |

|

(𝐼𝐹𝑀1𝑖 .𝐶ℎ𝑟.𝑆𝐶)|
|

11 for k =1 to ℳ do
12 𝐴𝐷𝑘 ←

𝑉 𝐶𝑘.𝑇 𝑑𝑖𝑠𝑡
𝑉 𝐶𝑘.𝑇𝑃 𝑜𝑝

;

// ROULETTE-WHEEL(1./ 𝐴𝐷𝑗)
13 for k= 1 to ℳ do
14 𝑆𝑐𝑜𝑟𝑒𝑘 ←

∑𝑘
𝑗=1

1.
𝐴𝐷𝑗

15 A ← rand[0,Max{𝑆𝑐𝑜𝑟𝑒𝑘}];
16 Winner ← Find the first score that is less than A;
17 𝐶ℎ𝑟.𝑆𝐶𝑤𝑖𝑛𝑛𝑒𝑟 ← 0;

18 Mutant1𝑖.Chr.SC ← ShortageRepairAlg (Algorithm VII) (𝐶ℎ𝑟.𝑆𝐶, 𝑆ℎ𝑜𝑟𝑡𝑎𝑔𝑒, 𝐶𝐶)

19 Mutant1𝑖.Fit ← HeuristicFitFunc (Algorithm VIII) (Mutant1𝑖.Chr.SC, 𝑄𝑢𝑒𝑢𝑒)

// LONG-DISTFUNC
20 IFM2 ← select NM2 number of Pop by random;
21 for i = 1 to NM2 do
22 𝐶ℎ𝑟.𝑆𝐶 ← |

|

(𝐼𝐹𝑀2𝑖 .𝐶ℎ𝑟.𝑆𝐶)|
|

23 for k =1 to ℳ do
24 𝐴𝐷𝑘 ←

𝑉 𝐶𝑘.𝑇 𝑑𝑖𝑠𝑡
𝑉 𝐶𝑘.𝑇𝑃 𝑜𝑝

; /* FITNESS FOR GENOME OF Chr.R */

// ROULETTE-WHEEL
25 for k= 1 to ℳ do
26 𝑆𝑐𝑜𝑟𝑒𝑘 ←

∑𝑘
𝑗=1 𝐴𝐷𝑗

27 A ← rand[0,Max{𝑆𝑐𝑜𝑟𝑒𝑘}];
28 Winner ← Find the first score that is less than A;
29 𝐶ℎ𝑟.𝑆𝐶𝑤𝑖𝑛𝑛𝑒𝑟 ← 𝐶𝐶𝑤𝑖𝑛𝑛𝑒𝑟;

30 𝑀𝑢𝑡𝑎𝑛𝑡2𝑖 .𝐶ℎ𝑟.𝑆𝐶 ← ShortageRepairAlg (Algorithm VII) (𝐶ℎ𝑟.𝑆𝐶, 𝑆ℎ𝑜𝑟𝑡𝑎𝑔𝑒, 𝐶𝐶);

31 𝑀𝑢𝑡𝑎𝑛𝑡2𝑖 .𝐹 𝑖𝑡 ← HeuristicFitFunc (Algorithm VIII) (𝑀𝑢𝑡𝑎𝑛𝑡2𝑖 .𝐶ℎ𝑟.𝑆𝐶,𝑄𝑢𝑒𝑢𝑒);

// CROSSOVER-FUNC
32 𝐼𝐹𝐶 ← select NC number of Pop by random
33 𝑔 ← 1;
34 for z = 1 to 𝑁𝐶

2 do
35 𝑃𝑎𝑟𝑒𝑛𝑡1 ← 𝐼𝐹𝐶𝑧 .𝐶ℎ𝑟.𝑆𝐶;
36 𝑃𝑎𝑟𝑒𝑛𝑡2 ← 𝐼𝐹𝐶𝑧+1 .𝐶ℎ𝑟.𝑆𝐶;
37 Child1 ← half of parent1 genomes ∪ half of parent2 genomes;
38 Child2 ← other half of parent1 genomes ∪ other half of parent2 genomes;

39 𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑔 .𝐶ℎ𝑟.𝑆𝐶 ← ShortageRepairAlg (Algorithm VII) (Child1, 𝑆𝐿,𝐶𝐶);

40 𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑔 .𝐹 𝑖𝑡 ← HeuristicFitFunc (Algorithm VIII) (𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑐 .𝐶ℎ𝑟.𝑆𝐶, 𝑄𝑢𝑒𝑢𝑒) ;

41 𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑔+1 .𝐶ℎ𝑟.𝑆𝐶 ← ShortageRepairAlg (Algorithm VII) (Child1, 𝑆𝐿,𝐶𝐶)

42 𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑔+1 .𝐹 𝑖𝑡 ← HeuristicFitFunc (Algorithm VIII) (𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔𝑔+1 .𝐶ℎ𝑟.𝑆𝐶, 𝑄𝑢𝑒𝑢𝑒);

43 𝑔 ← 𝑔 + 2;

44 𝑁𝐺 ← 𝐸𝑙𝑖𝑡𝑒 ∪𝑀𝑢𝑡𝑎𝑛𝑡1 ∪𝑀𝑢𝑡𝑎𝑛𝑡2 ∪ 𝑂𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔 ; /* STORE THE NEW GENERATION CREATED */
45 𝑁𝐺 ← Sort 𝑁𝐺 by their finesses in ascending;
46 Pop ← 𝑁𝐺(1,...,𝑛𝑃 𝑜𝑝);

47 ASS ← 𝑃𝑜𝑝1; Return : 𝐴𝑆𝑆
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Algorithm VII: Shortage Repair algorithm
Inputs : 𝐶ℎ𝑟.𝑆𝐶, 𝑆ℎ𝑜𝑟𝑡𝑎𝑔𝑒, 𝐶𝐶
Initialisation: 𝐶ℎ𝑟.𝑆𝐶 ← |𝐶ℎ𝑟.𝑆𝐶|;

Over ← The element in 𝐶ℎ𝑟.𝑆𝐶 that is larger than values in 𝐶𝐶 ; // IDENTIFY CENTRES WHICH ARE ABNORMAL
1 𝐶ℎ𝑟.𝑆𝐶𝑂𝑣𝑒𝑟 ← 𝐶𝐶𝑂𝑣𝑒𝑟, 𝑌 𝑌 ← 𝑆ℎ𝑜𝑟𝑡𝑎𝑔𝑒 −

∑

𝐶ℎ𝑟.𝑆𝐶
// BALANCE TOTAL EXCESSIVE CAPACITY

2 while 𝑆ℎ𝑜𝑟𝑡𝑎𝑔𝑒 ≠
∑

𝑛 𝐶ℎ𝑟.𝑆𝐶; do
3 𝑌 𝑌 ←

∑

𝑛 𝐶ℎ𝑟.𝑆𝐶 - 𝑆ℎ𝑜𝑟𝑡𝑎𝑔𝑒 ;
4 𝐷𝐸𝑉 ← 𝐶𝐶 − 𝐶ℎ𝑟.𝑆𝐶;
5 𝑈𝐹1 ← [𝐷𝐸𝑉 |𝐷𝐸𝑉 > 0] ; // IDENTIFY CENTRES WHICH STILL HAVE CAPACITY NOT FULL
6 𝐶ℎ𝑟.𝑆𝐶.𝑈𝐹1 ← 𝐶ℎ𝑟.𝑆𝐶.𝑈𝐹1 + 𝑌 𝑌 ;

// ASSIGN TO CENTRES WHICH STILL HAVE CAPACITY
7 if 𝐷𝐸𝑉 .𝐶ℎ𝑟.𝑆𝐶.𝑈𝐹1 < 𝑌 𝑌 then
8 𝐶ℎ𝑟.𝑆𝐶.𝑈𝐹1 ← 𝐶𝐶.𝑈𝐹1;
9 𝑌 𝑌 ← 𝑌 𝑌 −𝐷𝐸𝑉 .𝐶ℎ𝑟.𝑆𝐶.𝑈𝐹1;
10 else
11 𝐶ℎ𝑟.𝑆𝐶.𝑈𝐹1 ← 𝐶ℎ𝑟.𝑆𝐶.𝑈𝐹1 + 𝑌 𝑌 ;
12 𝑌 𝑌 ← 0;

Return : -|𝐶ℎ𝑟.𝑆𝐶|
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Algorithm VIII: HeuristicFitFunc algorithm
Inputs : 𝐶ℎ𝑟, 𝑄𝑢𝑒𝑢𝑒, 𝐶𝐶, 𝐶
Initialisation: 𝐹𝐷 ← 𝑄𝑢𝑒𝑢𝑒.𝑃 𝑜𝑝; 𝐴𝑉 𝐶 ← 1; 𝑂𝐶 ← 𝐶ℎ𝑟 + 𝐶𝐶; 𝑂𝑓𝑓𝑠 ← 𝑉 𝐶𝑠 with 0 𝑂𝐶; 𝐴𝑉 𝐶𝑂𝑓𝑓𝑠 ← 0
Outputs : 𝐹 𝑖𝑡

1 while ∑

𝑖 𝐴𝑉 𝐶𝑖 ≠ 0 do
2 𝐼𝑁𝐷,𝐷𝐼𝑆 ← K-d tree (Algorithm IX) ( 𝑉 𝐶|𝐴𝑉 𝐶 = 1, 𝑄𝑢𝑒𝑢𝑒𝐹𝐷≠0)) ; /* UNCAPACITATED DEMAND ASSIGNMENT */

// MEASURING DEMAND ASSIGNMENT FOR EACH AVC
3 for 𝑖 ∈= 𝑉 𝐶𝑠|𝐴𝑉 𝐶𝑖 = 1 do
4 𝐶.𝐼𝑑 ← i ; /* UNCAPACITATED ASSIGNMENT CENTRE INTEGRATION */
5 𝑉 𝐶𝐿𝑖 .𝐼𝑑 ← find number of 𝐼𝑁𝐷 = 𝐶.𝐼𝑑 ; /* STORING THE DEMAND Id OF VCs 𝐶.𝐼𝑑 */
6 𝑉 𝐶𝐿𝑖 .𝑃 𝑜𝑝 ← 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑜𝑓𝑉 𝐶𝑖 .𝐼𝑑;
7 𝐷𝑖𝑓𝑓𝑖 ← 𝑂𝐶𝑖 - ∑

𝑢 𝑉 𝐿𝐶𝑖 .𝑃 𝑜𝑝 ; /* CAPACITY DIFFERENCE CALCULATION */

8 𝑆𝑅 ← [𝑉 𝐶𝑠|𝐷𝑖𝑓𝑓𝑖 < 0] ; /* SURPLUS CAPACITY CENTRES */

// CAPACITATED ALLOCATION BY INCAPACITATED ALLOCATING
9 if 𝑆𝑅 = ⊘ then

// GLOBALISATION OF LOCAL VARIANT
10 for 𝑖 ∈ 𝐴𝑉 𝐶 do
11 𝑉 𝐶𝑖 .𝐼𝑑 ← 𝑉 𝐶𝐿𝑖 .𝐼𝑑 ; /* VARIABLE GLOBALISATION */
12 𝑉 𝐶𝑖 .𝑃 𝑜𝑝 ← 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑜𝑓𝑉 𝐶𝐿𝑖 .𝑃 𝑜𝑝 ; /* EQUAL CAPACITY ALLOCATION */
13 𝑉 𝐶𝑖 .𝑅 ← Distances between all the demands in 𝑉 𝐶𝑖 .𝐼𝑑 and the 𝑉 𝐶𝑖 from 𝐷𝐼𝑆;
14 𝑉 𝐶𝑖 .𝑇𝐷𝑖𝑠𝑡 ←

∑

𝑢 𝑉 𝐶𝑖 .𝑅;
15 𝑉 𝐶𝑖 .𝑇 𝑃 𝑜𝑝 ←

∑

𝑢 𝑉 𝐶𝑖 .𝑃 𝑜𝑝;
16 𝐴𝑉 𝐶𝑖 ← 0 ; /* REMOVE THE FLAG OF THE ASSIGNED CENTRE */
17 𝐹𝐷𝑉 𝐶𝑖.𝐼𝑑 ← 0 ; /* UPDATING THE FLAG OF THE ASSIGNED DEMANDS */

18 else
// REMOVING SURPLUS POPULATION OF OVERPOPULATED VCs

19 for 𝑤 ∈ 𝑆𝑅 do
20 𝐶𝑙𝑖𝑒𝑛𝑡𝑠𝑆𝑅𝑤 ← 𝐼𝑑𝐼𝑁𝐷|𝐼𝑑 ∈ 𝑆𝑅𝑤 ; /* IMBALANCED CAPACITY ALLOCATION */
21 𝑖 ← 1;
22 𝐿𝑜𝑐𝑎𝑙.𝑇 𝑃 𝑜𝑝 ← 0;
23 𝐿𝑜𝑐𝑎𝑙.𝐼𝑑 ← ⊘;
24 𝐿𝑜𝑐𝑎𝑙.𝑃 𝑜𝑝 ← ⊘;
25 𝐿𝑜𝑐𝑎𝑙.𝑅;
26 while 𝐿𝑜𝑐𝑎𝑙.𝑇 𝑃 𝑜𝑝 < 𝑂𝐶𝑆𝑅𝑊 do
27 if 𝐿𝑜𝑐𝑎𝑙.𝑇 𝑃 𝑜𝑝 + 𝐶𝑙𝑖𝑒𝑛𝑡𝑠𝑖 .𝑃 𝑜𝑝 =< 𝑂𝐶𝑆𝑅𝑊 then
28 𝐿𝑜𝑐𝑎𝑙.𝐼𝑑 ← 𝐿𝑜𝑐𝑎𝑙.𝐼𝑑 ∪ 𝐶𝑙𝑖𝑒𝑛𝑡𝑠𝑖 .𝐼𝑑;
29 𝐿𝑜𝑐𝑎𝑙.𝑃 𝑜𝑝 ← 𝐿𝑜𝑐𝑎𝑙.𝑃 𝑜𝑝 ∪ 𝐶𝑙𝑖𝑒𝑛𝑡𝑠𝑖 .𝑃 𝑜𝑝;
30 𝐿𝑜𝑐𝑎𝑙.𝑅 ← 𝐿𝑜𝑐𝑎𝑙.𝑅 ∪ 𝐶𝑙𝑖𝑒𝑛𝑡𝑠𝑖 .𝑅;
31 𝐿𝑜𝑐𝑎𝑙.𝑇 𝑃 𝑜𝑝 ← 𝐿𝑜𝑐𝑎𝑙.𝑇 𝑃 𝑜𝑝 + 𝐿𝑜𝑐𝑎𝑙.𝑃 𝑜𝑝;
32 𝑖 ← 𝑖 + 1;
33 else
34 𝐿𝑜𝑐𝑎𝑙.𝐼𝑑 ← 𝐿𝑜𝑐𝑎𝑙.𝐼𝑑 ∪ 𝐶𝑙𝑖𝑒𝑛𝑡𝑠𝑖 .𝐼𝑑;
35 𝑅𝐶 ← 𝑂𝐶𝑆𝑅𝑊 − 𝐿𝑜𝑐𝑎𝑙.𝑇 𝑃 𝑜𝑝;
36 𝐿𝑜𝑐𝑎𝑙.𝑃 𝑜𝑝 ← 𝐿𝑜𝑐𝑎𝑙.𝑃 𝑜𝑝 ∪ 𝑅𝐶;
37 𝐿𝑜𝑐𝑎𝑙.𝑅 ← 𝐿𝑜𝑐𝑎𝑙.𝑅 ∪ 𝐶𝑙𝑖𝑒𝑛𝑡𝑠𝑖 .𝑅;
38 𝐿𝑜𝑐𝑎𝑙.𝑇 𝑃 𝑜𝑝 ← 𝐿𝑜𝑐𝑎𝑙.𝑇 𝑃 𝑜𝑝 + 𝑅𝐶;
39 𝐶𝑙𝑖𝑒𝑛𝑡𝑠𝑖 .𝑃 𝑜𝑝 ← 𝐶𝑙𝑖𝑒𝑛𝑡𝑠𝑖 .𝑃 𝑜𝑝 − 𝑅𝐶;

40 𝐹𝐷𝐿𝑜𝑐𝑎𝑙.𝐼𝑑 ← 𝐶𝑙𝑖𝑒𝑛𝑡𝑠.𝑃 𝑜𝑝 ; /* REPLACE LOCATIONs WITH NO UNMET DEMAND */
41 𝐴𝑉 𝐶𝑆𝑅𝑤 ← 0 ; /* REMOVE VCs WITH FULL CAPACITY */
42 𝑉 𝐶𝑆𝑅𝑤 .𝐼𝑑 ← Select a determined number of Clients with the total population as the 𝐶𝐶;
43 𝑉 𝐶𝑆𝑅𝑤 .𝑃 𝑜𝑝 ← 𝑉 𝐶𝑤 .𝐼𝑑;
44 𝑉 𝐶𝑆𝑅𝑤 .𝑅 ← Distances between all the demands in 𝑉 𝐶𝑆𝑅𝑤 .𝐼𝑑 and the 𝑉 𝐶𝑖 from 𝐷𝐼𝑆;
45 𝑉 𝐶𝑆𝑅𝑤 .𝑇𝐷𝑖𝑠𝑡 ←

∑

𝑢 𝑉 𝐶𝑆𝑅𝑤 .𝑅;
46 𝑉 𝐶𝑆𝑅𝑤 .𝑇 𝑃 𝑜𝑝 ←

∑

𝑢 𝑉 𝐶𝑆𝑅𝑤 .𝑃 𝑜𝑝;

47 𝐹 𝑖𝑡 ←
∑

𝑉 𝐶.𝑇𝐷𝑖𝑠𝑡
∑

𝑉 𝐶.𝑇𝑃𝑜𝑝 ; /* SUM OF TOTAL DISTANCE ALL VCs RATIO TO DEMANDS BY TOTAL ASSIGNED POPULATION */
Return : 𝐹 𝑖𝑡
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Algorithm IX: K-d tree algorithm
Inputs : Demands: 𝐷(𝑥, 𝑦) 𝑖 = {1..𝒩 }, VCs: 𝐶(𝑥, 𝑦) 𝑗 = {1..ℳ}
Outputs : 𝑅, 𝐼𝑁𝐷
Initialisation: 𝐷(1..𝑛, 1..𝑚) ← 0, 𝐼(1..𝑛) ← 0, 𝑅(1..𝑛) ← 0;

1 for s = 1 to 𝒩 do
2 for t = 1 to ℳ do
3 𝐷𝑖𝑠𝑡 ←

√

(𝐷𝑥𝑠 − 𝐶𝑥𝑡 )
2 + (𝐷𝑦𝑠 − 𝐶𝑦𝑡 )

2;
4 𝐷𝑖𝑠𝑡𝑀𝑎𝑡𝑟𝑖𝑥(𝑠, 𝑡) ← 𝐷𝑖𝑠𝑡;

5 for s = 1 to 𝒩 do
6 𝑅𝑠 ← 𝑎𝑟𝑔𝑚𝑖𝑛{𝐷𝑖𝑠𝑡𝑀𝑎𝑡𝑟𝑖𝑥(𝑠, 1..ℳ))} ; /* FIND THE MINIMUM DISTANCE BETWEEN THE DEMAND AND VCS */
7 𝐼𝑠 ← 𝑓𝑖𝑛𝑑(𝑅𝑠 = 𝐷𝑖𝑠𝑡𝑀𝑎𝑡𝑟𝑖𝑥(𝑠, 1..ℳ)) ; /* STORE THE ID OF THE VC WITH MINIMUM DISTANCE */

8 𝐼𝑁𝐷 ← 𝐼
Return : 𝑅, 𝐼𝑁𝐷

Algorithm X: Resource (staff) levelling simulation-optimisation heuristic algorithm
Inputs : 𝐴𝑆𝑆,𝑇 𝑝𝑜𝑝,n, 𝑇𝑂𝐶, ;

capacity step scenarios:{5%C,10%C, 15%C, 20%C, BD}
Outputs : 𝐷𝐶𝐷

1 Calculate the total population for each 𝑉 𝐶

2 ratio-index ←
∑

𝑖 𝑇 𝑃 𝑜𝑝𝑖
𝑇𝑂𝐶

3 BC = 𝑉 𝐶
𝑟𝑎𝑡𝑖𝑜−𝑖𝑛𝑑𝑒𝑥

4 CD = BC – OC
5 TDC ←

∑𝑛
𝑖 |𝐶𝐷|

6 𝐷𝐶𝐷 ← CD
7 for {10%C, 15%C, 20%C} do
8 5%𝐶 ← 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦
9 step 5% ← 0.05 × 𝑇𝐶𝐷
10 PDCD ← max{DCD}
11 VDCD ← min{DCD}
12 repeat
13 5%C of VC with the PDCD ← 5%C of VC with the [PDCD] -1
14 5%C of VC with the VDCD ← 5%C of VC with the [VDCD] +1
15 Update 𝐷𝐶𝐷 = 5%𝐶 − 𝐵𝐶
16 until 5% in complete;

Return : 𝐷𝐶𝐷
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Algorithm XI: GreedyVaccDistHeuristic algorithm
Inputs : 𝑃 , 𝐵𝐴𝑆𝑆𝑑 ,𝑛,𝑂𝐶

Initialisation: 𝑇𝑊 ← 250; 𝑇𝑆 ← 20000 ; 𝑁𝑜𝑇 ←
[ 𝑃
𝑇𝑆

]

− 1; 𝐷𝑇 ← import the depot; 𝑂𝐶 ← 𝐶ℎ𝑟 + 𝐶𝐶; Cost ← import the cost of driving between centres;
Cost ← make the diameter elements in the matrix infinity; Cost ← make the column of zero Overall Capacity centres infinity;

Outputs : 𝐶𝑅𝑆𝑑
1 while 𝑈 is True do /* TERMINATION CRITERION IF CONDITIONS VIOLATED */
2 𝑁𝑜𝑇 ← 𝑁𝑜𝑇 +1 ; /* ADD ANOTHER VEHICLE TO THE FLEET */
3 CurrentCost ← Cost;
4 𝑈𝐶 ← 𝑂𝐶 ; /* UPDATE VARIABLE US SINCE IT CHANGES IN EVERY LOOP */

// FLEET DEFINITION
5 for 𝑣 = 1 to 𝑁𝑜𝑇 do
6 𝐿𝑣 ← 𝑇𝑆;
7 𝑆𝑄𝑣 ← 𝐷𝑇 ; /* PUT DT AS THE FIRST NODE IN ROUTE OF EACH VEHICLE */
8 𝑇𝑇𝑣 ← 0;
9 𝐴𝑉𝑣 ← 1;

10 while ∑

𝑗 𝑈𝐶𝑗 ≠ 0 do /* WHILE THERE IS NO CENTRE NEEDING VACCINE */
11 for 𝑣 = 1 to 𝑁𝑜𝑇 do
12 if 𝐴𝑉𝑣 = 1, 𝐴𝑁𝐷,

∑

𝑗 𝑈𝐶𝑗 ≠ 0 then /* IF THE VEHICLE IS AVAILABLE AND, SOME CENTRE STILL NEED TO RECEIVE VACCINE */
13 𝐴𝐿𝑇 .𝐼𝐷 ← The ID of the ZMB number next available centre with minimum distance in (𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐶𝑜𝑠𝑡);
14 𝐴𝐿𝑇 .𝑇 ← The travel time (cost) of the ZMB number next available centre with minimum distance in (𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐶𝑜𝑠𝑡);
15 for 𝑤=1 to 𝑍𝑀𝐵 do
16 if 𝑇𝑇𝑣 + 𝐴𝐿𝑇𝑤 .𝑇 > 𝑇𝑊 then /* CHECK TIME WINDOWS */
17 𝐴𝐿𝑇 .𝐼𝐷 ← {𝐴𝐿𝑇 .𝐼𝐷} − 𝐴𝐿𝑇𝑤 .𝐼𝐷;
18 𝐴𝐿𝑇 .𝑇 ← {𝐴𝐿𝑇 .𝑇 } − 𝐴𝐿𝑇𝑤 .𝑇 ; /* REMOVE CURRENT DST IF EXCEEDS THE TW */

19 if 𝐴𝐿𝑇 = ⊘ then
20 𝐴𝑉𝑣 ← 0;
21 if ∑𝐴𝑉 = 0 then
22 𝑈𝐶𝑖 ← 0,∀𝑖 ; /* STOP ITERATION IF NO MORE VEHICLE IS AVAILABLE */

23 else
24 𝐷𝑆𝑇 ← Rand[ALT] /* CHOOSE ONE ZMB AS THE NEXT DESTINATION OF THE VEHICLE. */
25 𝐶 ←the capacity of the destination from 𝑈𝐶;
26 if 𝐿𝑣 > 𝐶 then /* WHEN LOAD IS GREATER THAN CAPACITY OF DST */
27 𝐿𝑣 ← 𝐿𝑣 − 𝐶;
28 𝑆𝑄𝑣 ← [𝑆𝑄𝑣 ∪𝐷𝑆𝑇 .𝐼𝐷] ;
29 𝑇𝑇𝑣 ← 𝑇𝑇𝑣 +𝐷𝑆𝑇 .𝑇 ;
30 𝑈𝐶𝐷𝑆𝑇 .𝐼𝐷 ← 0
31 else if 𝐿𝑣 = 𝐶 then /* WHEN LOAD IS EQUAL TO THE CAPACITY OF DST */
32 𝐿𝑣 ← 0;
33 𝐴𝑉𝑣 ← 0;
34 𝑆𝑄𝑣 ← [𝑆𝑄𝑣 ∪𝐷𝑆𝑇 .𝐼𝐷];
35 𝑇𝑇𝑣 ← 𝑇𝑇𝑣 +𝐷𝑆𝑇 .𝑇 ;
36 𝑈𝐶𝐷𝑆𝑇 .𝐼𝐷 ← 0
37 else if 𝐿𝑣 < 𝐶 then /* WHEN LOAD IS LESS THAN CAPACITY OF DST */
38 𝐿𝑣 ← 0;
39 𝐴𝑉𝑣 ← 0;
40 𝑆𝑄𝑣 ← [𝑆𝑄𝑣 ∪𝐷𝑆𝑇 .𝐼𝐷];
41 𝑇𝑇𝑣 ← 𝑇𝑇𝑣 +𝐷𝑆𝑇 .𝑇 ;
42 𝑈𝐶𝐷𝑆𝑇 .𝐼𝐷 ← 𝑈𝐶𝐷𝑆𝑇 .𝐼𝐷 − 𝐿𝑣;

43 if ∑𝑣 𝐴𝑉𝑣 = 0 then /* STOP ITERATION (LINE 10) WHEN NO MORE VEHICLE IS AVAILABLE */
44 𝑈𝐶𝑖 ← 0,∀𝑖;

45 𝐷𝑉 ← 𝑁𝑜𝑇 × 𝑇𝑆 −
∑

𝑣 𝐿𝑣 ;
46 if 𝐷𝑉 = 𝑃 then /* CHECK IF ASSIGNED LOADs ARE EQUAL TO THE RECEIVED CENTRES’ VACCINES WITHIN TWs */
47 U ← False

Return : 𝐶𝑅𝑆𝑑

Algorithm XII: Monte Carlo algorithm
Inputs : 𝛼 ← 0.3;

𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ← 1000
Outputs : 𝐶𝑅𝑆𝑑

1 𝑍𝑀𝐵 ← 𝑟𝑜𝑢𝑛𝑑(𝛼 × (𝑛 − 1));
2 for i = 1 to Iteration do
3 𝑆𝑖 .𝑆𝑒𝑞 ← GreedyVaccDistHeuristic (Algorithm XI) (𝑂𝐶, 𝑃 ,𝑍𝑀𝐵𝑠);

4 𝑆𝑖 .𝑁𝑜𝑇 ← {𝑆𝑖 .𝑆𝑒𝑞};

5 𝑉 𝑅 ← 𝑀𝑖𝑛{𝑆.𝑁𝑜𝑇 } ;
6 𝐶𝑅𝑆𝑑 ← 𝑆𝑉 𝑅 .𝑆𝑒𝑞;
Return : 𝐶𝑅𝑆𝑑
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Appendix I. Validations

I.1. Performance comparison of the Holistic Alg. III and Math-heuristic Alg. II

The performance of the Math-heuristic algorithm (Alg. II) and Holistic algorithm (Alg. III) are compared in Table I.1.
As the results show, the Holistic algorithm (Algorithm III) outperforms the Math-heuristic algorithm (Algorithm II) in almost all

he large size cases. In this study, hence, we have implied the Holistic algorithm (Algorithm III) in our case study analysis.

.2. Comparison numerical experiment of HGA Algs. IV, & VI and HPSO Algs. XIII, & XIV

Fig. I.1. Convergence comparison; Fig. 1(a): Convergence plot of day 1 in Case 3 with HGA-Excess; Fig. 1(b): Convergence plot of day 1 in Case 6 with
GA-Excess; Fig. 1(c): Convergence plot of day 1 in Case 3 with HGA-Shortage; Fig. 1(d): Convergence plot of day 1 in Case 6 with HGA-Shortage.
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include the demand assignment computation and the capacity

Table I.1
Performance comparison table of the Holistic Alg. III and Math-heuristic Alg. II (The presented computational time of Total alg. II and Total alg. III
allocation computation.)
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Table I.2
Numerical experiment results; comparison of the HGA and HPSO based methods; A 3600 s time limit termination criterion has been set for each run. 𝛽 is the
ratio of the network elements used to generate test scenarios as the numerical experiment cases.The results are mean (𝜇) and standard deviation (𝜎) of thirty
runs, respectively.

Algorithm XIII: Heuristic Particle Swarm Optimisation-Excess algorithm
Inputs : 𝑞𝑢𝑒𝑢𝑒, 𝑃 , 𝑇𝐶𝐶, 𝐶𝐶
Outputs : 𝐵𝑜𝑓𝑆𝑤𝑎𝑟𝑚
Initialisation: 𝑛𝑃𝑜𝑝 ← 60;

𝑛𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ← 1000;
𝐸𝑥𝑐𝑒𝑠𝑠 ← (𝑇𝐶𝐶 − 𝑃𝑑 )

// GENERATING INITIAL POPULATION
1 for i = 1 to 𝑛𝑃𝑜𝑝 do
2 𝑃𝑜𝑠.𝐸𝐶 ← generating a vector with length of 𝑉 𝐶𝑠, with ∑

𝑃𝑜𝑠.𝐸𝐶 = 𝐸𝑥𝑐𝑒𝑠𝑠;

3 𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖 .𝑃 𝑜𝑠.𝐸𝐶 ← ExcessRepairAlg (Algorithm V) (𝑃𝑜𝑠.𝐸𝐶,𝐸𝑥𝑐𝑒𝑠𝑠, 𝐶𝐶);

4 𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖 .𝑄𝑢𝑎𝑙𝑖𝑡𝑦 ← HeuristicFitFunc (Algorithm VIII) (𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖 .𝑃 𝑜𝑠.𝐸𝐶,𝐸𝑥𝑐𝑒𝑠𝑠,𝑄𝑢𝑒𝑢𝑒, 𝐶𝐶)

// BEST OF EACH PARTICLE
5 𝐵𝑜𝑓𝑃𝑎𝑟𝑡𝑖𝑖 ← 𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖;

6 𝑉𝑝𝑎𝑠𝑡 ← 0;
// BEST OF SWARM

7 𝐵𝑜𝑓𝑆𝑤𝑎𝑟𝑚 ← the 𝐵𝑜𝑓𝑃𝑎𝑟𝑡 with the least quality;
8 for 𝑣 = 1 to 𝑛𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 do
9 for 𝑖′ = 1 to 𝑛𝑃𝑜𝑝 do
10 if 𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖′ .𝑄𝑢𝑎𝑙𝑖𝑡𝑦 < 𝐵𝑜𝑓𝑃𝑎𝑟𝑡𝑖𝑖′ .𝑄𝑢𝑎𝑙𝑖𝑡𝑦 then
11 𝐵𝑜𝑓𝑃𝑎𝑟𝑡𝑖𝑖′ ← 𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖′ ; /* UPDATING BEST POSITION OF PARTICLE I’ SO FAR */
12 if 𝐵𝑜𝑓𝑃𝑎𝑟𝑡𝑐𝑙𝑒𝑖′ .𝑄𝑢𝑎𝑙𝑖𝑡𝑦 < 𝐵𝑜𝑓𝑆𝑤𝑎𝑟𝑚.𝑄𝑢𝑎𝑙𝑖𝑡𝑦 then
13 𝐵𝑜𝑓𝑆𝑤𝑎𝑟𝑚 ← 𝐵𝑜𝑓𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖′ ; /* UPDATING THE BEST OF THE SWARM SO FAR */

14 for 𝑖ε = 1 to 𝑛𝑃𝑜𝑝 do
15 𝐶1 = 𝑟𝑎𝑛𝑑 × 2;
16 𝐷1 = 𝑟𝑎𝑛𝑑 × 2;
17 𝐷𝑒𝑙𝑡𝑎 = 𝐶1 × (𝐵𝑜𝑓𝑆𝑤𝑎𝑟𝑚.𝑃 𝑜𝑠.𝐸𝐶 − 𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖ε .𝑃 𝑜𝑠.𝐸𝐶) + (2 − 𝐶1) × (𝐵𝑜𝑓𝑃𝑎𝑟𝑡𝑖𝑖ε .𝑃 𝑜𝑠.𝐸𝐶 − 𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖ε .𝑃 𝑜𝑠.𝐸𝐶);
18 𝑉𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑖ε = 𝐷1 × (𝑉𝑝𝑎𝑠𝑡𝑖ε ) + (2 −𝐷1) × (𝐷𝑒𝑙𝑡𝑎) ; /* THE VELOCITY FOR MOVING THE PARTICLE */
19 𝑃𝑜𝑠.𝐸𝐶 ← 𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖ε .𝑃 𝑜𝑠.𝐸𝐶 + 𝑉𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑖ε ; /* A NEW POSITION */

20 𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖ε .𝑃 𝑜𝑠.𝐸𝐶 ← ExcessRepairAlg (Algorithm V) (𝑃𝑜𝑠.𝐸𝐶,𝐸𝑥𝑐𝑒𝑠𝑠, 𝐶𝐶);

21 𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖ε .𝑄𝑢𝑎𝑙𝑖𝑡𝑦 ← HeuristicFitFunc (Algorithm VIII) (𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖ε .𝑃 𝑜𝑠.𝐸𝐶,𝐸𝑥𝑐𝑒𝑠𝑠,𝑄𝑢𝑒𝑢𝑒, 𝐶𝐶);

// UPDATING 𝑉𝑃𝐴𝑆𝑇 FOR FURTHER ITERATION
22 𝑉𝑝𝑎𝑠𝑡 ← 𝑉𝑐𝑢𝑟𝑟𝑒𝑛𝑡

Return : 𝐵𝑜𝑓𝑆𝑤𝑎𝑟𝑚
48



Transportation Research Part E 159 (2022) 102598S. Shahparvari et al.

o
W
e
a
s
i

A

A
A

A
A

A

Algorithm XIV: Heuristic Particle Swarm Optimisation-Shortage algorithm
Inputs : 𝑞𝑢𝑒𝑢𝑒, 𝑃 , 𝑇𝐶𝐶, 𝐶𝐶
Outputs : 𝐵𝑜𝑓𝑆𝑤𝑎𝑟𝑚
Initialisation: 𝑛𝑃𝑜𝑝 ← 60;

𝑛𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ← 1000;
𝑆ℎ𝑜𝑟𝑡𝑎𝑔𝑒 ← (𝑇𝐶𝐶 − 𝑃𝑑 )

// GENERATING INITIAL POPULATION
1 for i = 1 to 𝑛𝑃𝑜𝑝 do
2 𝑃𝑜𝑠.𝑆𝐶 ← generating a negative vector with length of 𝑉 𝐶𝑠, with −

∑

𝑆ℎ𝑜𝑟𝑡𝑎𝑔𝑒

3 𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖 .𝑃 𝑜𝑠.𝑆𝐶 ← ShortageRepairAlg (Algorithm VII) (𝑃𝑜𝑠.𝑆𝐶, 𝑆ℎ𝑜𝑟𝑡𝑎𝑔𝑒, 𝐶𝐶);

4 𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖 .𝑄𝑢𝑎𝑙𝑖𝑡𝑦 ← HeuristicFitFunc (Algorithm VIII) (𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖 .𝑃 𝑜𝑠.𝑆𝐶, 𝑆ℎ𝑜𝑟𝑡𝑎𝑔𝑒,𝑄𝑢𝑒𝑢𝑒, 𝐶𝐶)

// BEST OF EACH PARTICLE
5 𝐵𝑜𝑓𝑃𝑎𝑟𝑡𝑖𝑖 ← 𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖;

6 𝑉𝑝𝑎𝑠𝑡 ← 0;
// BEST OF SWARM

7 𝐵𝑜𝑓𝑆𝑤𝑎𝑟𝑚 ← the 𝐵𝑜𝑓𝑃𝑎𝑟𝑡 with the least quality;
8 for 𝑣 = 1 to 𝑛𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 do
9 for 𝑖′ = 1 to 𝑛𝑃𝑜𝑝 do
10 if 𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖′ .𝑄𝑢𝑎𝑙𝑖𝑡𝑦 < 𝐵𝑜𝑓𝑃𝑎𝑟𝑡𝑖𝑖′ .𝑄𝑢𝑎𝑙𝑖𝑡𝑦 then
11 𝐵𝑜𝑓𝑃𝑎𝑟𝑡𝑖𝑖′ ← 𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖′ ; /* UPDATING BEST POSITION OF PARTICLE I’ SO FAR */
12 if 𝐵𝑜𝑓𝑃𝑎𝑟𝑡𝑐𝑙𝑒𝑖′ .𝑄𝑢𝑎𝑙𝑖𝑡𝑦 < 𝐵𝑜𝑓𝑆𝑤𝑎𝑟𝑚.𝑄𝑢𝑎𝑙𝑖𝑡𝑦 then
13 𝐵𝑜𝑓𝑆𝑤𝑎𝑟𝑚 ← 𝐵𝑜𝑓𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖′ ; /* UPDATING THE BEST OF THE SWARM SO FAR */

14 for 𝑖ε = 1 to 𝑛𝑃𝑜𝑝 do
15 𝐶1 = 𝑟𝑎𝑛𝑑 × 2;
16 𝐷1 = 𝑟𝑎𝑛𝑑 × 2;
17 𝐷𝑒𝑙𝑡𝑎 = 𝐶1 × (𝐵𝑜𝑓𝑆𝑤𝑎𝑟𝑚.𝑃 𝑜𝑠.𝑆𝐶 − 𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖ε .𝑃 𝑜𝑠.𝑆𝐶) + (2 − 𝐶1) × (𝐵𝑜𝑓𝑃𝑎𝑟𝑡𝑖𝑖ε .𝑃 𝑜𝑠.𝑆𝐶 − 𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖ε .𝑃 𝑜𝑠.𝑆𝐶);
18 𝑉𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑖ε = 𝐷1 × (𝑉𝑝𝑎𝑠𝑡𝑖ε ) + (2 −𝐷1) × (𝐷𝑒𝑙𝑡𝑎) ; /* THE VELOCITY FOR MOVING THE PARTICLE */
19 𝑃𝑜𝑠.𝑆𝐶 ← 𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖ε .𝑃 𝑜𝑠.𝑆𝐶 + 𝑉𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑖ε ; /* A NEW POSITION */

20 𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖ε .𝑃 𝑜𝑠.𝑆𝐶 ← ShortageRepairAlg (Algorithm VII) (𝑃𝑜𝑠.𝑆𝐶, 𝑆ℎ𝑜𝑟𝑡𝑎𝑔𝑒, 𝐶𝐶);

21 𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖ε .𝑄𝑢𝑎𝑙𝑖𝑡𝑦 ← HeuristicFitFunc (Algorithm VIII) (𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑖ε .𝑃 𝑜𝑠.𝑆𝐶, 𝑆ℎ𝑜𝑟𝑡𝑎𝑔𝑒,𝑄𝑢𝑒𝑢𝑒, 𝐶𝐶);

// UPDATING 𝑉𝑃𝐴𝑆𝑇 FOR FURTHER ITERATION
22 𝑉𝑝𝑎𝑠𝑡 ← 𝑉𝑐𝑢𝑟𝑟𝑒𝑛𝑡

Return : 𝐵𝑜𝑓𝑆𝑤𝑎𝑟𝑚

I.3. Robustness check

In evaluating the performance in terms of the robustness of the HGA-E algorithm and HGA-S algorithm, we test each of them
n the data of the Melbourne city on the supply of 1,000,000 vaccines with TCC of 1,500,000 for HGA-E and 750,000 for HGA-S.
e repeat each run 10 times. In each run, 60 chromosomes are generated as the initial population of genetic algorithms (Zhang

t al., 2020). The resulted average distance of the tests are provided in Table I.3. The t-test is performed to check if there is
significant difference among the obtained results for each algorithm (Owais and Osman, 2018). The statistical test shows no

ignificant difference in results as the null hypothesis is accepted at the significant level of 0.05 for both algorithms. The test
ndicates that both HGA-E and HGA-S algorithms are robust.

Table I.3
Robustness performance evaluation of the HGA-E algorithm and HGA-S algorithm.

Test 1 2 3 4 5 6 7 8 9 10 Average

Average distance HGA-E 5.051 4.983 5.032 5.09 5.032 5.032 5.108 5.122 5.081 4.95 5.0481
HGA-S 5.362 5.387 5.424 5.291 5.271 5.387 5.203 5.458 5.387 5.387 5.3557
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